图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: NTMD5836NLR2G
  • 制造商: ON Semiconductor
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

NTMD5836NLR2G产品简介:

ICGOO电子元器件商城为您提供NTMD5836NLR2G由ON Semiconductor设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 NTMD5836NLR2G价格参考。ON SemiconductorNTMD5836NLR2G封装/规格:晶体管 - FET,MOSFET - 阵列, Mosfet Array 2 N-Channel (Dual) 40V 9A, 5.7A 1.5W Surface Mount 8-SOIC。您可以下载NTMD5836NLR2G参考资料、Datasheet数据手册功能说明书,资料中有NTMD5836NLR2G 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

分立半导体产品

描述

MOSFET 2N-CH 40V 9A/5.7A SO-8FLMOSFET NFET SO8-D 40V 10 25mOHM

产品分类

FET - 阵列分离式半导体

FET功能

逻辑电平门

FET类型

2 个 N 沟道(双)

Id-ContinuousDrainCurrent

9 A

Id-连续漏极电流

9 A

品牌

ON Semiconductor

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

晶体管,MOSFET,ON Semiconductor NTMD5836NLR2G-

数据手册

点击此处下载产品Datasheet

产品型号

NTMD5836NLR2G

Pd-PowerDissipation

1.5 W

Pd-功率耗散

1.5 W

Qg-GateCharge

36 nC

Qg-栅极电荷

36 nC

RdsOn-Drain-SourceResistance

9.5 mOhms

RdsOn-漏源导通电阻

9.5 mOhms

Vds-Drain-SourceBreakdownVoltage

40 V

Vds-漏源极击穿电压

40 V

Vgs-Gate-SourceBreakdownVoltage

20 V

Vgs-栅源极击穿电压

20 V

Vgsth-Gate-SourceThresholdVoltage

1.8 V

Vgsth-栅源极阈值电压

1.8 V

上升时间

22 ns

下降时间

8.5 ns

不同Id时的Vgs(th)(最大值)

3V @ 250µA

不同Vds时的输入电容(Ciss)

2120pF @ 20V

不同Vgs时的栅极电荷(Qg)

50nC @ 10V

不同 Id、Vgs时的 RdsOn(最大值)

12 毫欧 @ 10A,10V

产品种类

MOSFET

供应商器件封装

8-SOIC N

其它名称

NTMD5836NLR2G-ND
NTMD5836NLR2GOSTR

功率-最大值

1.5W

功率耗散

1.5 W

包装

带卷 (TR)

商标

ON Semiconductor

安装类型

表面贴装

安装风格

SMD/SMT

导通电阻

9.5 mOhms

封装

Reel

封装/外壳

8-SOIC(0.154",3.90mm 宽)

封装/箱体

SOIC-8

工厂包装数量

2500

晶体管极性

N-Channel

最大工作温度

+ 85 C

栅极电荷Qg

36 nC

标准包装

2,500

正向跨导-最小值

10.5 S / 6 S

汲极/源极击穿电压

40 V

漏极连续电流

9 A

漏源极电压(Vdss)

40V

电流-连续漏极(Id)(25°C时)

9A,5.7A

系列

NTMD5836NL

配置

Dual

闸/源击穿电压

20 V

推荐商品

型号:SP8K2FU6TB

品牌:Rohm Semiconductor

产品名称:分立半导体产品

获取报价

型号:FDMA1023PZ

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:AO8810

品牌:Alpha & Omega Semiconductor Inc.

产品名称:分立半导体产品

获取报价

型号:AUIRF9952QTR

品牌:Infineon Technologies

产品名称:分立半导体产品

获取报价

型号:NDS9948

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:ZXMN6A25DN8TA

品牌:Diodes Incorporated

产品名称:分立半导体产品

获取报价

型号:DMN26D0UDJ-7

品牌:Diodes Incorporated

产品名称:分立半导体产品

获取报价

型号:NDC7003P

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

样品试用

万种样品免费试用

去申请
NTMD5836NLR2G 相关产品

AO4800B

品牌:Alpha & Omega Semiconductor Inc.

价格:

DMP2240UDM-7

品牌:Diodes Incorporated

价格:

STS7C4F30L

品牌:STMicroelectronics

价格:

FDS4897C

品牌:ON Semiconductor

价格:

NTHD2102PT1G

品牌:ON Semiconductor

价格:

SSM6L39TU,LF

品牌:Toshiba Semiconductor and Storage

价格:

SI7220DN-T1-E3

品牌:Vishay Siliconix

价格:

IRF7307QTRPBF

品牌:Infineon Technologies

价格:

PDF Datasheet 数据手册内容提取

NTMD5836NL Power MOSFET 40 V, Dual N−Channel, SOIC−8 Features • Asymmetrical N Channels http://onsemi.com • Low R DS(on) • Low Capacitance N−Channel 1 N−Channel 2 • Optimized Gate Charge D1 D2 • These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant G1 G2 ID Max V(BR)DSS RDS(on) Max (Notes 1 and 2) Channel 1 40 V 12 m(cid:2) @ 10 V 11 A S1 S2 16 m(cid:2) @ 4.5 V Channel 2 40 V 20 m(cid:2) @ 10 V 6.5 A MARKING DIAGRAM* 36.5 m(cid:2) @ 4.5 V AND PIN ASSIGNMENT 1. Surface−mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in D1 D1 D2D2 sq [2 oz] including traces) 8 8 2. Only selected channel is been powered 1W applied on channel 1: TJ = 1 W * 85°C/W + 25°C = 110°C 1 5836NL SOIC−8 AYWW(cid:2) (cid:2) CASE 751 1 S1 G1 S2G2 A = Assembly Location Y = Year WW = Work Week (cid:2) = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION Device Package Shipping† NTMD5836NLR2G SOIC−8 2500 / (Pb−Free) Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D © Semiconductor Components Industries, LLC, 2012 1 Publication Order Number: February, 2012 − Rev. 1 NTMD5836NL/D

NTMD5836NL MAXIMUM RATINGS (TJ = 25°C unless otherwise stated) Parameter Symbol Ch 1 Ch 2 Unit Drain−to−Source Voltage VDSS 40 40 V Gate−to−Source Voltage VGS (cid:2)20 (cid:2)20 V Continuous Drain Current RθJA (Notes 3 and 4) Steady TA = 25°C ID 9.0 5.7 A State TA = 70°C 7.2 4.6 Power Dissipation RθJA (Notes 3 and 4) TA = 25°C PD 1.5 1.5 W TA = 70°C 0.9 0.9 Continuous Drain Current RθJA (Notes 3 and 4) t (cid:3) 10s TA = 25°C ID 11 6.5 A TA = 70°C 8.6 4.6 Power Dissipation RθJA (Notes 3 and 4) TA = 25°C PD 2.1 1.9 W TA = 70°C 1.3 1.2 Pulsed Drain Current tp = 10 (cid:3)s IDM 43 26 A Operating Junction and Storage Temperature TJ, TSTG −55 to +150 °C Source Current (Body Diode) IS 10 7.0 A Single Pulse Drain−to−Source Avalanche Energy (VDD = 40 V, VGS = 10 V, L = 0.1 mH(cid:4) EAS 76 22 mJ IAS 39 21 A Lead Temperature for Soldering Purposes (1/8” from case for 10s) TL 260 °C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 3. Surface−mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces) 4. Only selected channel is been powered 1W applied on channel 1: TJ = 1 W * 85°C/W + 25°C = 110°C THERMAL RESISTANCE RATINGS Parameter Symbol Ch 1 Ch 2 Unit Junction−to−Ambient Steady State (Notes 5 and 7) RθJA 85 86 °C/W Junction−to−Ambient – t (cid:3) 10 s (Notes 5 and 7) RθJA 60 65 Junction−to−Ambient Steady State (Notes 5 and 8) RθJA 59 Junction−to−Ambient Steady State (Notes 6 and 7) RθJA 136 136 5. Surface−mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces) 6. Surface−mounted on FR4 board using 0.155 in sq (100 mm2) pad size 7. Only selected channel is been powered 1W applied on channel 1: TJ = 1 W * 85°C/W + 25°C = 110°C 8. Both channels receive equivalent power dissipation 1 W applied on each channel: TJ = 2 W * 59°C/W + 25°C = 143°C http://onsemi.com 2

NTMD5836NL ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise specified) Parameter Symbol Test Condition Ch Min Typ Max Unit OFF CHARACTERISTICS Drain−to−Source Breakdown V(BR)DSS Ch 1 40 V Voltage VGS = 0 V, ID = 250 (cid:3)A Ch 2 Drain−to−Source Breakdown V(BR)DSS Ch 1 146 mV/ Voltage Temperature Coefficient / TJ °C Ch 2 25 Zero Gate Voltage Drain Current IDSS Ch 1 1.0 (cid:3)A TJ = 25°C Ch 2 VGS = 0 V, VDS = 40 V Ch 1 100 TJ = 125°C Ch 2 Gate−to−Source Leakage Current IGSS Ch 1 (cid:2)100 nA VDS = 0 V, VGS = (cid:2)20 V Ch 2 ON CHARACTERISTICS (Note 9) Gate Threshold Voltage VGS(TH) Ch 1 1.0 1.8 3.0 V VGS = VDS, ID = 250 (cid:3)A Ch 2 1.0 1.8 3.0 Negative Threshold Temperature VGS(TH) / Ch 1 6.0 mV/°C Coefficient TJ Ch 2 6.0 Drain−to−Source On Resistance RDS(on) VGS = 10 V, ID = 10 A Ch 1 9.5 12 m(cid:2) VGS = 10 V, ID = 7 A Ch 2 16.2 20 VGS = 4.5 V, ID = 10 A Ch 1 13 16 m(cid:2) VGS = 4.5 V, ID = 7 A Ch 2 25.0 36.5 Forward Transconductance gFS VDS = 15 V, ID = 10 A Ch 1 10.5 S VDS = 15 V, ID = 7 A Ch 2 6.0 CHARGES, CAPACITANCES & GATE RESISTANCE Input Capacitance CISS Ch 1 2120 pF Ch 2 730 Output Capacitance COSS VGS = 0 V, f = 1 MHz, VDS = Ch 1 315 20 V Ch 2 123 Reverse Transfer Capacitance CRSS Ch 1 225 Ch 2 84 9. Pulse Test: pulse width (cid:3) 300 (cid:3)s, duty cycle (cid:3) 2% 10.Switching characteristics are independent of operating junction temperatures http://onsemi.com 3

NTMD5836NL ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise specified) Parameter Symbol Test Condition Ch Min Typ Max Unit CHARGES, CAPACITANCES & GATE RESISTANCE Total Gate Charge QG(TOT) VGS = 10V, VDS = 20V, ID = 10A Ch 1 36 50 nC VGS = 10 V, VDS = 20 V, ID = 7 A Ch 2 16 Ch 1 15 23 Ch 2 8.5 11 Threshold Gate Charge QG(TH) Ch 1 2.4 Ch 2 1.0 Gate−to−Source Charge QGS VGS = 4.5 V, VDS = 20 V, CH1: Ch 1 6.9 ID = 10 A, CH2: ID = 7 A Ch 2 2.8 Gate−to−Drain Charge QGD Ch 1 7.2 Ch 2 4.0 Plateau Voltage VGP Ch 1 3.2 V Ch 2 3.3 Gate Resistance RG Ch 1 1.2 (cid:2) Ch 2 2.1 SWITCHING CHARACTERISTICS (Note 10) Turn−On Delay Time td(ON) Ch 1 16 ns Ch 2 11.5 Rise Time tr Ch 1 22 VGS = 4.5 V, VDD = 20 V, CH1: Ch 2 14 ID = 10 A, CH2: ID = 7 A, RG = Turn−Off Delay Time td(OFF) 2.5 (cid:2) Ch 1 26 Ch 2 15.5 Fall Time tf Ch 1 8.5 Ch 2 3.5 DRAIN−SOURCE DIODE CHARACTERISTICS Forward Diode Voltage VSD Ch 1 0.9 1.2 V VGS = 0 V, TJ = 25°C Ch 2 0.85 1.2 CH1: ID = 10 A, CH2: ID Ch 1 0.65 = 7 A TJ = 125°C Ch 2 0.73 Reverse Recovery Time tRR Ch 1 27 ns Ch 2 17 Charge Time Ta Ch 1 14 VGS = 0 V, dISD/dt = 100 A/(cid:3)s, Ch 2 11 Discharge Time Tb CH1: ID = 10 A, CH2: ID = 7 A Ch 1 13 Ch 2 6.0 Reverse Recovery Charge QRR Ch 1 19 nC Ch 2 9.0 9. Pulse Test: pulse width (cid:3) 300 (cid:3)s, duty cycle (cid:3) 2% 10.Switching characteristics are independent of operating junction temperatures http://onsemi.com 4

NTMD5836NL TYPICAL PERFORMANCE CURVES 70 70 10V 5.5 V TJ = 25°C VDS ≥ 20 V 60 6.5 V 60 3.9 V A) 8.5 V A) T ( 50 T ( 50 N N E E R 40 4.5 V R 40 R R U 3.5 V U N C 30 N C 30 TJ = 125°C AI AI R R D D, 20 3.1 V D D, 20 TJ = 25°C I I 10 10 TJ = −55°C 0 VGS = 2.5 V 0 0 1 2 3 4 5 2 3 4 5 VDS, DRAIN−TO−SOURCE VOLTAGE (V) VGS, GATE−TO−SOURCE VOLTAGE (V) Figure 1. On−Region Characteristics − Figure 2. Transfer Characteristics − Channel 1 Channel 1 (cid:2)) (cid:2)) E ( 0.035 E ( 0.02 NC TJ = 25°C NC TJ = 25°C TA ID = 10 A TA S 0.03 S SI SI E E R R 0.015 CE 0.025 CE VGS = 4.5 V R R U U O O S 0.02 S VGS = 10 V − − O O 0.01 T T − − N N AI 0.015 AI R R D D n), n), o 0.01 o0.005 DS( 2 3 4 5 6 7 8 9 10 DS( 2 6 10 14 18 R R VGS, GATE−TO−SOURCE VOLTAGE (V) ID, DRAIN CURRENT (A) Figure 3. On−Resistance vs. Gate−to−Source Figure 4. On−Resistance vs. Drain Current and Voltage − Channel 1 Gate Voltage − Channel 1 1.6 100000 ID = 10 A VGS = 0 V ED) VGS = 4.5 V CE RZ 1.4 DRAIN−TO−SOU S(on),SISTANCE (NORMALI 1.21 I, LEAKAGE (nA)DSS10000 TTJJ = = 1 15205°°CC DE RR 0.8 1000 −50 −25 0 25 50 75 100 125 150 10 20 30 40 TJ, JUNCTION TEMPERATURE (°C) VDS, DRAIN−TO−SOURCE VOLTAGE (VOLTS) Figure 5. On−Resistance Variation with Figure 6. Drain−to−Source Leakage Current Temperature − Channel 1 vs. Voltage − Channel 1 http://onsemi.com 5

NTMD5836NL TYPICAL PERFORMANCE CURVES 3000 10 TJ = 25°C QT 2500 VGS = 0 V V) V) pF) Ciss CE ( 8 CE ( E (2000 UR UR C O 6 O N S S TA1500 O− O− CI T T C, CAPA1050000 Coss V, GATE−GS 24 QGS QGD VIDG =S 1=0 2 A0 V V, DRAIN−DS Crss TJ = 25°C 0 0 0 10 20 30 40 0 5 10 15 20 25 30 35 40 DRAIN−TO−SOURCE VOLTAGE (V) QG, TOTAL GATE CHARGE (nC) Figure 7. Capacitance Variation − Channel 1 Figure 8. Gate−To−Source and Drain−To−Source Voltage vs. Total Charge − Channel 1 1000 20 VDD = 20 V VGS = 0 V ID = 10 A A) TJ = 25°C VGS = 4.5 V T ( 15 N s) tr RE n R TIME ( 100 CE CU 10 t, R U O td(off) tf td(on) , SS 5 I 10 0 1 10 100 0.4 0.5 0.6 0.7 0.8 0.9 1 RG, GATE RESISTANCE ((cid:2)) VSD, SOURCE−TO−DRAIN VOLTAGE (V) Figure 9. Resistive Switching Time Figure 10. Diode Forward Voltage vs. Current Variation vs. Gate Resistance − Channel 1 − Channel 1 100 80 −mJ) ID = 39 A T (A) 10 1 (cid:3)s AIN−TOERGY ( 60 N RN RE 1 10 (cid:3)s E DE E UR 100 (cid:3)s LSCH 40 I, DRAIN CD00.0.11 VSTCGIN S=G =2L 52E°0 CP VULSREDS(on) LIMIT d1 cms S, SINGLE PURCE AVALAN 20 THERMAL LIMIT AU EO PACKAGE LIMIT S 0.001 0 0.1 1 10 100 25 50 75 100 125 150 VDS, DRAIN−TO−SOURCE VOLTAGE (V) TJ, STARTING JUNCTION TEMPERATURE (°C) Figure 11. Maximum Rated Forward Biased Figure 12. Maximum Avalanche Energy vs. Safe Operating Area − Channel 1 Starting Junction Temperature − Channel 1 http://onsemi.com 6

NTMD5836NL TYPICAL PERFORMANCE CURVES 50 50 10V 6.5 V VDS ≥ 5 V 4.5 V 8.5 V A) 40 5.5 V A) 40 T ( 4 V T ( N N RE 30 RE 30 R R U U C 3.6 V C AIN 20 AIN 20 TJ = 125°C R R D D, 10 D D, 10 TJ = 25°C I VGS = 3 V I TJ = −55°C TJ = 25°C 0 0 0 1 2 3 4 5 2 3 4 5 VDS, DRAIN−TO−SOURCE VOLTAGE (V) VGS, GATE−TO−SOURCE VOLTAGE (V) Figure 1. On−Region Characteristics − Figure 2. Transfer Characteristics − Channel 2 Channel 2 (cid:2)) (cid:2)) E ( 0.05 E ( 0.03 NC TJ = 25°C NC TJ = 25°C STA ID = 7 A STA VGS = 4.5 V SI 0.04 SI E E R R 0.025 E E C C R R U 0.03 U O O S S − − O O 0.02 N−T 0.02 N−T VGS = 10 V AI AI R R D D on), 0.01 on),0.015 DS( 2 3 4 5 6 7 8 9 10 DS( 2 6 10 14 18 R R VGS, GATE−TO−SOURCE VOLTAGE (V) ID, DRAIN CURRENT (A) Figure 3. On−Resistance vs. Gate−to−Source Figure 4. On−Resistance vs. Drain Current and Voltage − Channel 2 Gate Voltage − Channel 2 1.6 100000 VGS = 4.5 V VGS = 0 V CEED)1.4 ID = 7 A RZ DRAIN−TO−SOU S(on),SISTANCE (NORMALI01..821 I, LEAKAGE (nA)DSS101000000 TTJJ == 112550°°CC DE RR 0.6 100 −50 −25 0 25 50 75 100 125 150 5 15 25 35 TJ, JUNCTION TEMPERATURE (°C) VDS, DRAIN−TO−SOURCE VOLTAGE (V) Figure 5. On−Resistance Variation with Figure 6. Drain−to−Source Leakage Current Temperature − Channel 2 vs. Voltage − Channel 2 http://onsemi.com 7

NTMD5836NL TYPICAL PERFORMANCE CURVES 1200 10 TJ = 25°C QT F) 1000 VGS = 0 V E (V) 8 E (V) p C C CITANCE ( 680000 Ciss TO−SOUR 6 TO−SOUR PA E− 4 QGS QGD N− A 400 T AI C A R C, 200 Coss V, GGS 2 VIDD =S 7= A20 V V, DDS 0 Crss 0 TJ = 25°C 0 10 20 30 40 0 5 10 15 VDS, DRAIN−TO−SOURCE VOLTAGE (V) QG, TOTAL GATE CHARGE (nC) Figure 7. Capacitance Variation − Channel 2 Figure 8. Gate−To−Source and Drain−To−Source Voltage vs. Total Charge 1000 VDD = 20 V 12 VGS = 0 V ID = 7 A A) TJ = 25°C VGS = 4.5 V T ( 10 N s) 100 tr RE 8 TIME (n td(off) CE CUR 6 t, 10 td(on) UR 4 O S tf I, S 2 1 0 1 10 100 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 RG, GATE RESISTANCE ((cid:2)) VSD, SOURCE−TO−DRAIN VOLTAGE (V) Figure 9. Resistive Switching Time Figure 10. Diode Forward Voltage vs. Current Variation vs. Gate Resistance − Channel 2 − Channel 2 E 100 C 20 R OU ID = 21 A CURRENT (A) 101 11 0(cid:3) (cid:3)ss E DRAIN−TO−SE ENERGY (mJ)1105 , DRAIN D 00.0.11 VSTCGIN S=G =2L 52E°0 CP VULSE dc 110 0m (cid:3)ss GLE PULSVALANCH 5 I RDS(on) LIMIT NA THERMAL LIMIT SI PACKAGE LIMIT S, 0.001 A 0 E 0.1 1 10 100 25 50 75 100 125 150 VDS, DRAIN−TO−SOURCE VOLTAGE (V) TJ, STARTING JUNCTION TEMPERATURE (°C) Figure 11. Maximum Rated Forward Biased Figure 12. Maximum Avalanche Energy vs. Safe Operating Area − Channel 2 Starting Junction Temperature http://onsemi.com 8

NTMD5836NL TYPICAL PERFORMANCE CURVES 100 D = 0.5 0.2 10 0.1 W) 0.05 °C/ 1 0.02 R(t) ( 0.01 0.1 SINGLE PULSE 0.01 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 t, PULSE TIME (s) Figure 13. Thermal Response http://onsemi.com 9

NTMD5836NL PACKAGE DIMENSIONS SOIC−8 NB CASE 751−07 ISSUE AK NOTES: −X− 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. A 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) 8 5 PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR B S 0.25 (0.010) M Y M PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL 1 IN EXCESS OF THE D DIMENSION AT −Y− 4 K 6. M75A1X−I0M1U TMH RMUA T7E51R−IA0L6 CAROEN DOIBTSIOONL.ETE. NEW STANDARD IS 751−07. G MILLIMETERS INCHES DIM MIN MAX MIN MAX A 4.80 5.00 0.189 0.197 C NX 45(cid:3) B 3.80 4.00 0.150 0.157 SEATING C 1.35 1.75 0.053 0.069 PLANE D 0.33 0.51 0.013 0.020 −Z− G 1.27 BSC 0.050 BSC H 0.10 0.25 0.004 0.010 0.10 (0.004) J 0.19 0.25 0.007 0.010 H D M J K 0.40 1.27 0.016 0.050 M 0 (cid:3) 8 (cid:3) 0 (cid:3) 8 (cid:3) N 0.25 0.50 0.010 0.020 0.25 (0.010)M Z Y S X S SOLDERING FOOTPRINT* S 5.80 6.20 0.228 0.244 1.52 0.060 7.0 4.0 0.275 0.155 0.6 1.270 0.024 0.050 (cid:4) (cid:5) mm SCALE 6:1 inches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: N. American Technical Support: 800−282−9855 Toll Free ON Semiconductor Website: www.onsemi.com Literature Distribution Center for ON Semiconductor USA/Canada P.O. Box 5163, Denver, Colorado 80217 USA Europe, Middle East and Africa Technical Support: Order Literature: http://www.onsemi.com/orderlit Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Phone: 421 33 790 2910 Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Japan Customer Focus Center For additional information, please contact your local Email: orderlit@onsemi.com Phone: 81−3−5817−1050 Sales Representative http://onsemi.com NTMD5836NL/D 10