图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: 24AA256-I/SN
  • 制造商: Microchip
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

24AA256-I/SN产品简介:

ICGOO电子元器件商城为您提供24AA256-I/SN由Microchip设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 24AA256-I/SN价格参考。Microchip24AA256-I/SN封装/规格:存储器, EEPROM 存储器 IC 256Kb (32K x 8) I²C 400kHz 900ns 8-SOIC。您可以下载24AA256-I/SN参考资料、Datasheet数据手册功能说明书,资料中有24AA256-I/SN 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC EEPROM 256KBIT 400KHZ 8SOIC电可擦除可编程只读存储器 32kx8 - 1.8V

产品分类

存储器

品牌

Microchip Technology

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

内存,电可擦除可编程只读存储器,Microchip Technology 24AA256-I/SN-

数据手册

http://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en011849

产品型号

24AA256-I/SN

PCN组件/产地

点击此处下载产品Datasheet

PCN设计/规格

http://www.microchip.com/mymicrochip/NotificationDetails.aspx?id=5673&print=viewhttp://www.microchip.com/mymicrochip/NotificationDetails.aspx?pcn=JAON-29UDMC755&print=view

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=4315

产品目录页面

点击此处下载产品Datasheet

产品种类

电可擦除可编程只读存储器

供应商器件封装

8-SOIC N

其它名称

24AA256-I/SNG
24AA256-I/SNG-ND
24AA256I/SN
24AA256ISN

包装

管件

商标

Microchip Technology

存储器类型

EEPROM

存储容量

256K (32K x 8)

安装风格

SMD/SMT

封装

Tube

封装/外壳

8-SOIC(0.154",3.90mm 宽)

封装/箱体

SOIC-8

工作温度

-40°C ~ 85°C

工作电流

3 mA

工作电源电压

1.8 V, 5.5 V

工厂包装数量

100

接口

I²C,2 线串口

接口类型

Serial (2-Wire)

数据保留

200 yr

最大工作温度

+ 85 C

最大工作电流

3 mA

最大时钟频率

0.4 MHz

最小工作温度

- 40 C

标准包装

100

格式-存储器

EEPROMs - 串行

电压-电源

1.7 V ~ 5.5 V

电源电压-最大

5.5 V

电源电压-最小

1.8 V

组织

32 k x 8

访问时间

5 ms

速度

100kHz,400kHz

推荐商品

型号:AT25640N-10SI-2.7

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:DS1225AB-70IND

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:MT29F128G08AJAAAWP:A

品牌:Micron Technology Inc.

产品名称:集成电路(IC)

获取报价

型号:AT93C46E-TH-B

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:CAT24C256WI-G

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:CY7C1250KV18-400BZC

品牌:Cypress Semiconductor Corp

产品名称:集成电路(IC)

获取报价

型号:MT48LC16M16A2TG-75 L:D TR

品牌:Micron Technology Inc.

产品名称:集成电路(IC)

获取报价

型号:S25FL128SAGBHI200

品牌:Cypress Semiconductor Corp

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
24AA256-I/SN 相关产品

M29W640GH70NB6E

品牌:Micron Technology Inc.

价格:

CY62148DV30LL-70ZSXA

品牌:Cypress Semiconductor Corp

价格:¥询价-¥询价

AT28BV256-20JU

品牌:Microchip Technology

价格:

IDT71V424S10Y

品牌:IDT, Integrated Device Technology Inc

价格:

MT46V64M16TG-6T IT:A TR

品牌:Micron Technology Inc.

价格:

R1LV0216BSB-7SI#B0

品牌:Renesas Electronics America

价格:

CYD18S72V-100BBI

品牌:Cypress Semiconductor Corp

价格:

70V24L20PFGI

品牌:IDT, Integrated Device Technology Inc

价格:

PDF Datasheet 数据手册内容提取

24AA256/24LC256/24FC256 2 256K I C CMOS Serial EEPROM Device Selection Table • Temperature Ranges: - Industrial (I): -40C to +85C Part VCC Max. Clock Temp. - Automotive (E): -40C to +125C Number Range Frequency Ranges Description 24AA256 1.7-5.5V 400kHz(1) I, E 24LC256 2.5-5.5V 400kHz I, E The Microchip Technology Inc. 24AA256/24LC256/ 24FC256 1.7-5.5V 1MHz(2) I 24FC256 (24XX256*) is a 32K x 8 (256 Kbit) Serial Electrically Erasable PROM, capable of operation Note 1: 100kHz for VCC < 2.5V. across a broad voltage range (1.7V to 5.5V). It has 2: 400kHz for VCC < 2.5V. been developed for advanced, low-power applications such as personal communications or data acquisition. Features This device also has a page write capability of up to 64 • Single Supply with Operation Down to 1.7V for bytes of data. This device is capable of both random 24AA256 and 24FC256 Devices, 2.5V for and sequential reads up to the 256K boundary. 24LC256 Devices Functional address lines allow up to eight devices on • Low-Power CMOS Technology: the same bus, for up to 2Mbit address space. This device is available in the standard 8-pin plastic DIP, - Read current: 400 uA max. at 5.5V, 400 kHz SOIC, SOIJ, TSSOP, MSOP, DFN and TDFN pack- - Standby current: 1uA max. at 3.6V, I-temp ages. The 24AA256 is also available in the 8-lead Chip • 2-Wire Serial Interface, I2C Compatible Scale package. • Cascadable up to Eight Devices Block Diagram • Schmitt Trigger Inputs for Noise Suppression • Output Slope Control to Eliminate Ground Bounce A0A1A2WP HV Generator • 100 kHz and 400 kHz Clock Compatibility • Page Write Time 5 ms Max. • Self-Timed Erase/Write Cycle I/O Memory EEPROM • 64-Byte Page Write Buffer Control Control XDEC Array Logic Logic • Hardware Write-Protect Page Latches • ESD Protection >4000V • More than One Million Erase/Write Cycles I/O SCL • Data Retention >200 years YDEC • Factory Programming Available SDA • Packages Include 8-lead PDIP, SOIC, SOIJ, DFN, TDFN, TSSOP and MSOP VCC • RoHS Compliant VSS Sense Amp. R/W Control Package Types PDIP/SOIC/SOIJ TSSOP/MSOP(1) DFN/TDFN CS (Chip Scale)(2) A0 1 8 VCC A0 1 8 VCC A0 1 8 VCC VCC A1 A0 1 2 3 AA12 23 24XX256 76 WSCPL AA12 23 24XX256 76 WSCPL VAAS12S 432 24XX256 567 WSSCDPLA WP SD6A4S7CL5 8VSS A2 VSS 4 5 SDA VSS 4 5 SDA (TOP DOWN VIEW, BALLS NOT VISIBLE) Note 1: * Pins A0 and A1 are no connects for the MSOP package only. Note 2: Available in I-temp, “AA” only. *24XX256 is used in this document as a generic part number for the 24AA256/24LC256/24FC256 devices.  1998-2018 Microchip Technology Inc. DS20001203V-page 1

24AA256/24LC256/24FC256 1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings(†) VCC.............................................................................................................................................................................6.5V All inputs and outputs w.r.t. VSS.........................................................................................................-0.6V to VCC +1.0V Storage temperature...............................................................................................................................-65°C to +150°C Ambient temperature with power applied................................................................................................-40°C to +125°C ESD protection on all pins 4kV † NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. TABLE 1-1: DC CHARACTERISTICS Electrical Characteristics: DC CHARACTERISTICS Industrial (I): VCC = +1.7V to 5.5V TA = -40°C to +85°C Automotive (E): VCC = +1.7V to 5.5V TA = -40°C to +125°C Param. Sym. Characteristic Min. Max. Units Conditions No. — A0, A1, A2, SCL, SDA — — — — and WP pins: D1 VIH High-level input voltage 0.7 VCC — V — D2 VIL Low-level input voltage — 0.3 VCC V VCC  2.5V 0.2 VCC V VCC < 2.5V D3 VHYS Hysteresis of Schmitt 0.05 VCC — V VCC  2.5V (Note) Trigger inputs (SDA, SCL pins) D4 VOL Low-level output voltage — 0.40 V IOL = 3.0mA @ VCC = 4.5V IOL = 2.1mA @ VCC = 2.5V D5 ILI Input leakage current — ±1 A VIN = VSS or VCC, WP = VSS VIN = VSS or VCC, WP = VCC D6 ILO Output leakage current — ±1 A VOUT = VSS or VCC D7 CIN, Pin capacitance — 10 pF VCC = 5.0V (Note) COUT (all inputs/outputs) TA = 25°C, FCLK = 1MHz D8 ICC Read Operating current — 400 A VCC = 5.5V, SCL = 400kHz ICC Write — 3 mA VCC = 5.5V D9 ICCS Standby current — 1.5 A TA = -40°C to +85°C SCL = SDA = VCC = 5.5V A0, A1, A2, WP = VSS — 1 A TA = -40°C to +85°C SCL = SDA = VCC = 3.6V A0, A1, A2, WP = VSS — 5 A TA = -40°C to +125°C SCL = SDA = VCC = 5.5V A0, A1, A2, WP = VSS Note: This parameter is periodically sampled and not 100% tested. DS20001203V-page 2  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 TABLE 1-2: AC CHARACTERISTICS Electrical Characteristics: AC CHARACTERISTICS Industrial (I): VCC = +1.7V to 5.5V TA = -40°C to +85°C Automotive (E): VCC = +1.7V to 5.5V TA = -40°C to +125°C Param. Sym. Characteristic Min. Max. Units Conditions No. 1 FCLK Clock frequency — 100 kHz 1.7V  VCC  2.5V — 400 2.5V  VCC  5.5V — 400 1.7V  VCC  2.5V 24FC256 — 1000 2.5V  VCC  5.5V 24FC256 2 THIGH Clock high time 4000 — ns 1.7V  VCC  2.5V 600 — 2.5V  VCC  5.5V 600 — 1.7V  VCC  2.5V 24FC256 500 — 2.5V  VCC  5.5V 24FC256 3 TLOW Clock low time 4700 — ns 1.7V  VCC  2.5V 1300 — 2.5V  VCC  5.5V 1300 — 1.7V  VCC  2.5V 24FC256 500 — 2.5V  VCC  5.5V 24FC256 4 TR SDA and SCL rise time — 1000 ns 1.7V  VCC  2.5V (Note1) — 300 2.5V  VCC  5.5V — 300 1.7V  VCC  5.5V 24FC256 5 TF SDA and SCL fall time — 300 ns All except, 24FC256 (Note1) — 100 1.7V  VCC  5.5V 24FC256 6 THD:STA Start condition hold time 4000 — ns 1.7V  VCC  2.5V 600 — 2.5V  VCC  5.5V 600 — 1.7V  VCC  2.5V 24FC256 250 — 2.5V  VCC  5.5V 24FC256 7 TSU:STA Start condition setup time 4700 — ns 1.7V  VCC  2.5V 600 — 2.5V  VCC  5.5V 600 — 1.7V  VCC  2.5V 24FC256 250 — 2.5V  VCC  5.5V 24FC256 8 THD:DAT Data input hold time 0 — ns (Note2) 9 TSU:DAT Data input setup time 250 — ns 1.7V  VCC  2.5V 100 — 2.5V  VCC  5.5V 100 — 1.7V  VCC  5.5V 24FC256 10 TSU:STO Stop condition setup time 4000 — ns 1.7V  VCC  2.5V 600 — 2.5V  VCC  5.5V 600 — 1.7V  VCC  2.5V 24FC256 250 — 2.5V  VCC  5.5V 24FC256 11 TSU:WP WP setup time 4000 — ns 1.7V  VCC  2.5V 600 — 2.5V  VCC  5.5V 600 — 1.7V  VCC  5.5V 24FC256 12 THD:WP WP hold time 4700 — ns 1.7V  VCC  2.5V 1300 — 2.5V  VCC  5.5V 1300 — 1.7V  VCC  5.5V 24FC256 Note 1: Not 100% tested. CB = total capacitance of one bus line in pF. 2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions. 3: The combined TSP and VHYS specifications are due to new Schmitt Trigger inputs, which provide improved noise spike suppression. This eliminates the need for a TI specification for standard operation. 4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance™ Model, which can be obtained from Microchip’s web site at www.microchip.com.  1998-2018 Microchip Technology Inc. DS20001203V-page 3

24AA256/24LC256/24FC256 Electrical Characteristics: AC CHARACTERISTICS (Continued) Industrial (I): VCC = +1.7V to 5.5V TA = -40°C to +85°C Automotive (E): VCC = +1.7V to 5.5V TA = -40°C to +125°C Param. Sym. Characteristic Min. Max. Units Conditions No. 13 TAA Output valid from clock — 3500 ns 1.7V  VCC  2.5V (Note2) — 900 2.5V  VCC  5.5V — 900 1.7V  VCC  2.5V 24FC256 — 400 2.5V  VCC  5.5V 24FC256 14 TBUF Bus free time: Time the bus 4700 — ns 1.7V  VCC  2.5V must be free before a new 1300 — 2.5V  VCC  5.5V transmission can start 1300 — 1.7V  VCC  2.5V 24FC256 500 — 2.5V  VCC  5.5V 24FC256 15 TOF Output fall time from VIH 10 + 0.1CB 250 ns All except, 24FC256 (Note1) minimum to VIL maximum 250 CB  100pF 16 TSP Input filter spike suppression — 50 ns All except, 24FC256 (Notes1 (SDA and SCL pins) and3) 17 TWC Write cycle time (byte or — 5 ms — page) 18 — Endurance 1,000,000 — cycles Page mode, 25°C, 5.5V (Note4) Note 1: Not 100% tested. CB = total capacitance of one bus line in pF. 2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions. 3: The combined TSP and VHYS specifications are due to new Schmitt Trigger inputs, which provide improved noise spike suppression. This eliminates the need for a TI specification for standard operation. 4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance™ Model, which can be obtained from Microchip’s web site at www.microchip.com. FIGURE 1-1: BUS TIMING DATA 5 4 2 D3 SCL 7 3 8 9 10 SDA 6 IN 16 13 14 SDA OUT (protected) WP 11 12 (unprotected) DS20001203V-page 4  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 2.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table2-1. TABLE 2-1: PIN FUNCTION TABLE Name PDIP SOIC SOIJ TSSOP MSOP DFN TDFN CS Function A0 1 1 1 1 — 1 1 3 User Configurable Chip Select A1 2 2 2 2 — 2 2 2 User Configurable Chip Select (NC) — — — — 1, 2 — — — Not Connected A2 3 3 3 3 3 3 3 5 User Configurable Chip Select VSS 4 4 4 4 4 4 4 8 Ground SDA 5 5 5 5 5 5 5 6 Serial Data SCL 6 6 6 6 6 6 6 7 Serial Clock WP 7 7 7 7 7 7 7 4 Write-Protect Input VCC 8 8 8 8 8 8 8 1 +1.7V to 5.5V (24AA256) +2.5V to 5.5V (24LC256) +1.7V to 5.5V (24FC256) Note: Exposed pad on DFN/TDFN can be connected to VSS or left floating. 2.1 A0, A1, A2 Chip Address Inputs 2.3 Serial Clock (SCL) The A0, A1 and A2 inputs are used by the 24XX256 for This input is used to synchronize the data transfer to multiple device operations. The levels on these inputs and from the device. are compared with the corresponding bits in the slave address. The chip is selected if the compare is true. 2.4 Write-Protect (WP) For the MSOP package only, pins A0 and A1 are not This pin must be connected to either VSS or VCC. If tied connected. to VSS, write operations are enabled. If tied to VCC, Up to eight devices (two for the MSOP package) may write operations are inhibited but read operations are be connected to the same bus by using different Chip not affected. Select bit combinations. These inputs must be connected to either VCC or VSS. 3.0 FUNCTIONAL DESCRIPTION In most applications, the chip address inputs A0, A1 and A2 are hard-wired to logic ‘0’ or logic ‘1’. For The 24XX256 supports a bidirectional 2-wire bus and applications in which these pins are controlled by a data transmission protocol. A device that sends data microcontroller or other programmable device, the chip onto the bus is defined as a transmitter and a device address pins must be driven to logic ‘0’ or logic ‘1’ receiving data as a receiver. The bus must be before normal device operation can proceed. controlled by a master device which generates the Serial Clock (SCL), controls the bus access, and 2.2 Serial Data (SDA) generates the Start and Stop conditions while the 24XX256 works as a slave. Both master and slave can This is a bidirectional pin used to transfer addresses operate as a transmitter or receiver, but the master and data into and out of the device. It is an open drain device determines which mode is activated. terminal. Therefore, the SDA bus requires a pull-up resistor to VCC (typical 10k for 100kHz, 2kfor 400kHz and 1MHz). For normal data transfer, SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating the Start and Stop conditions.  1998-2018 Microchip Technology Inc. DS20001203V-page 5

24AA256/24LC256/24FC256 4.0 BUS CHARACTERISTICS 4.4 Data Valid (D) The following bus protocol has been defined: The state of the data line represents valid data when, after a Start condition, the data line is stable for the • Data transfer may be initiated only when the bus duration of the high period of the clock signal. is not busy. • During data transfer, the data line must remain The data on the line must be changed during the low stable whenever the clock line is high. Changes in period of the clock signal. There is one bit of data per the data line, while the clock line is high, will be clock pulse. interpreted as a Start or Stop condition. Each data transfer is initiated with a Start condition and Accordingly, the following bus conditions have been terminated with a Stop condition. The number of the defined (Figure4-1). data bytes transferred between the Start and Stop conditions is determined by the master device. 4.1 Bus Not Busy (A) 4.5 Acknowledge Both data and clock lines remain high. Each receiving device, when addressed, is obliged to generate an Acknowledge signal after the reception of 4.2 Start Data Transfer (B) each byte. The master device must generate an extra A high-to-low transition of the SDA line while the clock clock pulse which is associated with this Acknowledge (SCL) is high, determines a Start condition. All bit. commands must be preceded by a Start condition. Note: The 24XX256 does not generate any Acknowledge bits if an internal 4.3 Stop Data Transfer (C) programming cycle is in progress. A low-to-high transition of the SDA line, while the clock A device that acknowledges must pull down the SDA (SCL) is high, determines a Stop condition. All line during the acknowledge clock pulse in such a way operations must end with a Stop condition. that the SDA line is stable low during the high period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. During reads, a master must signal an end of data to the slave by NOT generating an Acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave (24XX256) will leave the data line high to enable the master to generate the Stop condition. DS20001203V-page 6  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 FIGURE 4-1: DATA TRANSFER SEQUENCE ON THE SERIAL BUS (A) (B) (D) (D) (C) (A) SCL SDA Start Address or Data Stop Condition Acknowledge Allowed Condition Valid to Change FIGURE 4-2: ACKNOWLEDGE TIMING Acknowledge Bit SCL 1 2 3 4 5 6 7 8 9 1 2 3 SDA Data from transmitter Data from transmitter Transmitter must release the SDA line at this point, Receiver must release the SDA line allowing the Receiver to pull the SDA line low to at this point so the Transmitter can acknowledge the previous eight bits of data. continue sending data.  1998-2018 Microchip Technology Inc. DS20001203V-page 7

24AA256/24LC256/24FC256 5.0 DEVICE ADDRESSING FIGURE 5-1: CONTROL BYTE FORMAT A control byte is the first byte received following the Start condition from the master device (Figure5-1). Read/Write Bit The control byte consists of a 4-bit control code. For the 24XX256, this is set as ‘1010’ binary for read and Chip Select write operations. The next three bits of the control byte Control Code Bits are the Chip Select bits (A2, A1, A0). The Chip Select bits allow the use of up to eight 24XX256 devices on S 1 0 1 0 A2 A1 A0 R/W ACK the same bus and are used to select which device is accessed. The Chip Select bits in the control byte must Slave Address correspond to the logic levels on the corresponding A2, A1 and A0 pins for the device to respond. These bits Start Bit Acknowledge Bit are, in effect, the three Most Significant bits of the word address. For the MSOP package, the A0 and A1 pins are not 5.1 Contiguous Addressing Across connected. During device addressing, the A0 and A1 Multiple Devices Chip Select bits (Figures 5-1 and 5-2) should be set to ‘0’. Only two 24XX256 MSOP packages can be The Chip Select bits A2, A1 and A0 can be used to connected to the same bus. expand the contiguous address space for up to 2Mbit by adding up to eight 24XX256 devices on the same The last bit of the control byte defines the operation to bus. In this case, software can use A0 of the control be performed. When set to a one, a read operation is byte as address bit A15; A1 as address bit A16; and A2 selected. When set to a zero, a write operation is as address bit A17. It is not possible to sequentially selected. The next two bytes received define the read across device boundaries. address of the first data byte (Figure5-2). Because only A14…A0 are used, the upper address bits are a For the MSOP package, up to two 24XX256 devices “don’t care.” The upper address bits are transferred can be added for up to 512Kbit of address space. In first, followed by the Less Significant bits. this case, software can use A2 of the control byte as address bit A17. Bits A0 (A15) and A1 (A16) of the Following the Start condition, the 24XX256 monitors control byte must always be set to a logic ‘0’ for the the SDA bus checking the device type identifier being MSOP. transmitted. Upon receiving a ‘1010’ code and appropriate device select bits, the slave device outputs an Acknowledge signal on the SDA line. Depending on the state of the R/W bit, the 24XX256 will select a read or write operation. FIGURE 5-2: ADDRESS SEQUENCE BIT ASSIGNMENTS Control Byte Address High Byte Address Low Byte A A A A A A A A A A A A 1 0 1 0 2 1 0 R/W x 14 13 12 11 10 9 8 7 • • • • • • 0 Control Chip x = “don’t care” bit Code Select Bits DS20001203V-page 8  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 6.0 WRITE OPERATIONS 6.3 Write Protection The WP pin allows the user to write-protect the entire 6.1 Byte Write array (0000-7FFF) when the pin is tied to VCC. If tied to Following the Start condition from the master, the VSS the write protection is disabled. The WP pin is sampled at the Stop bit for every Write command control code (four bits), the Chip Select (three bits) and (Figure1-1). Toggling the WP pin after the Stop bit will the R/W bit (which is a logic low) are clocked onto the have no effect on the execution of the write cycle. bus by the master transmitter. This indicates to the addressed slave receiver that the address high byte will Note: Page write operations are limited to follow after it has generated an Acknowledge bit during writing bytes within a single physical page, the ninth clock cycle. Therefore, the next byte regardless of the number of bytes transmitted by the master is the high-order byte of the actually being written. Physical page word address and will be written into the Address boundaries start at addresses that are Pointer of the 24XX256. The next byte is the Least integer multiples of the page buffer size Significant Address Byte. After receiving another (or ‘page size’) and end at addresses that Acknowledge signal from the 24XX256, the master are integer multiples of [page size – 1]. If device will transmit the data word to be written into the a Page Write command attempts to write addressed memory location. The 24XX256 acknowl- across a physical page boundary, the edges again and the master generates a Stop result is that the data wraps around to the condition. This initiates the internal write cycle and beginning of the current page (overwriting during this time, the 24XX256 will not generate data previously stored there), instead of Acknowledge signals (Figure6-1). If an attempt is being written to the next page, as might be made to write to the array with the WP pin held high, the expected. It is, therefore, necessary for device will acknowledge the command but no write the application software to prevent page cycle will occur, no data will be written, and the device write operations that would attempt to will immediately accept a new command. After a byte cross a page boundary. Write command, the internal address counter will point to the address location following the one that was just written. Note: When doing a write of less than 64 bytes the data in the rest of the page is refreshed along with the data bytes being written. This will force the entire page to endure a write cycle, for this reason endurance is specified per page. 6.2 Page Write The write control byte, word address and the first data byte are transmitted to the 24XX256 in much the same way as in a byte write. The exception is that instead of generating a Stop condition, the master transmits up to 63 additional bytes, which are temporarily stored in the on-chip page buffer, and will be written into memory once the master has transmitted a Stop condition. Upon receipt of each word, the six lower Address Pointer bits are internally incremented by one. If the master should transmit more than 64 bytes prior to generating the Stop condition, the address counter will roll over and the previously received data will be over- written. As with the byte write operation, once the Stop condition is received, an internal write cycle will begin (Figure6-2). If an attempt is made to write to the array with the WP pin held high, the device will acknowledge the command, but no write cycle will occur, no data will be written and the device will immediately accept a new command.  1998-2018 Microchip Technology Inc. DS20001203V-page 9

24AA256/24LC256/24FC256 FIGURE 6-1: BYTE WRITE S Bus Activity T S Control Address Address Master A T R Byte High Byte Low Byte Data O SDA Line T P AAA S1 0 1 0 2 10 0 x P Bus Activity A A A A x = “don’t care” bit C C C C K K K K FIGURE 6-2: PAGE WRITE S Bus Activity T S Master A Control Address Address T R Byte High Byte Low Byte Data Byte 0 Data Byte 63 O T P SDA Line AAA S10 1 0 2 1 0 0 x P Bus Activity A A A A A C C C C C x = “don’t care” bit K K K K K DS20001203V-page 10  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 7.0 ACKNOWLEDGE POLLING FIGURE 7-1: ACKNOWLEDGE POLLING FLOW Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (This feature can be used to maximize bus throughput). Once the Stop condition for a Write Send command has been issued from the master, the device Write Command initiates the internally timed write cycle. ACK polling can be initiated immediately. This involves the master sending a Start condition, followed by the control byte Send Stop for a Write command (R/W = 0). If the device is still Condition to busy with the write cycle, then no ACK will be returned. Initiate Write Cycle If no ACK is returned, the Start bit and control byte must be resent. If the cycle is complete, then the device will return the ACK and the master can then proceed with Send Start the next Read or Write command. See Figure7-1 for flow diagram. Send Control Byte with R/W = 0 Did Device NO Acknowledge (ACK = 0)? YES Next Operation  1998-2018 Microchip Technology Inc. DS20001203V-page 11

24AA256/24LC256/24FC256 8.0 READ OPERATION 8.2 Random Read Read operations are initiated in much the same way as Random read operations allow the master to access write operations, with the exception that the R/W bit of any memory location in a random manner. To perform the control byte is set to ‘1’. There are three basic types this type of read operation, the word address must first of read operations: current address read, random read be set. This is done by sending the word address to the and sequential read. 24XX256 as part of a write operation (R/W bit set to ‘0’). Once the word address is sent, the master gener- 8.1 Current Address Read ates a Start condition following the acknowledge. This terminates the write operation, but not before the The 24XX256 contains an address counter that main- internal Address Pointer is set. The master then issues tains the address of the last word accessed, internally the control byte again, but with the R/W bit set to a one. incremented by ‘1’. Therefore, if the previous read The 24XX256 will then issue an acknowledge and access was to address ‘n’ (n is any legal address), the transmit the 8-bit data word. The master will not next current address read operation would access data acknowledge the transfer, though it does generate a from address n + 1. Stop condition, which causes the 24XX256 to discon- Upon receipt of the control byte with R/W bit set to ‘1’, tinue transmission (Figure8-2). After a random Read the 24XX256 issues an acknowledge and transmits the command, the internal address counter will point to the 8-bit data word. The master will not acknowledge the address location following the one that was just read. transfer, but does generate a Stop condition and the 24XX256 discontinues transmission (Figure8-1). 8.3 Sequential Read Sequential reads are initiated in the same way as a FIGURE 8-1: CURRENT ADDRESS random read except that after the 24XX256 transmits READ the first data byte, the master issues an acknowledge S as opposed to the Stop condition used in a random Bus Activity TA Control Data ST read. This acknowledge directs the 24XX256 to Master R Byte Byte O transmit the next sequentially addressed 8-bit word T P (Figure8-3). Following the final byte transmitted to the SDA Line S 1 0 1 0 AAA 1 P master, the master will NOT generate an acknowledge, 2 1 0 A N but will generate a Stop condition. To provide sequen- Bus Activity C O tial reads, the 24XX256 contains an internal Address K A Pointer which is incremented by one at the completion C of each operation. This Address Pointer allows the K entire memory contents to be serially read during one operation. The internal Address Pointer will automatically roll over from address 7FFF to address 0000 if the master acknowledges the byte received from the array address 7FFF. FIGURE 8-2: RANDOM READ S S Bus Activity T T S Control Address Address Control Data Master A A T R Byte High Byte Low Byte R Byte Byte O T T P SDA Line S1 0 1 0 AAA0 x S1 0 1 0 AAA1 P 2 1 0 2 1 0 A A A A N Bus Activity C C C C O K K K K A x = “don’t care” bit C K DS20001203V-page 12  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 FIGURE 8-3: SEQUENTIAL READ Control S Bus Activity T Master Byte Data (n) Data (n + 1) Data (n + 2) Data (n + x) O P SDA Line P A A A A N C C C C O Bus Activity K K K K A C K  1998-2018 Microchip Technology Inc. DS20001203V-page 13

24AA256/24LC256/24FC256 9.0 PACKAGING INFORMATION 9.1 Package Marking Information 8-Lead PDIP (300 mil) Example: XXXXXXXX 24AA256 T/XXXNNN I/P e 3 017 YYWW 1346 8-Lead SOIC (3.90 mm) Example: XXXXXXXT 24LC256I XXXXYYWW SN e 3 1346 NNN 017 8-Lead SOIJ (5.28 mm) Example: XXXXXXXX 24LC256 T/XXXXXX I/SM e3 YYWWNNN 1346017 Legend: XX...X Part number or part number code T Temperature (I, E) Y Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week ‘01’) NNN Alphanumeric traceability code (2 characters for small packages) e3 JEDEC® designator for Matte Tin (Sn) Note: For very small packages with no room for the JEDEC designator e3 , the marking will only appear on the outer carton or reel label. Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. *Standard device marking consists of Microchip part number, year code, week code, and traceability code. For device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. DS20001203V-page 14  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 Package Marking Information (Continued) 8-Lead TSSOP Example: XXXX 4LD TYWW I346 NNN 017 8-Lead MSOP Example: XXXXXT 4L256I YWWNNN 346017 8-Lead DFN-S Example: XXXXXXX 24LC256 T/XXXXX I/MF e3 YYWW 1346 017 NNN 8-Lead TDFN Example: XXX EF4 YWW 1346 NN 017 8-Lead Chip Scale Example: XXX 249 XYYW A134 WNNN 6017 First Line Marking Codes Part TDFN No. PDIP SOIC SOIJ TSSOP MSOP DFN CSP I Temp. E Temp. 24AA256 24AA256 24AA256T 24AA256 4AD 4A256T 24AA256 EF6 EF5 249 24LC256 24LC256 24LC256T 24LC256 4LD 4L256T 24LC256 EF4 EF3 — 24FC256 24FC256 24FC256T 24FC256 4FD 4F256T 24FC256 EF8 — — Note: T = Temperature grade (I, E)  1998-2018 Microchip Technology Inc. DS20001203V-page 15

24AA256/24LC256/24FC256 8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging D A N B E1 NOTE 1 1 2 TOP VIEW E C A A2 PLANE L c A1 e eB 8X b1 8X b .010 C SIDE VIEW END VIEW Microchip Technology Drawing No. C04-018D Sheet 1 of 2 DS20001203V-page 16  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging ALTERNATE LEAD DESIGN (VENDOR DEPENDENT) DATUM A DATUM A b b e e 2 2 e e Units INCHES Dimension Limits MIN NOM MAX Number of Pins N 8 Pitch e .100 BSC Top to Seating Plane A - - .210 Molded Package Thickness A2 .115 .130 .195 Base to Seating Plane A1 .015 - - Shoulder to Shoulder Width E .290 .310 .325 Molded Package Width E1 .240 .250 .280 Overall Length D .348 .365 .400 Tip to Seating Plane L .115 .130 .150 Lead Thickness c .008 .010 .015 Upper Lead Width b1 .040 .060 .070 Lower Lead Width b .014 .018 .022 Overall Row Spacing § eB - - .430 Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. § Significant Characteristic 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side. 4. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-018D Sheet 2 of 2  1998-2018 Microchip Technology Inc. DS20001203V-page 17

24AA256/24LC256/24FC256 8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 2X 0.10 C A–B D A D NOTE 5 N E 2 E1 2 E1 E NOTE 1 1 2 e NX b B 0.25 C A–B D NOTE 5 TOP VIEW 0.10 C C A A2 SEATING PLANE 8X 0.10 C A1 SIDE VIEW h R0.13 h R0.13 H 0.23 L SEE VIEW C (L1) VIEW A–A VIEW C Microchip Technology Drawing No. C04-057-SN Rev D Sheet 1 of 2 DS20001203V-page 18  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Units MILLIMETERS Dimension Limits MIN NOM MAX Number of Pins N 8 Pitch e 1.27 BSC Overall Height A - - 1.75 Molded Package Thickness A2 1.25 - - Standoff § A1 0.10 - 0.25 Overall Width E 6.00 BSC Molded Package Width E1 3.90 BSC Overall Length D 4.90 BSC Chamfer (Optional) h 0.25 - 0.50 Foot Length L 0.40 - 1.27 Footprint L1 1.04 REF Foot Angle 0° - 8° Lead Thickness c 0.17 - 0.25 Lead Width b 0.31 - 0.51 Mold Draft Angle Top 5° - 15° Mold Draft Angle Bottom 5° - 15° Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. § Significant Characteristic 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side. 4. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. 5. Datums A & B to be determined at Datum H. Microchip Technology Drawing No. C04-057-SN Rev D Sheet 2 of 2  1998-2018 Microchip Technology Inc. DS20001203V-page 19

24AA256/24LC256/24FC256 8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging SILK SCREEN C Y1 X1 E RECOMMENDED LAND PATTERN Units MILLIMETERS Dimension Limits MIN NOM MAX Contact Pitch E 1.27 BSC Contact Pad Spacing C 5.40 Contact Pad Width (X8) X1 0.60 Contact Pad Length (X8) Y1 1.55 Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing C04-2057-SN Rev B DS20001203V-page 20  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging  1998-2018 Microchip Technology Inc. DS20001203V-page 21

24AA256/24LC256/24FC256 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS20001203V-page 22  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging  1998-2018 Microchip Technology Inc. DS20001203V-page 23

24AA256/24LC256/24FC256 (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)(cid:15)(cid:16)(cid:13)(cid:17)(cid:8)(cid:18)(cid:16)(cid:19)(cid:13)(cid:17)(cid:20)(cid:8)(cid:18)(cid:21)(cid:6)(cid:10)(cid:10)(cid:8)(cid:22)(cid:23)(cid:12)(cid:10)(cid:13)(cid:17)(cid:5)(cid:8)(cid:24)(cid:18)(cid:15)(cid:25)(cid:8)(cid:26)(cid:8)(cid:27)(cid:28)(cid:27)(cid:8)(cid:21)(cid:21)(cid:8)(cid:29)(cid:30)(cid:7)(cid:31)(cid:8) (cid:15)(cid:18)(cid:18)(cid:22)(cid:9)! "(cid:30)(cid:12)(cid:5)# 1(cid:10)(cid:9)(cid:2)%(cid:11)(cid:14)(cid:2)&(cid:10) %(cid:2)(cid:8)!(cid:9)(cid:9)(cid:14)(cid:15)%(cid:2)(cid:12)(cid:28)(cid:8)2(cid:28)(cid:17)(cid:14)(cid:2)"(cid:9)(cid:28))(cid:7)(cid:15)(cid:17) ’(cid:2)(cid:12)(cid:16)(cid:14)(cid:28) (cid:14)(cid:2) (cid:14)(cid:14)(cid:2)%(cid:11)(cid:14)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:2)(cid:30)(cid:28)(cid:8)2(cid:28)(cid:17)(cid:7)(cid:15)(cid:17)(cid:2)(cid:22)(cid:12)(cid:14)(cid:8)(cid:7)$(cid:7)(cid:8)(cid:28)%(cid:7)(cid:10)(cid:15)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)%(cid:14)"(cid:2)(cid:28)%(cid:2) (cid:11)%%(cid:12)033)))(cid:20)&(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:20)(cid:8)(cid:10)&3(cid:12)(cid:28)(cid:8)2(cid:28)(cid:17)(cid:7)(cid:15)(cid:17) D N E E1 NOTE1 1 2 b e c φ A A2 A1 L1 L 4(cid:15)(cid:7)% (cid:6)(cid:19)55(cid:19)(cid:6)*(cid:13)*(cid:26)(cid:22) (cid:21)(cid:7)&(cid:14)(cid:15) (cid:7)(cid:10)(cid:15)(cid:2)5(cid:7)&(cid:7)% (cid:6)(cid:19)6 67(cid:6) (cid:6)(cid:25)8 6!&((cid:14)(cid:9)(cid:2)(cid:10)$(cid:2)(cid:30)(cid:7)(cid:15) 6 9 (cid:30)(cid:7)%(cid:8)(cid:11) (cid:14) (cid:4)(cid:20):+(cid:2).(cid:22)/ 7(cid:31)(cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2);(cid:14)(cid:7)(cid:17)(cid:11)% (cid:25) < < (cid:29)(cid:20)(cid:3)(cid:4) (cid:6)(cid:10)(cid:16)"(cid:14)"(cid:2)(cid:30)(cid:28)(cid:8)2(cid:28)(cid:17)(cid:14)(cid:2)(cid:13)(cid:11)(cid:7)(cid:8)2(cid:15)(cid:14) (cid:25)(cid:3) (cid:4)(cid:20)9(cid:4) (cid:29)(cid:20)(cid:4)(cid:4) (cid:29)(cid:20)(cid:4)+ (cid:22)%(cid:28)(cid:15)"(cid:10)$$(cid:2) (cid:25)(cid:29) (cid:4)(cid:20)(cid:4)+ < (cid:4)(cid:20)(cid:29)+ 7(cid:31)(cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)=(cid:7)"%(cid:11) * :(cid:20)(cid:23)(cid:4)(cid:2).(cid:22)/ (cid:6)(cid:10)(cid:16)"(cid:14)"(cid:2)(cid:30)(cid:28)(cid:8)2(cid:28)(cid:17)(cid:14)(cid:2)=(cid:7)"%(cid:11) *(cid:29) (cid:23)(cid:20),(cid:4) (cid:23)(cid:20)(cid:23)(cid:4) (cid:23)(cid:20)+(cid:4) (cid:6)(cid:10)(cid:16)"(cid:14)"(cid:2)(cid:30)(cid:28)(cid:8)2(cid:28)(cid:17)(cid:14)(cid:2)5(cid:14)(cid:15)(cid:17)%(cid:11) (cid:21) (cid:3)(cid:20)(cid:24)(cid:4) ,(cid:20)(cid:4)(cid:4) ,(cid:20)(cid:29)(cid:4) 1(cid:10)(cid:10)%(cid:2)5(cid:14)(cid:15)(cid:17)%(cid:11) 5 (cid:4)(cid:20)(cid:23)+ (cid:4)(cid:20):(cid:4) (cid:4)(cid:20)(cid:5)+ 1(cid:10)(cid:10)%(cid:12)(cid:9)(cid:7)(cid:15)% 5(cid:29) (cid:29)(cid:20)(cid:4)(cid:4)(cid:2)(cid:26)*1 1(cid:10)(cid:10)%(cid:2)(cid:25)(cid:15)(cid:17)(cid:16)(cid:14) (cid:3) (cid:4)> < 9> 5(cid:14)(cid:28)"(cid:2)(cid:13)(cid:11)(cid:7)(cid:8)2(cid:15)(cid:14) (cid:8) (cid:4)(cid:20)(cid:4)(cid:24) < (cid:4)(cid:20)(cid:3)(cid:4) 5(cid:14)(cid:28)"(cid:2)=(cid:7)"%(cid:11) ( (cid:4)(cid:20)(cid:29)(cid:24) < (cid:4)(cid:20),(cid:4) "(cid:30)(cid:12)(cid:5)(cid:11)# (cid:29)(cid:20) (cid:30)(cid:7)(cid:15)(cid:2)(cid:29)(cid:2)(cid:31)(cid:7) !(cid:28)(cid:16)(cid:2)(cid:7)(cid:15)"(cid:14)#(cid:2)$(cid:14)(cid:28)%!(cid:9)(cid:14)(cid:2)&(cid:28)(cid:18)(cid:2)(cid:31)(cid:28)(cid:9)(cid:18)’(cid:2)(!%(cid:2)&! %(cid:2)((cid:14)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)%(cid:14)"(cid:2))(cid:7)%(cid:11)(cid:7)(cid:15)(cid:2)%(cid:11)(cid:14)(cid:2)(cid:11)(cid:28)%(cid:8)(cid:11)(cid:14)"(cid:2)(cid:28)(cid:9)(cid:14)(cid:28)(cid:20) (cid:3)(cid:20) (cid:21)(cid:7)&(cid:14)(cid:15) (cid:7)(cid:10)(cid:15) (cid:2)(cid:21)(cid:2)(cid:28)(cid:15)"(cid:2)*(cid:29)(cid:2)"(cid:10)(cid:2)(cid:15)(cid:10)%(cid:2)(cid:7)(cid:15)(cid:8)(cid:16)!"(cid:14)(cid:2)&(cid:10)(cid:16)"(cid:2)$(cid:16)(cid:28) (cid:11)(cid:2)(cid:10)(cid:9)(cid:2)(cid:12)(cid:9)(cid:10)%(cid:9)! (cid:7)(cid:10)(cid:15) (cid:20)(cid:2)(cid:6)(cid:10)(cid:16)"(cid:2)$(cid:16)(cid:28) (cid:11)(cid:2)(cid:10)(cid:9)(cid:2)(cid:12)(cid:9)(cid:10)%(cid:9)! (cid:7)(cid:10)(cid:15) (cid:2) (cid:11)(cid:28)(cid:16)(cid:16)(cid:2)(cid:15)(cid:10)%(cid:2)(cid:14)#(cid:8)(cid:14)(cid:14)"(cid:2)(cid:4)(cid:20)(cid:29)+(cid:2)&&(cid:2)(cid:12)(cid:14)(cid:9)(cid:2) (cid:7)"(cid:14)(cid:20) ,(cid:20) (cid:21)(cid:7)&(cid:14)(cid:15) (cid:7)(cid:10)(cid:15)(cid:7)(cid:15)(cid:17)(cid:2)(cid:28)(cid:15)"(cid:2)%(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:7)(cid:15)(cid:17)(cid:2)(cid:12)(cid:14)(cid:9)(cid:2)(cid:25)(cid:22)(cid:6)*(cid:2)-(cid:29)(cid:23)(cid:20)+(cid:6)(cid:20) .(cid:22)/0 .(cid:28) (cid:7)(cid:8)(cid:2)(cid:21)(cid:7)&(cid:14)(cid:15) (cid:7)(cid:10)(cid:15)(cid:20)(cid:2)(cid:13)(cid:11)(cid:14)(cid:10)(cid:9)(cid:14)%(cid:7)(cid:8)(cid:28)(cid:16)(cid:16)(cid:18)(cid:2)(cid:14)#(cid:28)(cid:8)%(cid:2)(cid:31)(cid:28)(cid:16)!(cid:14)(cid:2) (cid:11)(cid:10))(cid:15)(cid:2))(cid:7)%(cid:11)(cid:10)!%(cid:2)%(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:14) (cid:20) (cid:26)*10 (cid:26)(cid:14)$(cid:14)(cid:9)(cid:14)(cid:15)(cid:8)(cid:14)(cid:2)(cid:21)(cid:7)&(cid:14)(cid:15) (cid:7)(cid:10)(cid:15)’(cid:2)! !(cid:28)(cid:16)(cid:16)(cid:18)(cid:2))(cid:7)%(cid:11)(cid:10)!%(cid:2)%(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:14)’(cid:2)$(cid:10)(cid:9)(cid:2)(cid:7)(cid:15)$(cid:10)(cid:9)&(cid:28)%(cid:7)(cid:10)(cid:15)(cid:2)(cid:12)!(cid:9)(cid:12)(cid:10) (cid:14) (cid:2)(cid:10)(cid:15)(cid:16)(cid:18)(cid:20) (cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:13)(cid:14)(cid:8)(cid:11)(cid:15)(cid:10)(cid:16)(cid:10)(cid:17)(cid:18)(cid:21)(cid:9)(cid:28))(cid:7)(cid:15)(cid:17)/(cid:4)(cid:23)(cid:27)(cid:4)9:. DS20001203V-page 24  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging  1998-2018 Microchip Technology Inc. DS20001203V-page 25

24AA256/24LC256/24FC256 Note: For the mostcurrent package drawings,please seetheMicrochip Packaging Specification located at http://www.microchip.com/packaging DS20001203V-page 26  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 Note: For the mostcurrent package drawings,please seetheMicrochip Packaging Specification located at http://www.microchip.com/packaging  1998-2018 Microchip Technology Inc. DS20001203V-page 27

24AA256/24LC256/24FC256 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS20001203V-page 28  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)$(cid:23)(cid:6)(cid:10)(cid:8)%(cid:10)(cid:6)(cid:12)&(cid:8)"(cid:30)(cid:8)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:6)(cid:14)(cid:20)(cid:6)’(cid:5)(cid:8)(cid:24)(%(cid:25)(cid:8)(cid:26)(cid:8))*+(cid:8)(cid:21)(cid:21)(cid:8)(cid:29)(cid:30)(cid:7)(cid:31)(cid:8) $%"(cid:3)(cid:18)! "(cid:30)(cid:12)(cid:5)# 1(cid:10)(cid:9)(cid:2)%(cid:11)(cid:14)(cid:2)&(cid:10) %(cid:2)(cid:8)!(cid:9)(cid:9)(cid:14)(cid:15)%(cid:2)(cid:12)(cid:28)(cid:8)2(cid:28)(cid:17)(cid:14)(cid:2)"(cid:9)(cid:28))(cid:7)(cid:15)(cid:17) ’(cid:2)(cid:12)(cid:16)(cid:14)(cid:28) (cid:14)(cid:2) (cid:14)(cid:14)(cid:2)%(cid:11)(cid:14)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:2)(cid:30)(cid:28)(cid:8)2(cid:28)(cid:17)(cid:7)(cid:15)(cid:17)(cid:2)(cid:22)(cid:12)(cid:14)(cid:8)(cid:7)$(cid:7)(cid:8)(cid:28)%(cid:7)(cid:10)(cid:15)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)%(cid:14)"(cid:2)(cid:28)%(cid:2) (cid:11)%%(cid:12)033)))(cid:20)&(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:20)(cid:8)(cid:10)&3(cid:12)(cid:28)(cid:8)2(cid:28)(cid:17)(cid:7)(cid:15)(cid:17) (cid:2) e D L b N N K E E2 EXPOSEDPAD NOTE1 NOTE1 1 2 2 1 D2 TOPVIEW BOTTOMVIEW A A3 A1 NOTE2 4(cid:15)(cid:7)% (cid:6)(cid:19)55(cid:19)(cid:6)*(cid:13)*(cid:26)(cid:22) (cid:21)(cid:7)&(cid:14)(cid:15) (cid:7)(cid:10)(cid:15)(cid:2)5(cid:7)&(cid:7)% (cid:6)(cid:19)6 67(cid:6) (cid:6)(cid:25)8 6!&((cid:14)(cid:9)(cid:2)(cid:10)$(cid:2)(cid:30)(cid:7)(cid:15) 6 9 (cid:30)(cid:7)%(cid:8)(cid:11) (cid:14) (cid:29)(cid:20)(cid:3)(cid:5)(cid:2).(cid:22)/ 7(cid:31)(cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2);(cid:14)(cid:7)(cid:17)(cid:11)% (cid:25) (cid:4)(cid:20)9(cid:4) (cid:4)(cid:20)9+ (cid:29)(cid:20)(cid:4)(cid:4) (cid:22)%(cid:28)(cid:15)"(cid:10)$$(cid:2) (cid:25)(cid:29) (cid:4)(cid:20)(cid:4)(cid:4) (cid:4)(cid:20)(cid:4)(cid:29) (cid:4)(cid:20)(cid:4)+ /(cid:10)(cid:15)%(cid:28)(cid:8)%(cid:2)(cid:13)(cid:11)(cid:7)(cid:8)2(cid:15)(cid:14) (cid:25), (cid:4)(cid:20)(cid:3)(cid:4)(cid:2)(cid:26)*1 7(cid:31)(cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)5(cid:14)(cid:15)(cid:17)%(cid:11) (cid:21) +(cid:20)(cid:4)(cid:4)(cid:2).(cid:22)/ 7(cid:31)(cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)=(cid:7)"%(cid:11) * :(cid:20)(cid:4)(cid:4)(cid:2).(cid:22)/ *#(cid:12)(cid:10) (cid:14)"(cid:2)(cid:30)(cid:28)"(cid:2)5(cid:14)(cid:15)(cid:17)%(cid:11) (cid:21)(cid:3) ,(cid:20)(cid:24)(cid:4) (cid:23)(cid:20)(cid:4)(cid:4) (cid:23)(cid:20)(cid:29)(cid:4) *#(cid:12)(cid:10) (cid:14)"(cid:2)(cid:30)(cid:28)"(cid:2)=(cid:7)"%(cid:11) *(cid:3) (cid:3)(cid:20)(cid:3)(cid:4) (cid:3)(cid:20),(cid:4) (cid:3)(cid:20)(cid:23)(cid:4) /(cid:10)(cid:15)%(cid:28)(cid:8)%(cid:2)=(cid:7)"%(cid:11) ( (cid:4)(cid:20),+ (cid:4)(cid:20)(cid:23)(cid:4) (cid:4)(cid:20)(cid:23)9 /(cid:10)(cid:15)%(cid:28)(cid:8)%(cid:2)5(cid:14)(cid:15)(cid:17)%(cid:11) 5 (cid:4)(cid:20)+(cid:4) (cid:4)(cid:20):(cid:4) (cid:4)(cid:20)(cid:5)+ /(cid:10)(cid:15)%(cid:28)(cid:8)%(cid:27)%(cid:10)(cid:27)*#(cid:12)(cid:10) (cid:14)"(cid:2)(cid:30)(cid:28)" ? (cid:4)(cid:20)(cid:3)(cid:4) < < "(cid:30)(cid:12)(cid:5)(cid:11)# (cid:29)(cid:20) (cid:30)(cid:7)(cid:15)(cid:2)(cid:29)(cid:2)(cid:31)(cid:7) !(cid:28)(cid:16)(cid:2)(cid:7)(cid:15)"(cid:14)#(cid:2)$(cid:14)(cid:28)%!(cid:9)(cid:14)(cid:2)&(cid:28)(cid:18)(cid:2)(cid:31)(cid:28)(cid:9)(cid:18)’(cid:2)(!%(cid:2)&! %(cid:2)((cid:14)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)%(cid:14)"(cid:2))(cid:7)%(cid:11)(cid:7)(cid:15)(cid:2)%(cid:11)(cid:14)(cid:2)(cid:11)(cid:28)%(cid:8)(cid:11)(cid:14)"(cid:2)(cid:28)(cid:9)(cid:14)(cid:28)(cid:20) (cid:3)(cid:20) (cid:30)(cid:28)(cid:8)2(cid:28)(cid:17)(cid:14)(cid:2)&(cid:28)(cid:18)(cid:2)(cid:11)(cid:28)(cid:31)(cid:14)(cid:2)(cid:10)(cid:15)(cid:14)(cid:2)(cid:10)(cid:9)(cid:2)&(cid:10)(cid:9)(cid:14)(cid:2)(cid:14)#(cid:12)(cid:10) (cid:14)"(cid:2)%(cid:7)(cid:14)(cid:2)((cid:28)(cid:9) (cid:2)(cid:28)%(cid:2)(cid:14)(cid:15)" (cid:20) ,(cid:20) (cid:30)(cid:28)(cid:8)2(cid:28)(cid:17)(cid:14)(cid:2)(cid:7) (cid:2) (cid:28))(cid:2) (cid:7)(cid:15)(cid:17)!(cid:16)(cid:28)%(cid:14)"(cid:20) (cid:23)(cid:20) (cid:21)(cid:7)&(cid:14)(cid:15) (cid:7)(cid:10)(cid:15)(cid:7)(cid:15)(cid:17)(cid:2)(cid:28)(cid:15)"(cid:2)%(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:7)(cid:15)(cid:17)(cid:2)(cid:12)(cid:14)(cid:9)(cid:2)(cid:25)(cid:22)(cid:6)*(cid:2)-(cid:29)(cid:23)(cid:20)+(cid:6)(cid:20) .(cid:22)/0 .(cid:28) (cid:7)(cid:8)(cid:2)(cid:21)(cid:7)&(cid:14)(cid:15) (cid:7)(cid:10)(cid:15)(cid:20)(cid:2)(cid:13)(cid:11)(cid:14)(cid:10)(cid:9)(cid:14)%(cid:7)(cid:8)(cid:28)(cid:16)(cid:16)(cid:18)(cid:2)(cid:14)#(cid:28)(cid:8)%(cid:2)(cid:31)(cid:28)(cid:16)!(cid:14)(cid:2) (cid:11)(cid:10))(cid:15)(cid:2))(cid:7)%(cid:11)(cid:10)!%(cid:2)%(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:14) (cid:20) (cid:26)*10 (cid:26)(cid:14)$(cid:14)(cid:9)(cid:14)(cid:15)(cid:8)(cid:14)(cid:2)(cid:21)(cid:7)&(cid:14)(cid:15) (cid:7)(cid:10)(cid:15)’(cid:2)! !(cid:28)(cid:16)(cid:16)(cid:18)(cid:2))(cid:7)%(cid:11)(cid:10)!%(cid:2)%(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:14)’(cid:2)$(cid:10)(cid:9)(cid:2)(cid:7)(cid:15)$(cid:10)(cid:9)&(cid:28)%(cid:7)(cid:10)(cid:15)(cid:2)(cid:12)!(cid:9)(cid:12)(cid:10) (cid:14) (cid:2)(cid:10)(cid:15)(cid:16)(cid:18)(cid:20) (cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:13)(cid:14)(cid:8)(cid:11)(cid:15)(cid:10)(cid:16)(cid:10)(cid:17)(cid:18)(cid:21)(cid:9)(cid:28))(cid:7)(cid:15)(cid:17)/(cid:4)(cid:23)(cid:27)(cid:29)(cid:3)(cid:3).  1998-2018 Microchip Technology Inc. DS20001203V-page 29

24AA256/24LC256/24FC256 "(cid:30)(cid:12)(cid:5)# 1(cid:10)(cid:9)(cid:2)%(cid:11)(cid:14)(cid:2)&(cid:10) %(cid:2)(cid:8)!(cid:9)(cid:9)(cid:14)(cid:15)%(cid:2)(cid:12)(cid:28)(cid:8)2(cid:28)(cid:17)(cid:14)(cid:2)"(cid:9)(cid:28))(cid:7)(cid:15)(cid:17) ’(cid:2)(cid:12)(cid:16)(cid:14)(cid:28) (cid:14)(cid:2) (cid:14)(cid:14)(cid:2)%(cid:11)(cid:14)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:2)(cid:30)(cid:28)(cid:8)2(cid:28)(cid:17)(cid:7)(cid:15)(cid:17)(cid:2)(cid:22)(cid:12)(cid:14)(cid:8)(cid:7)$(cid:7)(cid:8)(cid:28)%(cid:7)(cid:10)(cid:15)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)%(cid:14)"(cid:2)(cid:28)%(cid:2) (cid:11)%%(cid:12)033)))(cid:20)&(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:20)(cid:8)(cid:10)&3(cid:12)(cid:28)(cid:8)2(cid:28)(cid:17)(cid:7)(cid:15)(cid:17) DS20001203V-page 30  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging  1998-2018 Microchip Technology Inc. DS20001203V-page 31

24AA256/24LC256/24FC256 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS20001203V-page 32  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)$(cid:23)(cid:6)(cid:10)(cid:8)%(cid:10)(cid:6)(cid:12)&(cid:8)"(cid:30)(cid:8)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:6)(cid:14)(cid:20)(cid:6)’(cid:5)(cid:8)(cid:24)("(cid:25)(cid:8)(cid:26)(cid:8),*-*.(cid:28)/+(cid:8)(cid:21)(cid:21)(cid:8)(cid:29)(cid:30)(cid:7)(cid:31)(cid:8) (cid:15)$%"! "(cid:30)(cid:12)(cid:5)# 1(cid:10)(cid:9)(cid:2)%(cid:11)(cid:14)(cid:2)&(cid:10) %(cid:2)(cid:8)!(cid:9)(cid:9)(cid:14)(cid:15)%(cid:2)(cid:12)(cid:28)(cid:8)2(cid:28)(cid:17)(cid:14)(cid:2)"(cid:9)(cid:28))(cid:7)(cid:15)(cid:17) ’(cid:2)(cid:12)(cid:16)(cid:14)(cid:28) (cid:14)(cid:2) (cid:14)(cid:14)(cid:2)%(cid:11)(cid:14)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:2)(cid:30)(cid:28)(cid:8)2(cid:28)(cid:17)(cid:7)(cid:15)(cid:17)(cid:2)(cid:22)(cid:12)(cid:14)(cid:8)(cid:7)$(cid:7)(cid:8)(cid:28)%(cid:7)(cid:10)(cid:15)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)%(cid:14)"(cid:2)(cid:28)%(cid:2) (cid:11)%%(cid:12)033)))(cid:20)&(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:20)(cid:8)(cid:10)&3(cid:12)(cid:28)(cid:8)2(cid:28)(cid:17)(cid:7)(cid:15)(cid:17)  1998-2018 Microchip Technology Inc. DS20001203V-page 33

24AA256/24LC256/24FC256 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS20001203V-page 34  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging  1998-2018 Microchip Technology Inc. DS20001203V-page 35

24AA256/24LC256/24FC256 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS20001203V-page 36  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 APPENDIX A: REVISION HISTORY Revision L Corrections to Section 1.0, Electrical Characteristics. Revision M Added 1.8V 400 kHz option for 24FC256. Revision N Revised Sections 2.1 and 2.4. Removed 14-Lead TSSOP Package. Revision P Revised Features; Changed 1.8V voltage to 1.7V; Replaced Package Drawings; Revised markings (8-lead SOIC); Revised Product ID System. Revision Q (05/10) Revised Table 1-1, Table 1-2, Section 6.1; Updated Package Drawings. Revision R (07/2011) Added Chip Scale package. Revision S (12/2012) Revise Automotive E temp. Revision T (04/2013) Added TDFN Package. Revision U (11/2013) Updated Iccs. Revision V (08/2018) Updated First Line Marking Codes table.  1998-2018 Microchip Technology Inc. DS20001203V-page 37

24AA256/24LC256/24FC256 NOTES: DS20001203V-page 38  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 THE MICROCHIP WEBSITE CUSTOMER SUPPORT Microchip provides online support via our WWW site at Users of Microchip products can receive assistance www.microchip.com. This website is used as a means through several channels: to make files and information easily available to • Distributor or Representative customers. Accessible by using your favorite Internet • Local Sales Office browser, the website contains the following information: • Field Application Engineer (FAE) • Product Support – Data sheets and errata, • Technical Support application notes and sample programs, design resources, user’s guides and hardware support Customers should contact their distributor, documents, latest software releases and archived representative or Field Application Engineer (FAE) for software support. Local sales offices are also available to help • General Technical Support – Frequently Asked customers. A listing of sales offices and locations is Questions (FAQ), technical support requests, included in the back of this document. online discussion groups, Microchip consultant Technical support is available through the website program member listing at: http://microchip.com/support • Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives CUSTOMER CHANGE NOTIFICATION SERVICE Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip website at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.  1998-2018 Microchip Technology Inc. DS20001203V-page 1

24AA256/24LC256/24FC256 NOTES: DS20001203V-page 2  1998-2018 Microchip Technology Inc.

24AA256/24LC256/24FC256 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. Examples: PART NO. X /XX a) 24AA256-I/P: Industrial Temp., Device Temperature Package 1.7V, PDIP package. Range b) 24AA256T-I/SN:Tape and Reel, Industrial Temp., 1.7V, Device: 24AA256: 256 Kbit 1.7V I2C Serial SOIC package. EEPROM c) 24AA256-I/ST:Industrial Temp., 24AA256T: 256 Kbit 1.7V I2C Serial 1.7V, TSSOP package. EEPROM Tape and Reel) 24LC256: 256 Kbit 2.5V I2C Serial d) 24AA256-I/MS:Industrial Temp., 1.7V, MSOP package. EEPROM 24LC256T: 256 Kbit 2.5V I2C Serial e) 24LC256-E/P:Extended Temp., EEPROM Tape and Reel) 2.5V, PDIP package. 24FC256: 256 Kbit High Speed I2C Serial f) 24LC256-I/SN:Industrial Temp., EEPROM 2.5V, SOIC package. 24FC256T: 256 Kbit High Speed I2C Serial g) 24LC256T-I/SN:Tape and Reel, EEPROM Tape and Reel) Industrial Temp., 2.5V, SOIC package. Temperature I = -40C to +85C h) 24LC256-I/MS:Industrial Temp, Range: E = -40C to +125C 2.5V, MSOP package. i) 24FC256-I/P:Industrial Temp, 1.7V, High Speed, Package: P = Plastic DIP (300 mil body), 8-lead PDIP package. SN = Plastic SOIC (3.90 mm body), 8-lead j) 24FC256-I/SN:Industrial Temp, SM = Plastic SOIJ (5.28 mm body), 8-lead 1.7V, High Speed, SOIC ST = Plastic TSSOP (4.4 mm), 8-lead package. MF = Dual, Flat, No Lead (DFN)(6x5 mm body), 8-lead k) 24FC256T-I/SN:Tape and Reel, MS = Plastic Micro Small Outline (MSOP), Industrial Temp, 1.7V, 8-lead High Speed, MNY(2)=Dual, Flat, No Lead (TDFN) (2x3 mm SOIC package. body), 8-lead l) 24AA256T-CS16K: Industrial Temp, CS16K(1) = Chip Scale (CS), 8-lead (I-temp, 1.7V, CS package, Tape “AA”, Tape and Reel only) and Reel. m) 24AA256T-E/SN: Tape and Reel, Extended Temp., 1.7V, Note1: “16K” indicates 160K technology. SOIC package. 2: “Y” indicates a Nickel Palladium Gold (NiPdAu) finish.  1998-2018 Microchip Technology Inc. DS20001203V-page 41

24AA256/24LC256/24FC256 NOTES: DS20001203V-page 42  1998-2018 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device Trademarks applications and the like is provided only for your convenience The Microchip name and logo, the Microchip logo, AnyRate, AVR, and may be superseded by updates. It is your responsibility to AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, ensure that your application meets with your specifications. CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, MICROCHIP MAKES NO REPRESENTATIONS OR JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, WARRANTIES OF ANY KIND WHETHER EXPRESS OR maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, IMPLIED, WRITTEN OR ORAL, STATUTORY OR OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip OTHERWISE, RELATED TO THE INFORMATION, Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, INCLUDING BUT NOT LIMITED TO ITS CONDITION, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered QUALITY, PERFORMANCE, MERCHANTABILITY OR trademarks of Microchip Technology Incorporated in the U.S.A. FITNESS FOR PURPOSE. Microchip disclaims all liability and other countries. arising from this information and its use. Use of Microchip ClockWorks, The Embedded Control Solutions Company, devices in life support and/or safety applications is entirely at EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, the buyer’s risk, and the buyer agrees to defend, indemnify and mTouch, Precision Edge, and Quiet-Wire are registered hold harmless Microchip from any and all damages, claims, trademarks of Microchip Technology Incorporated in the U.S.A. suits, or expenses resulting from such use. No licenses are Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any conveyed, implicitly or otherwise, under any Microchip Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, intellectual property rights unless otherwise stated. CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. Microchip received ISO/TS-16949:2009 certification for its worldwide SQTP is a service mark of Microchip Technology Incorporated in headquarters, design and wafer fabrication facilities in Chandler and the U.S.A. Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures Silicon Storage Technology is a registered trademark of Microchip are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping Technology Inc. in other countries. devices, Serial EEPROMs, microperipherals, nonvolatile memory and GestIC is a registered trademark of Microchip Technology analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their QUALITY MANAGEMENT SYSTEM respective companies. © 2018, Microchip Technology Incorporated, All Rights Reserved. CERTIFIED BY DNV ISBN: 978-1-5224-3387-3 == ISO/TS 16949 ==  1998-2018 Microchip Technology Inc. DS20001203V-page 43

Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office Australia - Sydney India - Bangalore Austria - Wels 2355 West Chandler Blvd. Tel: 61-2-9868-6733 Tel: 91-80-3090-4444 Tel: 43-7242-2244-39 Chandler, AZ 85224-6199 Fax: 43-7242-2244-393 China - Beijing India - New Delhi Tel: 480-792-7200 Tel: 86-10-8569-7000 Tel: 91-11-4160-8631 Denmark - Copenhagen Fax: 480-792-7277 Tel: 45-4450-2828 China - Chengdu India - Pune Technical Support: Tel: 86-28-8665-5511 Tel: 91-20-4121-0141 Fax: 45-4485-2829 http://www.microchip.com/ support China - Chongqing Japan - Osaka Finland - Espoo Tel: 86-23-8980-9588 Tel: 81-6-6152-7160 Tel: 358-9-4520-820 Web Address: www.microchip.com China - Dongguan Japan - Tokyo France - Paris Tel: 86-769-8702-9880 Tel: 81-3-6880- 3770 Tel: 33-1-69-53-63-20 Atlanta Fax: 33-1-69-30-90-79 Duluth, GA China - Guangzhou Korea - Daegu Tel: 678-957-9614 Tel: 86-20-8755-8029 Tel: 82-53-744-4301 Germany - Garching Tel: 49-8931-9700 Fax: 678-957-1455 China - Hangzhou Korea - Seoul Austin, TX Tel: 86-571-8792-8115 Tel: 82-2-554-7200 Germany - Haan Tel: 49-2129-3766400 Tel: 512-257-3370 China - Hong Kong SAR Malaysia - Kuala Lumpur Boston Tel: 852-2943-5100 Tel: 60-3-7651-7906 Germany - Heilbronn Tel: 49-7131-67-3636 Westborough, MA China - Nanjing Malaysia - Penang Tel: 774-760-0087 Tel: 86-25-8473-2460 Tel: 60-4-227-8870 Germany - Karlsruhe Fax: 774-760-0088 Tel: 49-721-625370 China - Qingdao Philippines - Manila Chicago Tel: 86-532-8502-7355 Tel: 63-2-634-9065 Germany - Munich Itasca, IL Tel: 49-89-627-144-0 China - Shanghai Singapore Tel: 630-285-0071 Tel: 86-21-3326-8000 Tel: 65-6334-8870 Fax: 49-89-627-144-44 Fax: 630-285-0075 Germany - Rosenheim China - Shenyang Taiwan - Hsin Chu Dallas Tel: 86-24-2334-2829 Tel: 886-3-577-8366 Tel: 49-8031-354-560 Addison, TX Israel - Ra’anana China - Shenzhen Taiwan - Kaohsiung Tel: 972-818-7423 Tel: 972-9-744-7705 Tel: 86-755-8864-2200 Tel: 886-7-213-7830 Fax: 972-818-2924 Italy - Milan China - Suzhou Taiwan - Taipei Detroit Tel: 39-0331-742611 Tel: 86-186-6233-1526 Tel: 886-2-2508-8600 Novi, MI Fax: 39-0331-466781 Tel: 248-848-4000 China - Wuhan Thailand - Bangkok Italy - Padova Tel: 86-27-5980-5300 Tel: 66-2-694-1351 Houston, TX Tel: 39-049-7625286 Tel: 281-894-5983 China - Xian Vietnam - Ho Chi Minh Netherlands - Drunen Tel: 86-29-8833-7252 Tel: 84-28-5448-2100 Indianapolis Tel: 31-416-690399 Noblesville, IN China - Xiamen Fax: 31-416-690340 Tel: 86-592-2388138 Tel: 317-773-8323 Norway - Trondheim Fax: 317-773-5453 China - Zhuhai Tel: 47-7289-7561 Tel: 317-536-2380 Tel: 86-756-3210040 Poland - Warsaw Los Angeles Tel: 48-22-3325737 Mission Viejo, CA Romania - Bucharest Tel: 949-462-9523 Tel: 40-21-407-87-50 Fax: 949-462-9608 Tel: 951-273-7800 Spain - Madrid Tel: 34-91-708-08-90 Raleigh, NC Fax: 34-91-708-08-91 Tel: 919-844-7510 Sweden - Gothenberg New York, NY Tel: 46-31-704-60-40 Tel: 631-435-6000 Sweden - Stockholm San Jose, CA Tel: 46-8-5090-4654 Tel: 408-735-9110 Tel: 408-436-4270 UK - Wokingham Tel: 44-118-921-5800 Canada - Toronto Fax: 44-118-921-5820 Tel: 905-695-1980 Fax: 905-695-2078 DS20001203V-page 44  1998-2018 Microchip Technology Inc. 10/25/17