图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: IRS2110STRPBF
  • 制造商: International Rectifier
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

IRS2110STRPBF产品简介:

ICGOO电子元器件商城为您提供IRS2110STRPBF由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IRS2110STRPBF价格参考。International RectifierIRS2110STRPBF封装/规格:PMIC - 栅极驱动器, Half-Bridge Gate Driver IC Non-Inverting 16-SOIC。您可以下载IRS2110STRPBF参考资料、Datasheet数据手册功能说明书,资料中有IRS2110STRPBF 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC DRIVER HIGH/LOW SIDE 16-SOIC门驱动器 Hi&Lw Sd Drvr All HiVolt Pins 1 Sd

产品分类

PMIC - MOSFET,电桥驱动器 - 外部开关集成电路 - IC

品牌

International Rectifier

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

电源管理 IC,门驱动器,International Rectifier IRS2110STRPBF-

数据手册

点击此处下载产品Datasheet

产品型号

IRS2110STRPBF

上升时间

35 ns

下降时间

25 ns

产品

Half-Bridge Drivers

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250

产品目录页面

点击此处下载产品Datasheet

产品种类

门驱动器

供应商器件封装

16-SOIC

其它名称

IRS2110STRPBFTR

包装

带卷 (TR)

商标

International Rectifier

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

16-SOIC(0.295",7.50mm 宽)

封装/箱体

SOIC-16 Wide

工作温度

-40°C ~ 125°C

工厂包装数量

1000

延迟时间

130ns

最大关闭延迟时间

120 ns

最大功率耗散

1.25 W

最大工作温度

+ 125 C

最大开启延迟时间

130 ns

最小工作温度

- 40 C

标准包装

1,000

激励器数量

2 Driver

电压-电源

10 V ~ 20 V

电流-峰值

2.5A

电源电压-最大

20 V

电源电压-最小

10 V

电源电流

340 uA

类型

High and Low Side

输入类型

非反相

输出数

2

输出电流

2.5 A

输出端数量

2

配置

高端和低端,独立

配置数

1

高压侧电压-最大值(自举)

500V

推荐商品

型号:MIC4102YM

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:TC4420EOA713

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:TC4422AVOA713

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:ISL2111BR4Z

品牌:Renesas Electronics America Inc.

产品名称:集成电路(IC)

获取报价

型号:IR25604STRPBF

品牌:Infineon Technologies

产品名称:集成电路(IC)

获取报价

型号:LM5109MAX

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:IR21531STR

品牌:Infineon Technologies

产品名称:集成电路(IC)

获取报价

型号:EL7212CSZ-T13

品牌:Renesas Electronics America Inc.

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
IRS2110STRPBF 相关产品

MIC4123YME

品牌:Microchip Technology

价格:

EL7202CS

品牌:Renesas Electronics America Inc.

价格:

TC4424EPA

品牌:Microchip Technology

价格:¥12.52-¥12.52

ISL6207CB-T

品牌:Renesas Electronics America Inc.

价格:

IR25604SPBF

品牌:Infineon Technologies

价格:¥4.83-¥4.83

IR2086SPBF

品牌:Infineon Technologies

价格:

ADP3624ARHZ

品牌:Analog Devices Inc.

价格:¥9.97-¥12.46

TC1411NCPA

品牌:Microchip Technology

价格:¥5.89-¥5.89

PDF Datasheet 数据手册内容提取

Data Sheet No. PD60249 IRS2110(-1,-2,S)PbF IRS2113(-1,-2,S)PbF HIGH AND LOW SIDE DRIVER Features • Product Summary Floating channel designed for bootstrap operation • • Fully operational to +500 V or +600 V VOFFSET (IRS2110) 500 V max. Tolerant to negative transient voltage, dV/dt immune (IRS2113) 600 V max. • Gate drive supply range from 10 V to 20 V • Undervoltage lockout for both channels IO+/- 2 A/2 A • 3.3 V logic compatible VOUT 10 V - 20 V • Separate logic supply range from 3.3 V to 20 V • Logic and power ground ± 5V offset ton/off (typ.) 130 ns & 120 ns • CMOS Schmitt-triggered inputs with pull-down Delay Matching (IRS2110) 10 ns max. • Cycle by cycle edge-triggered shutdown logic (IRS2113) 20 ns max. • Matched propagation delay for both channels • Packages Outputs in phase with inputs • RoHS compliant Description The IRS2110/IRS2113 are high voltage, high speed power MOSFET and IGBT drivers with independent high-side and low-side referenced output channels. Pro- prietary HVIC and latch immune CMOS technologies 14-Lead PDIP 16-Lead PDIP enable ruggedized monolithic construction. Logic in- IRS2110 and IRS2113 (w/o leads 4 & 5) IRS2110-2 and IRS2113-2 puts are compatible with standard CMOS or LSTTL out- put, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel 14-Lead PDIP 16-Lead SOIC power MOSFET or IGBT in the high-side configuration (w/o lead 4) IRS2110S and which operates up to 500 V or 600 V. IRS2110-1 and IRS2113-1 IRS2113S Typical Connection up to 500 V or 600 V HO V V V DD DD B HIN HIN V S TO SD SD LOAD LIN LIN V CC V V COM SS SS V LO CC (Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connec- tions only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1

IRS2110(-1,-2,S)PbF/IRS2113-(1,-2,S)PbF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param- eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figs. 28 through 35. Symbol Definition Min. Max. Units (IRS2110) -0.3 520 (Note 1) VB High-side floating supply voltage (IRS2113) -0.3 620 (Note 1) VS High-side floating supply offset voltage VB - 20 VB + 0.3 VHO High-side floating output voltage VS - 0.3 VB + 0.3 VCC Low-side fixed supply voltage -0.3 20 (Note 1) V VLO Low-side output voltage -0.3 VCC + 0.3 VDD Logic supply voltage -0.3 VSS+20 (Note 1) VSS Logic supply offset voltage VCC - 20 VCC + 0.3 VIN Logic input voltage (HIN, LIN, & SD) VSS - 0.3 VDD + 0.3 dVs/dt Allowable offset supply voltage transient (Fig. 2) — 50 V/ns (14 lead DIP) — 1.6 PD Package power dissipation @ TA £ +25 °C W (16 lead SOIC) — 1.25 (14 lead DIP) — 75 RTHJA Thermal resistance, junction to ambient °C/W (16 lead SOIC) — 100 TJ Junction temperature — 150 TS Storage temperature -55 150 °C TL Lead temperature (soldering, 10 seconds) — 300 Note 1: All supplies are fully tested at 25 V, and an internal 20 V clamp exists for each supply. Recommended Operating Conditions The input/output logic timing diagram is shown in Fig. 1. For proper operation, the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at a 15 V differential. Typical ratings at other bias conditions are shown in Figs. 36 and 37. Symbol Definition Min. Max. Units VB High-side floating supply absolute voltage VS + 10 VS + 20 (IRS2110) Note 2 500 VS High-side floating supply offset voltage (IRS2113) Note 2 600 VHO High-side floating output voltage VS VB VCC Low-side fixed supply voltage 10 20 V VLO Low-side output voltage 0 VCC VDD Logic supply voltage VSS + 3 VSS + 20 VSS Logic supply offset voltage -5 (Note 3) 5 VIN Logic input voltage (HIN, LIN & SD) VSS VDD TA Ambient temperature -40 125 °C Note 2: Logic operational for VS of -4 V to +500 V. Logic state held for VS of -4 V to -VBS. (Refer to the Design Tip DT97-3) Note 3: When VDD < 5 V, the minimum VSS offset is limited to -VDD. www.irf.com 2

IRS2110(-1,-2,S)PbF/IRS2113-(1,-2,S)PbF Dynamic Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15 V, CL = 1000 pF, TA = 25 °C and VSS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Fig. 3. Symbol Definition Min. Typ.Max.UnitsTest Conditions ton Turn-on propagation delay — 130 160 VS = 0 V toff Turn-off propagation delay — 120 150 VS = 500 V/600 V tsd Shutdown propagation delay — 130 160 ns tr Turn-on rise time — 25 35 tf Turn-off fall time — 17 25 Delay matching, HS & LS (IRS2110) — — 10 MT turn-on/off (IRS2113) — — 20 Static Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15 V, TA = 25 °C and VSS = COM unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to VSS and are applicable to all three logic input leads: HIN, LIN, and SD. The V O and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol Definition Min. Typ.Max.UnitsTest Conditions VIH Logic “1” input voltage 9.5 — — VIL Logic “0” input voltage — — 6.0 V VOH High level output voltage, VBIAS - VO — — 1.4 IO = 0 A VOL Low level output voltage, VO — — 0.15 IO = 20 mA ILK Offset supply leakage current — — 50 VB=VS = 500 V/600 V IQBS Quiescent VBS supply current — 125 230 IQCC Quiescent VCC supply current — 180 340 µA VIN = 0 V or VDD IQDD Quiescent VDD supply current — 15 30 IIN+ Logic “1” input bias current — 20 40 VIN = VDD IIN- Logic “0” input bias current — — 5.0 VIN = 0 V VBS supply undervoltage positive going VBSUV+ threshold 7.5 8.6 9.7 VBS supply undervoltage negative going VBSUV- 7.0 8.2 9.4 threshold V VCC supply undervoltage positive going VCCUV+ 7.4 8.5 9.6 threshold VCC supply undervoltage negative going VCCUV- threshold 7.0 8.2 9.4 VO = 0 V, VIN = VDD IO+ Output high short circuit pulsed current 2.0 2.5 — PW £ 10 µs A VO = 15 V, VIN = 0V IO- Output low short circuit pulsed current 2.0 2.5 — PW £ 10 µs www.irf.com 3

IRS2110(-1,-2,S)PbF/IRS2113-(1,-2,S)PbF Functional Block Diagram V B UV V DETECT DD R Q HV RSQ V /V LSEHVIFETL FPIULTLSEER RS HO DD CC HIN LEVEL SHIFT PULSE V S GEN SD V CC UV DETECT V /V DD CC LIN LEVEL LO S SHIFT R Q DELAY V COM SS Lead Definitions Symbol Description VDD Logic supply HIN Logic input for high-side gate driver output (HO), in phase SD Logic input for shutdown LIN Logic input for low-side gate driver output (LO), in phase VSS Logic ground VB High-side floating supply HO High-side gate drive output VS High-side floating supply return VCC Low-side supply LO Low-side gate drive output COM Low-side return www.irf.com 4

IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF Lead Assignments 14 Lead PDIP 16 Lead SOIC (Wide Body) IRS2110/IRS2113 IRS2110S/IRS2113S 14 Lead PDIP w/o lead 4 16 Lead PDIP w/o leads 4 & 5 IRS2110-1/IRS2113-1 IRS2110-2/IRS2113-2 Part Number www.irf.com 5

IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF Vc c =15V HV = 10 to 500V/600V 10KF6 1µ0F 0µ.F1 9 3 6 0µ.F1 2µ0H0 10KF6 +100µF 5 10 7 HO 11 1 dVS>50 V/ns 12 OUTPUT 10KF6 dt MONITOR 13 2 IRF820 Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit Vc c =15V VB (cid:18)(cid:6)(cid:7) (cid:28)(cid:29)(cid:30) (cid:28)(cid:29)(cid:30) 10 0.1 HIN µF µF 109 3 657 CL0µ.F1 1µ0F (0 to1+- 55VV0S0V/600V) (cid:5)(cid:6)(cid:7)(cid:23)(cid:25)(cid:26) (cid:23)(cid:24) (cid:23)(cid:25)(cid:27)(cid:27) (cid:23)(cid:27) HO SD 11 10 (cid:31)(cid:29)(cid:30) (cid:31)(cid:29)(cid:30) LIN 12 1 LO µF (cid:18)(cid:21) CL 13 2 (cid:5)(cid:21) !(cid:29)(cid:30) !(cid:29)(cid:30) Figure 3. Switching Time Test Circuit Figure 4. Switching Time Waveform Definition (cid:18)(cid:6)(cid:7) (cid:28)(cid:29)(cid:30) (cid:28)(cid:29)(cid:30) (cid:5)(cid:6)(cid:7) (cid:28)(cid:29)(cid:30) (cid:3)(cid:4) (cid:5)(cid:21) (cid:18)(cid:21) (cid:23)"# !(cid:29)(cid:30) (cid:18)(cid:21) (cid:31)(cid:29)(cid:30) (cid:5)(cid:21) (cid:22)(cid:14) (cid:22)(cid:14) (cid:31)(cid:29)(cid:30) (cid:5)(cid:21) (cid:18)(cid:21) Figure 5. Shutdown Waveform Definitions Figure 6. Delay Matching Waveform Definitions www.irf.com 6

IRS2110(-1,-2,S)PbF/IRS2113-(1,-2,S)PbF 250 250 Turn-On Delay Time (ns)Turn-on Delay Time (ns) 21150050000 MTyapx.. Turn-On Delay Time (ns)Turn-on Delay Time (ns) 112505000000 TMyapx.. 0 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 Temperature(oC) VBIAS Supply Voltage (V) Figure 7A. Turn-On Time vs. Temperature Figure 7B. Turn-On Time vs. Supply Voltage 250 250 Max. elay Time (ns) 112050000 Typ. Off Time (ns)Time (ns) 112050000 Max. n-On D 50 Turn-urn-Off 50 Typ. ur T T 0 0 0 2 4 6 8 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VDD Supply Voltage (V) Temperature(oC) Figure 7C. Turn-On Time vs. V DD Supply Voltage Figure 8A. Turn-Off Time vs. Temperature 250 250 s) Max. Turn-Off Time (ns)Turn-Off Time (ns) 11205050000 TMyapx.. urn-Off Delay Time (nTurn-Off Delay Time (ns) 11250500000 Typ. T 0 0 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 VBIAS Supply Voltage (V) VDD Supply Voltage (V) Figure 8B. Turn-Off Time vs. Supply Voltage Figure 8C. Turn-Off Time vs. V DD Supply Voltage www.irf.com 7

IRS2110(-1,-2,S)PbF/IRS2113-(1,-2,S)PbF 250 250 s) s) y (ns)elay (n 200 ay (ns)elay (n 200 Max. D Propagation DelaSD Propagation D 11505000 TMyapx.. SD Propagation DelSD Propagation d 115050000 Typ. S 0 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 Temperature (oC) VBIAS Supply Voltage (V) Figure 9A. Shutdown Time vs. Temperature Figure 9B. Shutdown Time vs. Supply Voltage 250 100 Max. ns) 200 ns) 80 e ( e ( m 150 m Ti Typ. Ti 60 y e n Dela 100 On Ris 40 Max. w 50 n- Typ. do ur 20 ut T h 0 S 0 2 4 6 8 10 12 14 16 18 20 0 -50 -25 0 25 50 75 100 125 VDD Supply Voltage (V) Temperature (oC) Figure 9C. Shutdown Time Figure 10A. Turn-On Rise Time vs. VDD Supply Voltage vs. Temperature 100 50 ns) 80 s) 40 ( n Turn-On Rise Time Turn-On Rise Time (ns) 246000 MTyapx.. Turn-Off Fall Time (Turn-Off Fall Time (ns)123000 MTyapx.. 0 0 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VBIAS Supply Voltage (V) Temperature (oC) Figure 10B. Turn-On Rise Time vs. Voltage Figure 11A. Turn-Off Fall Time vs. Temperature www.irf.com 8

IRS2110(-1,-2,S)PbF/IRS2113-(1,-2,S)PbF 50 15.0 Turn-Off Fall Time (ns)Turn-Off Fall Time (ns)12340000 MTyapx.. gic “1” Input Threshold (V)Logic "1" Input Threshold (V)12369....0000 MMina.x 0 Lo 0.0 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VBIAS Supply Voltage (V) Temperature (oC) Figure 11B. Turn-Off Fall Time vs. Voltage Figure 12A. Logic “1” Input Threshold vs. Temperature 15 15.0 V) V) ( ( old V) 12 old 12.0 gic “1” Input ThreshLogic " 1" Input Threshold ( 369 Max. gic “0” Input ThreshLogic "0" Input Threshold (V) 369...000 MMainx.. o o L L 0 0.0 0 2 4 6 8 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VDD Logic Supply Voltage (V) Temperature (oC) Figure 12B. Logic “1” Input Threshold vs. Voltage Figure 13A. Logic “0” Input Threshold vs. Temperature 15 V) 5.0 V) e ( d ( 12 ag 4.0 holV) olt c “0” Input ThresLogic "0" Input Threshold ( 369 Min. h Level Output V 123...000 Max. gi g Lo 0 Hi 0.0 0 2 4 6 8 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VDD Logic Supply Voltage (V) Temperature (oC) Figure 13B. Logic “0” Input Threshold vs. Voltage Figure 14A. High Level Output Voltage vs. Temperature (I o = 0 mA) www.irf.com 9

IRS2110(-1,-2,S)PbF/IRS2113-(1,-2,S)PbF V) 5.0 0.20 e ( (V) Voltag 4.0 oltage 0.16 Max. put 3.0 ut V 0.12 ut o O 2.0 ut 0.08 vel Max el O Le 1.0 ev 0.04 gh w L Hi o 0.0 L 0.00 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VBIAS Supply Voltage (V) Temperature (oC) Figure 14B. High Level Output Voltage Figure 15A. Low Level Output vs. Temperature vs. Supply Voltage (Io = 0 mA) A) V) 0.20 m( 500 e ( ent ag 0.16 Max. urr 400 olt C ut V 0.12 age 300 o k Out 0.08 Lea vel ply 200 Le 0.04 up ow et S 100 L 0.0010 12 14 16 18 20 Offs 0 Max. -50 -25 0 25 50 75 100 125 VCC Supply Voltage (V) Temperature (oC) Figure 15B. Low Level Output vs. Supply Voltage Figure 16A. Offset Supply Current vs. Temperature A) 500 500 m( nt urre 400 A) 400 Supply Leakage C 123000000 Max. m Supply Current (SV Supply Current (µA)BS123000000 TMyapx.. et VB Offs 0 0 100 200 300 400 500 600 0-50 -25 0 25 50 75 100 125 VB Boost Voltage (V) Temperature (oC) Figure 16B. Offset Supply Current vs. Voltage Figure 17A. VBS Supply Current vs. Temperature www.irf.com 10

IRS2110(-1,-2,S)PbF/IRS2113-(1,-2,S)PbF 500 625 A)A) 400 A)A) 500 mmSupply Current (Supply Current ( 230000 Max. mmupply Current (upply Current ( 235705 MTyapx.. V V BSBS 100 Typ. S SCCCC 125 VV 0 0 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VBS Floating Supply Voltage (V) Temperature (oC) Figure 17B. VBS Supply Current vs. Voltage Figure 18A. VCC Supply Current vs. Temperature 625 100 A)A) A)A) mmV Supply Current (V Supply Current (CCCCV Supply Current (µA)CC123525705050 MTyapx.. mmV Supply Current (V Supply Current (DDDD 24680000 Max. Typ. 0 0 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VCC Fixed Supply Voltage (V) Temperature (oC) Figure 18B. VCC Supply Current vs. Voltage Figure 19A. VDD Supply Current vs. Temperature A) 60 A)100 mV Supply Current (mV Supply Current (A)DDDD 1234500000 m“1” Input Bias Current ( 24680000 Max. c Typ. 0 ogi L 0 0 2 4 6 8 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VDD Logic Supply Voltage (V) Temperature (oC) Figure 19B. VDD Supply Current vs. V DD Voltage Figure 20A. Logic “1” Input Current vs. Temperature www.irf.com 11

IRS2110(-1,-2,S)PbF/IRS2113-(1,-2,S)PbF A) 60 A) 6 ment (mnt (A) 50 nt (µ5 Max Logic “1” Input Bias CurrLogic “1” Input Bias Curre 123400000 0 2 4 6 8 10 12 14 16 18 20 Logic "0" Input Bias Curre01234-50 -25 0 25 50 75 100 125 Temperature (°C) VDD Logic Supply Voltage (V) Figure 20B. Logic “1” Input Current Figure 21A. Logic "0" Input Bias Current vs. VDD Voltage vs. Temperature µA) 6 V) 11.0 urrent ( 45 Max kout + ( 10.0 Max. C oc s L 9.0 Bia 3 ge Typ. "0" Input 12 Undervolta 78..00 Min. Logic 0 V BS 6.0 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 Supply Voltage (V) Temperature (oC) Figure 21B. Logic "0" Input Bias Current Figure 22. VBS Undervoltage (+) vs. Temperature vs. Voltage 11.0 11.0 V) V) ( ( - + Lockout 190..00 Max. Lockout 190..00 Max. Undervoltage 78..00 TMyinp.. Undervoltage 78..00 MTyinp.. BS C V 6.0 VC 6.0 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 Temperature (oC) Temperature (oC) Figure 23. VBS Undervoltage (-) Figure 24. VCC Undervoltage (+) vs. Temperature vs. Temperature www.irf.com 12

IRS2110(-1,-2,S)PbF/IRS2113-(1,-2,S)PbF 11.0 5.00 V) ( Lockout - 190..00 Max. Current (A)Current (A)34..0000 Typ. Undervoltage C 78..00 TMyipn.. Output Source Output Source 12..0000 Min. C V 6.0 0.00 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 TeTmemppeerraatutrue r(e°C )(oC) TemTepmeprearattuurree ( °(Co)C) Figure 25. VCC Undervoltage (-) vs. Temperature Figure 26A. Output Source Current vs. Temperature 5.00 5.00 put Source Current (A)Output Source Current (A)1234....00000000 MTyinp.. Output Sink Current (A)Output Sink Current (A)1234....00000000 MTyinp.. ut O 0.00 0.00 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VBIAS Supply Voltage (V) Temperature (oC) Figure 26B. Output Source Current vs. Voltage Figure 27A. Output Sink Current vs. Temperature 5.00 150 320 V utput Sink Current (A)Output Sink Current (A)234...000000 Typ. oction Temperature (C) 1102570505 11400 V V O 1.00 Min. Jun 25 0.00 0 10 12 14 16 18 20 1E+2 1E+3 1E+4 1E+5 1E+6 VBIAS Supply Voltage (V) Frequency (kHz) Figure 27B. Output Sink Current vs. Voltage Figure 28. IRS2110/IRS2113 TJ vs. Frequency (IRFBC20) RGATE = 33 W, VCC = 15 V www.irf.com 13 PDF created with pdfFactory trial version www.pdffactory.com

IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF 150 320 V 150 320 V 140 V C) 125 C) 125 omperature (p()10705 1104 0V V omperature ( 10750 10 V Junction Te 2550 Junction Te 2550 0 0 1E+2 1E+3 1E+4 1E+5 1E+6 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (kHz) Frequency (kHz) Figure 29. IRS2110/IRS2113 TJ vs. Frequency Figure 30. IRS2110/IRS2113 TJ vs. Frequency (IRFBC30) RGATE = 22 ΩΩΩΩΩ, VCC = 15 V (IRFBC40) RGATE = 15 ΩΩΩΩΩ, VCC = 15 V 150 320 V 140 V 150 320 V 140 V C) C) oTemperature ( 11027505 10 V oTemperature ( 11027055 10 V Junction 2550 Junction 2550 0 0 1E+2 1E+3 1E+4 1E+5 1E+6 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (kHz) Frequency (kHz) Figure 31. IRS2110/IRS2113 TJ vs. Frequency Figure 32. IRS2110S/IRS2113S TJ vs. Frequency (IRFPE50) RGATE = 10 ΩΩΩΩΩ, VCC = 15 V (IRFBC20) RGATE = 33 ΩΩΩΩΩ, VCC = 15 V 150 320 V 140 V 150 320 V 140 V omperature (C) 11027055 10 V omperature (C) 11027055 10 V Junction Te 2550 Junction Te 2550 0 0 1E+2 1E+3 1E+4 1E+5 1E+6 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (kHz) Frequency (kHz) Figure 33. IRS2110S/IRS2113S TJ vs. Frequency Figure 34. IRS2110S/IRS2113S TJ vs. Frequency (IRFBC30) RGATE = 22 ΩΩΩΩΩ, VCC = 15 V (IRFBC40) RGATE = 15 ΩΩΩΩΩ, VCC = 15 V www.irf.com 14

IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF 150 320 V 140 V 10 V 0.0 oC) 125 e (V) -2.0 ature (()100 Voltag -4.0 Typ. er y mpp 75 ppl Te Su -6.0 on 50 et uncti 25 Offs -8.0 J S V 0 -10.0 1E+2 1E+3 1E+4 1E+5 1E+6 10 12 14 16 18 20 Frequency (kHz) V Floating Supply Voltage (V) BS Figure 35. IRS2110S/IRS2113S TJ vs. Frequency Figure 36. Maximum VS Negative Offset vs. (IRFPE50) RGATE = 10 ΩΩΩΩΩ, VCC = 15 V VBS Supply Voltage V) 20.0 ( e g olta 16.0 V set 12.0 Off y ppl 8.0 Typ. u S c 4.0 gi o L S 0.0 S V 10 12 14 16 18 20 V Fixed Supply Voltage (V) CC Figure 37. Maximum VSS Positive Offset vs. VCC Supply Voltage www.irf.com 15

IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF Case Outlines 01-6010 14-Lead PDIP 01-3002 03 (MS-001AC) 01-6010 14-Lead PDIP w/o Lead 4 01-3008 02 (MS-001AC) www.irf.com 16

IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF 16 Lead PDIP w/o Leads 4 & 5 01-6015 01-3010 02 01 6015 16-Lead SOIC (wide body) 01-3014 03 (MS-013AA) www.irf.com 17

IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF Tape & Reel 16-Lead SOIC LOADED TAPE FEED D IRECTION B AA H D F C NOTE : CONTROLLING DIMENSION IN MM E G CARRIER TAPE DIMENSION FOR 16SOICW Metric Imperial Code Min Max Min Max A 11.90 12.10 0.468 0.476 B 3.90 4.10 0.153 0.161 C 15.70 16.30 0.618 0.641 D 7.40 7.60 0.291 0.299 E 10.80 11.00 0.425 0.433 F 10.60 10.80 0.417 0.425 G 1.50 n/a 0.059 n/a H 1.50 1.60 0.059 0.062 F D B C A E G H REEL DIMENSIONS FOR 16SOICW Metric Imperial Code Min Max Min Max A 329.60 330.25 12.976 13.001 B 20.95 21.45 0.824 0.844 C 12.80 13.20 0.503 0.519 D 1.95 2.45 0.767 0.096 E 98.00 102.00 3.858 4.015 F n/a 22.40 n/a 0.881 G 18.50 21.10 0.728 0.830 H 16.40 18.40 0.645 0.724 www.irf.com 18

IRS2110(-1,-2,S)PbF/IRS2113-(1,-2,S)PbF LEADFREE PART MARKING INFORMATION Part number IRSxxxxxx YWW? Date code IR logo ?XXXX Pin 1 Identifier Lot Code ? MARKING CODE (Prod mode - 4 digit SPN code) P Lead Free Released Non-Lead Free Released Assembly site code Per SCOP 200-002 ORDER INFORMATION 14-Lead PDIP IRS2110PbF 14-Lead PDIP IRS2110-1PbF 14-Lead PDIP IRS2113PbF 14-Lead PDIP IRS2113-1PbF 16-Lead PDIP IRS2110-2PbF 16-Lead PDIP IRS2113-2PbF 16-Lead SOIC IRS2110SPbF 16-Lead SOIC IRS2113SPbF 16-Lead SOIC Tape & Reel IRS2110STRPbF 16-Lead SOIC Tape & Reel IRS2113STRPbF The SOIC-14 is MSL3 qualified. The SOIC-16 is MSL3 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 1/22/2007 www.irf.com 19

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: I nfineon: IRS2110SPBF IRS2113SPBF IRS2110PBF IRS2110STRPBF IRS2113PBF IRS2113STRPBF