图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: OPA313IDBVR
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

OPA313IDBVR产品简介:

ICGOO电子元器件商城为您提供OPA313IDBVR由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 OPA313IDBVR价格参考¥2.26-¥2.82。Texas InstrumentsOPA313IDBVR封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, General Purpose Amplifier 1 Circuit Rail-to-Rail SOT-23-5。您可以下载OPA313IDBVR参考资料、Datasheet数据手册功能说明书,资料中有OPA313IDBVR 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)半导体

描述

IC OPAMP GP 1MHZ RRO SOT23-5运算放大器 - 运放 1MHz MicroPwr Lo Noise RRIO Op Amp

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,运算放大器 - 运放,Texas Instruments OPA313IDBVR-

数据手册

点击此处下载产品Datasheet

产品型号

OPA313IDBVR

产品种类

运算放大器 - 运放

供应商器件封装

SOT-23-5

共模抑制比—最小值

85 dB

其它名称

296-35607-6

包装

Digi-Reel®

单电源电压

1.8 V to 5.5 V

压摆率

0.5 V/µs

商标

Texas Instruments

增益带宽积

1MHz

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

SC-74A,SOT-753

封装/箱体

SOT-23-5

工作温度

-40°C ~ 125°C

工作电源电压

1.8 V to 5.5 V

工厂包装数量

3000

放大器类型

通用

最大工作温度

+ 125 C

最小工作温度

- 40 C

标准包装

1

电压-电源,单/双 (±)

1.8 V ~ 5.5 V

电压-输入失调

500µV

电流-电源

50µA

电流-输入偏置

0.2pA

电流-输出/通道

15mA

电路数

1

系列

OPA313

转换速度

0.5 V/us

输入偏压电流—最大

0.2 pA

输入补偿电压

2.5 mV

输出类型

满摆幅

通道数量

1 Channel

推荐商品

型号:LT1122DS8#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:THS4012CDR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT1999IMS8-50#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:MCP6491T-E/OT

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:LT1804CDD#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:TLV2442AQPWRG4Q1

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:OPA4364AIPWRG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LM2902KDBE4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
OPA313IDBVR 相关产品

AD628ARZ-R7

品牌:Analog Devices Inc.

价格:¥24.39-¥24.39

TLC084QPWPRQ1

品牌:Texas Instruments

价格:

MAX4481AXT+T

品牌:Maxim Integrated

价格:

TL3474ACPW

品牌:Texas Instruments

价格:¥4.52-¥10.18

MCP619-I/SL

品牌:Microchip Technology

价格:¥10.54-¥13.89

LM358BP

品牌:Texas Instruments

价格:

TLV342AIDR

品牌:Texas Instruments

价格:

MC34071DR2

品牌:ON Semiconductor

价格:¥1.40-¥1.40

PDF Datasheet 数据手册内容提取

OPA313 OPA2313 OPA4313 www.ti.com SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 1-MHz, Micro-Power, Low-Noise, RRIO,1.8-V CMOS OPERATIONAL AMPLIFIER Precision Value Line Series CheckforSamples:OPA313,OPA2313,OPA4313 FEATURES DESCRIPTION 1 • LowI :50µA/ch The OPA313 family of single-, dual-, and quad- 2 Q channelopampsrepresentsanewgenerationoflow- • WideSupplyRange:1.8Vto5.5V cost, general purpose, micro-power operational • LowNoise:25nV/√Hzat1kHz amplifiers. Featuring rail-to-rail input and output • GainBandwidth:1MHz swings, and low quiescent current (50 μA, typ) combined with a wide bandwidth of 1 MHz and very • LowInputBiasCurrent:0.2pA low noise (25 nV/√Hz at 1 kHz) makes this family • LowOffsetVoltage:0.5mV very attractive for a variety of battery-powered • Unity-GainStable applications that require a good balance between cost and performance. The low input bias current • InternalRF/EMIFilter supports those op amps to be used in applications • ExtendedTemperatureRange: withmegaohmsourceimpedances. –40°Cto+125°C The robust design of the OPA313 devices provides ease-of-use to the circuit designer: unity-gain stability APPLICATIONS with capacitive loads of up to 150 pF, integrated • Battery-PoweredInstruments: RF/EMI rejection filter, no phase reversal in overdrive – Consumer,Industrial,Medical conditions, and high electrostatic discharge (ESD) protection(4-kVHBM). – Notebooks,PortableMediaPlayers These devices are optimized for operation at voltages • SensorSignalConditioning: as low as +1.8 V (±0.9 V) and up to +5.5 V (±2.75 V), – Loop-Powered and are specified over the extended temperature – Notebooks,PortableMediaPlayers rangeof–40°Cto+125°C. • WirelessSensors: The OPA313 (single) is available in both SC70-5 and – HomeSecurity SOT23-5packages.TheOPA2313(dual)isofferedin SO-8, MSOP-8, and DFN-8 packages. The quad- – RemoteSensing channelOPA4313isofferedinaTSSOP-14package. – WirelessMetering 1 Pleasebeawarethatanimportantnoticeconcerningavailability,standardwarranty,anduseincriticalapplicationsof TexasInstrumentssemiconductorproductsanddisclaimerstheretoappearsattheendofthisdatasheet. Alltrademarksarethepropertyoftheirrespectiveowners. 2 PRODUCTIONDATAinformationiscurrentasofpublicationdate. Copyright©2012–2013,TexasInstrumentsIncorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarilyincludetestingofallparameters.

OPA313 OPA2313 OPA4313 SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 www.ti.com This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriateprecautions.Failuretoobserveproperhandlingandinstallationprocedurescancausedamage. ESDdamagecanrangefromsubtleperformancedegradationtocompletedevicefailure.Precisionintegratedcircuitsmaybemore susceptibletodamagebecauseverysmallparametricchangescouldcausethedevicenottomeetitspublishedspecifications. PACKAGEINFORMATION(1) PACKAGE SPECIFIED PRODUCT PACKAGE-LEAD DESIGNATOR TEMPERATURERANGE PACKAGEMARKING SC70-5 DCK –40°Cto+125°C SIE OPA313 SOT23-5 DBV –40°Cto+125°C SIF SO-8 D –40°Cto+125°C OP2313 OPA2313 MSOP-8 DGK –40°Cto+125°C OUSS DFN-8 DRG –40°Cto+125°C SDY OPA4313 TSSOP-14 PW –40°Cto+125°C OPA4313 (1) Forthemostcurrentpackageandorderinginformation,seethePackageOptionAddendumattheendofthisdocument,orvisitthe deviceproductfolderatwww.ti.com. ABSOLUTE MAXIMUM RATINGS(1) Overoperatingfree-airtemperaturerange,unlessotherwisenoted. OPA313,OPA2313,OPA4313 UNIT Supplyvoltage 7 V Voltage(2) (V–)–0.5to(V+)+0.5 V Signalinputterminals Current(2) ±10 mA Outputshort-circuit(3) Continuous mA Operatingtemperature,T –40to+150 °C A Storagetemperature,T –65to+150 °C stg Junctiontemperature,T +150 °C J Humanbodymodel(HBM) 4000 V ESDrating Chargeddevicemodel(CDM) 1000 V Machinemodel(MM) 200 V (1) Stressesabovetheseratingsmaycausepermanentdamage.Exposuretoabsolutemaximumconditionsforextendedperiodsmay degradedevicereliability.Thesearestressratingsonly,andfunctionaloperationofthedeviceattheseoranyotherconditionsbeyond thosespecifiedisnotsupported. (2) Inputterminalsarediode-clampedtothepower-supplyrails.Inputsignalsthatcanswingmorethan0.5Vbeyondthesupplyrailsshould becurrentlimitedto10mAorless. (3) Short-circuittoground,oneamplifierperpackage. 2 SubmitDocumentationFeedback Copyright©2012–2013,TexasInstrumentsIncorporated ProductFolderLinks:OPA313OPA2313OPA4313

OPA313 OPA2313 OPA4313 www.ti.com SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 ELECTRICAL CHARACTERISTICS: +5.5 V(1) AtT =+25°C,R =10kΩconnectedtoV /2,andV =V =V /2,unlessotherwisenoted. A L S CM OUT S OPA313,OPA2313,OPA4313 PARAMETER TESTCONDITIONS MIN TYP MAX UNIT OFFSETVOLTAGE VOS Inputoffsetvoltage 0.5 2.5 mV dVOS/dT vsTemperature TA=–40°Cto+125°C 2 μV/°C PSRR vspowersupply TA=–40°Cto+125°C 74 90 dB Channelseparation,dc Atdc 10 µV/V INPUTVOLTAGERANGE VCM Common-modevoltagerange Nophasereversal,rail-to-railinput (V–)–0.2 (V+)+0.2 V TA=–40°Cto+125°C, 70 85 dB (VS–)–0.2V<VCM<(VS+)–1.3V CMRR Common-moderejectionratio TA=–40°Cto+125°C, 64 80 dB VCM=–0.2Vto5.7V INPUTBIASCURRENT ±0.2 ±10 pA IB Inputbiascurrent TA=–40°Cto+85°C(2) ±50 pA TA=–40°Cto+125°C(2) ±600 pA ±0.2 ±10 pA IOS Inputoffsetcurrent TA=–40°Cto+85°C(2) ±50 pA TA=–40°Cto+125°C(2) ±600 pA NOISE Inputvoltagenoise(peak-to- peak) f=0.1Hzto10Hz 6 μVPP f=10kHz 22 nV/√Hz en Inputvoltagenoisedensity f=1kHz 25 nV/√Hz in Inputcurrentnoisedensity f=1kHz 5 fA/√Hz INPUTCAPACITANCE Differential 1 pF CIN Common-mode 5 pF OPEN-LOOPGAIN 0.05V<VO<(V+)–0.05V,RL=100kΩ 90 104 dB AOL Open-loopvoltagegain TA=–40°Cto+125°C,0.1V<VO<(V+)–0.1V 104 116 dB 0.3V<VO<(V+)–0.3V,RL=2kΩ 100 110 dB Phasemargin VS=5.0V,G=+1 65 degrees (1) Parameterswithminimumormaximumspecificationlimitsare100%productiontestedat+25ºC,unlessotherwisenoted.Over temperaturelimitsarebasedoncharacterizationandstatisticalanalysis. (2) Specifiedbydesignandcharacterization;notproductiontested. Copyright©2012–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:OPA313OPA2313OPA4313

OPA313 OPA2313 OPA4313 SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 www.ti.com ELECTRICAL CHARACTERISTICS: +5.5 V(1) (continued) AtT =+25°C,R =10kΩconnectedtoV /2,andV =V =V /2,unlessotherwisenoted. A L S CM OUT S OPA313,OPA2313,OPA4313 PARAMETER TESTCONDITIONS MIN TYP MAX UNIT FREQUENCYRESPONSE GBW Gain-bandwidthproduct VS=5.0V,CL=10pF 1 MHz SR Slewrate VS=5.0V,G=+1 0.5 V/μs To0.1%,VS=5.0V,2-Vstep,G=+1 5 μs tS Settlingtime To0.01%,VS=5.0V,2-Vstep,G=+1 6 μs Overloadrecoverytime VS=5.0V,VIN×Gain>VS 3 μs Totalharmonicdistortion+ THD+N noise(3) VS=5.0V,VO=1VRMS,G=+1,f=1kHz 0.0045% OUTPUT RL=100kΩ(4) 5 20 mV Voltageoutputswingfromsupply TA=–40°Cto+125°C,RL=100kΩ(4) 30 mV VO rails RL=2kΩ(4) 75 100 mV TA=–40°Cto+125°C,RL=2kΩ 125 mV ±15 mA ISC Short-circuitcurrent TA=–40°Cto+125°C ±12 mA RO Open-loopoutputimpedance 2300 Ω POWERSUPPLY VS Specifiedvoltagerange 1.8(±0.9) 5.5(±2.75) V IO=0mA,VS=5.0V 50 60 µA IQ Quiescentcurrentperamplifier TA=–40°Cto+125°C,VS=5.0V,IO=0mA 85 µA Power-ontime VS=0Vto5V,to90%IQlevel 10 µs TEMPERATURE Specifiedrange –40 +125 °C Operatingrange –40 +150 °C Storagerange –65 +150 °C (3) Third-orderfilter;bandwidth=80kHzat–3dB. (4) Specifiedbydesignandcharacterization;notproductiontested. 4 SubmitDocumentationFeedback Copyright©2012–2013,TexasInstrumentsIncorporated ProductFolderLinks:OPA313OPA2313OPA4313

OPA313 OPA2313 OPA4313 www.ti.com SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 ELECTRICAL CHARACTERISTICS: +1.8 V(1) AtT =+25°C,R =10kΩconnectedtoV /2,V =V –1.3V,andV =V /2,unlessotherwisenoted. A L S CM S+ OUT S OPA313,OPA2313,OPA4313 PARAMETER TESTCONDITIONS MIN TYP MAX UNIT OFFSETVOLTAGE VOS Inputoffsetvoltage 0.5 2.5 mV dVOS/dT vsTemperature TA=–40°Cto+125°C 2 μV/°C PSRR vspowersupply TA=–40°Cto+125°C 74 90 dB Channelseparation,dc Atdc 10 µV/V INPUTVOLTAGERANGE VCM Common-modevoltagerange Nophasereversal,rail-to-railinput (V–)–0.2 (V+)+0.2 V TA=–40°Cto+125°C, 70 85 dB (VS–)–0.2V<VCM<(VS+)–1.3V CMRR Common-moderejectionratio VS=1.8V,VCM=–0.2Vto+1.8V 58 73 TA=–40°Cto+125°C,VCM=–0.2Vto1.6V 58 70 dB INPUTBIASCURRENT ±0.2 ±10 pA IB Inputbiascurrent TA=–40°Cto+85°C(2) ±50 pA TA=–40°Cto+125°C(2) ±600 pA ±0.2 ±10 pA IOS Inputoffsetcurrent TA=–40°Cto+85°C(2) ±50 pA TA=–40°Cto+125°C(2) ±600 pA NOISE Inputvoltagenoise(peak-to- peak) f=0.1Hzto10Hz 6 μVPP f=10kHz 22 nV/√Hz en Inputvoltagenoisedensity f=1kHz 25 nV/√Hz in Inputcurrentnoisedensity f=1kHz 5 fA/√Hz INPUTCAPACITANCE Differential 1 pF CIN Common-mode 5 pF OPEN-LOOPGAIN TA=–40°Cto+125°C,0.1V<VO<(V+)–0.1V 90 110 dB AOL Open-loopvoltagegain 0.05V<VO<(V+)–0.05V,RL=100kΩ 100 110 dB (1) Parameterswithminimumormaximumspecificationlimitsare100%productiontestedat+25ºC,unlessotherwisenoted.Over temperaturelimitsarebasedoncharacterizationandstatisticalanalysis. (2) Specifiedbydesignandcharacterization;notproductiontested. Copyright©2012–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:OPA313OPA2313OPA4313

OPA313 OPA2313 OPA4313 SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 www.ti.com ELECTRICAL CHARACTERISTICS: +1.8 V(1) (continued) AtT =+25°C,R =10kΩconnectedtoV /2,V =V –1.3V,andV =V /2,unlessotherwisenoted. A L S CM S+ OUT S OPA313,OPA2313,OPA4313 PARAMETER TESTCONDITIONS MIN TYP MAX UNIT FREQUENCYRESPONSE GBW Gain-bandwidthproduct CL=10pF 0.9 MHz SR Slewrate G=+1 0.45 V/μs To0.1%,VS=5.0V,2-Vstep,G=+1 5 μs tS Settlingtime To0.01%,VS=5.0V,2-Vstep,G=+1 6 μs Overloadrecoverytime VS=5.0V,VIN×Gain>VS 3 μs Totalharmonicdistortion+ THD+N noise(3) VS=5.0V,VO=1VRMS,G=+1,f=1kHz 0.0045% OUTPUT RL=100kΩ(4) 5 15 mV Voltageoutputswingfromsupply TA=–40°Cto+125°C,RL=100kΩ(4) 30 mV VO rails RL=2kΩ(4) 25 50 mV TA=–40°Cto+125°C,RL=2kΩ 125 mV ISC Short-circuitcurrent ±6 mA RO Open-loopoutputimpedance 2300 Ω POWERSUPPLY VS Specifiedvoltagerange 1.8(±0.9) 5.5(±2.75) V IQ Quiescentcurrentperamplifier IO=0mA 50 60 µA Power-ontime VS=0Vto5V,to90%IQlevel 10 µs TEMPERATURE Specifiedrange –40 +125 °C Operatingrange –40 +150 °C Storagerange –65 +150 °C (3) Third-orderfilter;bandwidth=80kHzat–3dB. (4) Specifiedbydesignandcharacterization;notproductiontested. 6 SubmitDocumentationFeedback Copyright©2012–2013,TexasInstrumentsIncorporated ProductFolderLinks:OPA313OPA2313OPA4313

OPA313 OPA2313 OPA4313 www.ti.com SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 THERMAL INFORMATION: OPA313 OPA313 THERMALMETRIC(1) DBV(SOT23) DCK(SC70) UNITS 5PINS 5PINS θJA Junction-to-ambientthermalresistance 228.5 281.4 θJC(top) Junction-to-case(top)thermalresistance 99.1 91.6 θJB Junction-to-boardthermalresistance 54.6 59.6 °C/W ψJT Junction-to-topcharacterizationparameter 7.7 1.5 ψJB Junction-to-boardcharacterizationparameter 53.8 58.8 θJC(bottom) Junction-to-case(bottom)thermalresistance N/A N/A (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheICPackageThermalMetricsapplicationreport,SPRA953. THERMAL INFORMATION: OPA2313 OPA2313 THERMALMETRIC(1) D(SO) DGK(MSOP) DRG(DFN) UNITS 8PINS 8PINS 8PINS θJA Junction-to-ambientthermalresistance 138.4 191.2 53.8 θJC(top) Junction-to-case(top)thermalresistance 89.5 61.9 69.2 θJB Junction-to-boardthermalresistance 78.6 111.9 20.1 °C/W ψJT Junction-to-topcharacterizationparameter 29.9 5.1 3.8 ψJB Junction-to-boardcharacterizationparameter 78.1 110.2 20.0 θJC(bottom) Junction-to-case(bottom)thermalresistance N/A N/A 11.6 (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheICPackageThermalMetricsapplicationreport,SPRA953. THERMAL INFORMATION: OPA4313 OPA4313 THERMALMETRIC(1) PW(TSSOP) UNITS 14PINS θJA Junction-to-ambientthermalresistance 121.0 θJC(top) Junction-to-case(top)thermalresistance 49.4 θJB Junction-to-boardthermalresistance 62.8 °C/W ψJT Junction-to-topcharacterizationparameter 5.9 ψJB Junction-to-boardcharacterizationparameter 62.2 θJC(bottom) Junction-to-case(bottom)thermalresistance N/A (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheICPackageThermalMetricsapplicationreport,SPRA953. Copyright©2012–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:OPA313OPA2313OPA4313

OPA313 OPA2313 OPA4313 SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 www.ti.com PIN CONFIGURATIONS DCKPACKAGE SC70-5 D,DGKPACKAGES (TOPVIEW) SO-8,MSOP-8 (TOPVIEW) +IN 1 5 V+ OUT A 1 8 V+ V- 2 -IN A 2 7 OUT B -IN 3 4 OUT +IN A 3 6 -IN B V- 4 5 +IN B DBVPACKAGE SOT23-5 (TOPVIEW) DRGPACKAGE(1) DFN-8 (TOPVIEW) OUT 1 5 V+ V- 2 OUT A 1 8 V+ Exposed +IN 3 4 -IN -IN A 2 Thermal 7 OUT B Die Pad +IN A 3 on 6 -IN B Underside(2) V- 4 5 +IN B PWPACKAGE TSSOP-14 (TOPVIEW) OUT A 1 14 OUT D -IN A 2 A D 13 -IN D +IN A 3 12 +IN D V+ 4 11 V- +IN B 5 10 +IN C -IN B 6 B C 9 -IN C OUT B 7 8 OUT C (1) Pitch:0,65mm. (2) ConnectthermalpadtoV–.Padsize:1,8mm×1,5mm. 8 SubmitDocumentationFeedback Copyright©2012–2013,TexasInstrumentsIncorporated ProductFolderLinks:OPA313OPA2313OPA4313

OPA313 OPA2313 OPA4313 www.ti.com SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 TYPICAL CHARACTERISTICS Table1.CharacteristicPerformanceMeasurements TITLE FIGURE Open-LoopGainandPhasevsFrequency Figure1 Open-LoopGainvsTemperature Figure2 QuiescentCurrentvsSupplyVoltage Figure3 QuiescentCurrentvsTemperature Figure4 OffsetVoltageProductionDistribution Figure5 OffsetVoltageDriftDistribution Figure6 OffsetVoltagevsCommon-ModeVoltage(MaximumSupply) Figure7 OffsetVoltagevsTemperature Figure8 CMRRandPSRRvsFrequency(RTI) Figure9 CMRRandPSRRvsTemperature Figure10 0.1-Hzto10-HzInputVoltageNoise(5.5V) Figure11 InputVoltageNoiseSpectralDensityvsFrequency(1.8V,5.5V) Figure12 InputVoltageNoisevsCommon-ModeVoltage(5.5V) Figure13 InputBiasandOffsetCurrentvsTemperature Figure14 Open-LoopOutputImpedancevsFrequency Figure15 MaximumOutputVoltagevsFrequencyandSupplyVoltage Figure16 OutputVoltageSwingvsOutputCurrent(overTemperature) Figure17 Closed-LoopGainvsFrequency,G=1,–1,10(1.8V) Figure18 Closed-LoopGainvsFrequency,G=1,–1,10(5.5V) Figure19 Small-SignalOvershootvsLoadCapacitance Figure20 PhaseMarginvsCapacitiveLoad Figure21 Small-SignalStepResponse,Noninverting(1.8V) Figure22 Small-SignalStepResponse,Noninverting(5.5V) Figure23 Large-SignalStepResponse,Noninverting(1.8V) Figure24 Large-SignalStepResponse,Noninverting(5.5V) Figure25 PositiveOverloadRecovery Figure26 NegativeOverloadRecovery Figure27 NoPhaseReversal Figure28 ChannelSeparationvsFrequency(Dual) Figure29 THD+NvsAmplitude(G=+1,2kΩ,10kΩ) Figure30 THD+NvsAmplitude(G=–1,2kΩ,10kΩ) Figure31 THD+NvsFrequency(0.5V ,G=+1,2kΩ,10kΩ) Figure32 RMS EMIRRIN+vsFrequency Figure33 Copyright©2012–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:OPA313OPA2313OPA4313

OPA313 OPA2313 OPA4313 SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 www.ti.com TYPICAL CHARACTERISTICS AtT =+25°C,V =5V,R =10kΩconnectedtoV /2,andV =V =V /2,unlessotherwisenoted. A S L S CM OUT S 140 180 140 120 Gain Phase 135 100 k(cid:13), 5.5 V 100 CCLL == 1100p pFF 135 B) 130 Gain (dB) 468000 90 oPhase () oop Gain (d 112205 10 k(cid:13), 5.5 V 2 k(cid:13), 5.5 V n-L 115 20 45 pe CCLL == 110000p pFF O 110 0 105 -20 0 10 k(cid:13), 1.8 V 1 10 100 1k 10k 100k 1M 10M 100M 100 Frequency (Hz) C001 -50 -25 0 25 50 75 100 125 Temperature (oC) C002 Figure1.OPEN-LOOPGAINANDPHASEvsFREQUENCY Figure2.OPEN-LOOPGAINvsTEMPERATURE 60 65 58 h) 56 h) 60 A/c 54 A/c VS = 5.5 V µ µ 55 nt ( 52 nt ( e e urr 50 urr 50 C C nt 48 nt esce 46 esce 45 VS = 1.8 V ui ui Q 44 Q 40 42 40 35 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 -50 -25 0 25 50 75 100 125 Supply Voltage (V) C003 Temperature (oC) C004 Figure3.QUIESCENTCURRENTvsSUPPLY Figure4.QUIESCENTCURRENTvsTEMPERATURE 9 25 8 %) 7 %) 20 ers ( 6 ers ( plifi 5 plifi 15 m m A A of 4 of 10 ent 3 ent c c Per 2 Per 5 1 0 5 2 5 1 5 0 5 1 5 2 5 0 5 5 5 1 5 5 5 2 5 5 5 3 -2. - -1. -Offs-0.et Voltage 0.(mV) 1. 2.C005 0.2 0. 0.7 Offse1.2t Volt1.age D1.7rift (µV/oC2.2) 2. 2.7 C006 Figure5.OFFSETVOLTAGEPRODUCTIONDISTRIBUTION Figure6.OFFSETVOLTAGEDRIFTDISTRIBUTION 10 SubmitDocumentationFeedback Copyright©2012–2013,TexasInstrumentsIncorporated ProductFolderLinks:OPA313OPA2313OPA4313

OPA313 OPA2313 OPA4313 www.ti.com SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 TYPICAL CHARACTERISTICS (continued) AtT =+25°C,V =5V,R =10kΩconnectedtoV /2,andV =V =V /2,unlessotherwisenoted. A S L S CM OUT S 1500 1500 Typical Units Typical Units 1200 V = 5.5 V 1200 V = 5.5 V S S 900 900 V) 600 V) 600 µ µ e ( 300 e ( 300 g g a a olt 0 olt 0 V V et -300 et -300 s s Off -600 Off -600 -900 -900 -1200 -1200 -1500 -1500 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 -50 -25 0 25 50 75 100 125 Common-Mode Voltage (V) C007 Temperature (oC) C008 Figure7.OFFSETVOLTAGEvsCOMMON-MODEVOLTAGE Figure8.OFFSETVOLTAGEvsTEMPERATURE 120 110 Common-Mode Rejection Ratio (dB), Power-Supply Rejection Ratio (dB) 10246800000 CMRR -PSRR +PSRR Common-Mode Rejection Ratio (dB), Power-Supply Rejection Ratio (dB) 11006778899055050505 VCM = –0.2 V to 5.2 V PSRCRM RR 0 60 10 100 1k 10k 100k 1M -50 -25 0 25 50 75 100 125 Frequency (Hz) C009 Temperature (oC) C001 Figure9.CMRRANDPSRRvsFREQUENCY Figure10.CMRRANDPSRRvsTEMPERATURE (Referred-to-Input) 1000 V = 1.8 V S 1 µV/div) Q9(cid:18)¥+](cid:12) 100 e ( H(cid:3)(cid:11) ois RLV N 1 e H(cid:3) oltag ROWDJ 10 VS = 5.5 V V 9 1 Time (1 s/div) 1 10 100 1k 10k 100k C011 Frequency (Hz) C012 Figure11.0.1-HzTO10-HzINPUTVOLTAGENOISE Figure12.INPUTVOLTAGENOISESPECTRALDENSITYvs FREQUENCY Copyright©2012–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:OPA313OPA2313OPA4313

OPA313 OPA2313 OPA4313 SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 www.ti.com TYPICAL CHARACTERISTICS (continued) AtT =+25°C,V =5V,R =10kΩconnectedtoV /2,andV =V =V /2,unlessotherwisenoted. A S L S CM OUT S 40 200 V = 5.5 V S +](cid:12) 35 f = 1 kHz 150 IBN 9(cid:18)¥ A) ’HQVLW\(cid:3)(cid:11)Q 2350 Current (p 10500 IBP RLVH(cid:3) Bias H(cid:3)1 20 put 0 J n ROWD 15 I -50 IOS 9 10 -100 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 -50 -25 0 25 50 75 100 125 Common-Mode Input Voltage (V) C013 Temperature (oC) C014 Figure13.VOLTAGENOISEvsCOMMON-MODEVOLTAGE Figure14.INPUTBIASANDOFFSETCURRENTvs TEMPERATURE 100k 6 R = 10 k(cid:13) L C = 10 pF 5 L (cid:13)put Impedance () 10k VS = 1.8 V utput Voltage (V) 234 VS = 5.5 V VS = 1.8 V ut O O 1 V = 5.5 V S 1000 0 1 10 100 1k 10k 100k 1000 10k 100k 1M Frequency (Hz) C015 Frequency (Hz) C016 Figure15.OPEN-LOOPOUTPUTIMPEDANCEvs Figure16.MAXIMUMOUTPUTVOLTAGEvsFREQUENCY FREQUENCY ANDSUPPLYVOLTAGE 3 40 2 G = +10 V/V V) g ( n 1 20 Swi B) G = +1 V/V age 0 ++112255 ooCC ++2255o oCC -4-400o CoC n (d Volt Gai ut -1 0 p ut O -2 G = -1 V/V V = 1.8 V S -3 -20 0 5 10 15 20 10 100 1k 10k 100k 1M 10M 100M Output Current (mA) C017 Frequency (Hz) C018 Figure17.OUTPUTVOLTAGESWINGvsOUTPUT Figure18.CLOSED-LOOPGAINvsFREQUENCY(Minimum CURRENT(OverTemperature) Supply) 12 SubmitDocumentationFeedback Copyright©2012–2013,TexasInstrumentsIncorporated ProductFolderLinks:OPA313OPA2313OPA4313

OPA313 OPA2313 OPA4313 www.ti.com SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 TYPICAL CHARACTERISTICS (continued) AtT =+25°C,V =5V,R =10kΩconnectedtoV /2,andV =V =V /2,unlessotherwisenoted. A S L S CM OUT S 40 50 45 V = 1.8V, V = 0.5V S CM 40 G = +10 V/V 35 20 %) n (dB) G = +1 V/V hoot ( 2350 Gai vers 20 VS = 5.5V 0 O 15 10 G = -1 V/V Gain = +1 V/V 5 V = 5.5V R = 10 k(cid:159) S L –20 0 10 100 1k 10k 100k 1M 10M 100M 0 100 200 300 400 Frequency (Hz) C000 Capacitive Load (pF) C002 Figure19.CLOSED-LOOPGAINvsFREQUENCY Figure20.SMALL-SIGNALOVERSHOOTvs (MaximumSupply) LOADCAPACITANCE 90 G = +1 V/V C = 100 pF 80 V = 1.8V L oe Margin () 45670000 VS = 5.5V e (25 mV/div) VRSCL M= =1 00 .k5(cid:159)V CL = 10 pF VIN s g a a Ph 30 olt V 20 10 V = 1.8V, V = 0.5V S CM 0 0 100 200 300 400 Capacitive Load (pF) C003 Time (1 µs/div) C004 Figure21.PHASEMARGINvsCAPACITIVELOAD Figure22.SMALL-SIGNALPULSERESPONSE (MinimumSupply) G = +1 V/V G = +1 V/V VS = 5.5 V CL = 100 pF VS = 1.8 V R = 10 k(cid:13) R = 10 k(cid:13) L V L mV/div) IN mV/div) VOUT Voltage (25 CL = 10 pF Voltage (250 VIN Time (1 µs/div) Time (2.5 µs/div) C023 C024 Figure23.SMALL-SIGNALPULSERESPONSE Figure24.LARGE-SIGNALPULSERESPONSE (MaximumSupply) (MinimumSupply) Copyright©2012–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:OPA313OPA2313OPA4313

OPA313 OPA2313 OPA4313 SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 www.ti.com TYPICAL CHARACTERISTICS (continued) AtT =+25°C,V =5V,R =10kΩconnectedtoV /2,andV =V =V /2,unlessotherwisenoted. A S L S CM OUT S G = +1 V/V G = -10 V/V V = 5.5 V V = 5.5 V S S R = 10 k(cid:13) L v) v) di di V/ V V/ m OUT m 0 0 5 0 V 2 5 OUT e ( e ( oltag VIN oltag V V V IN Time (2.5 µs/div) Time (2 µs/div) C025 C026 Figure25.LARGE-SIGNALPULSERESPONSE Figure26.POSITIVEOVERLOADRECOVERY (MaximumSupply) V/div) div) oltage (500 m VIN Voltage (1 V/ VOUT V V OUT G = -10 V/V V V = 5.5 V IN S Time (2 µs/div) Time (125 µs/div) C027 C028 Figure27.NEGATIVEOVERLOADRECOVERY Figure28.NOPHASEREVERSAL -60 0.1 V = 5.5 V S -80 osstalk (dB) --112000 chB to chA HD + N (%) 0.01 RL = 2 k(cid:13) Cr chA to chB T 0.001 V = 1.8 V -140 f =S 1 kHz RL = 10 k(cid:13) BW = 80 kHz G = +1 V/V -160 0.0001 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 Frequency (Hz) C029 Output Amplitude (VRMS) C030 Figure29.CHANNELSEPARATIONvsFREQUENCY Figure30.THD+NvsOUTPUTAMPLITUDE (MinimumSupply) 14 SubmitDocumentationFeedback Copyright©2012–2013,TexasInstrumentsIncorporated ProductFolderLinks:OPA313OPA2313OPA4313

OPA313 OPA2313 OPA4313 www.ti.com SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 TYPICAL CHARACTERISTICS (continued) AtT =+25°C,V =5V,R =10kΩconnectedtoV /2,andV =V =V /2,unlessotherwisenoted. A S L S CM OUT S 0.1 0.1 V = 5.5 V S V = 0.5 V OUT RMS BW = 80 kHz R = 2 k(cid:13) G = +1 V/V L %) 0.01 R = 2 k(cid:13) %) 0.01 N ( L N ( + + D D H H T0.001 T 0.001 V = 5.5 V S f = 1 kHz R = 10 k(cid:13) BW = 80 kHz L G = -1 V/V R L = 10 k(cid:13) 0.0001 0.0001 0.01 0.1 1 10 10 100 1k 10k 100k Output Amplitude (VRMS) C031 Frequency (Hz) C032 Figure31.THD+NvsOUTPUTAMPLITUDE Figure32.THD+NvsFREQUENCY (MaximumSupply) 120 P = -10 dBm RF V = 5 V 100 SUPPLY V = 2.5 V CM B) 80 d + ( R IN 60 R MI E 40 20 0 10 100 1000 10000 Frequency (MHz) C033 Figure33.EMIRRIN+vsFREQUENCY Copyright©2012–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:OPA313OPA2313OPA4313

OPA313 OPA2313 OPA4313 SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 www.ti.com APPLICATION INFORMATION The OPA313 is a family of low-power, rail-to-rail input and output operational amplifiers specifically designed for portable applications. These devices operate from 1.8 V to 5.5 V, are unity-gain stable, and suitable for a wide range of general-purpose applications. The class AB output stage is capable of driving ≤ 10-kΩ loads connected to any point between V+ and ground. The input common-mode voltage range includes both rails, and allows the OPA313 family to be used in virtually any single-supply application. Rail-to-rail input and output swing significantly increases dynamic range, especially in low-supply applications, and makes them ideal for driving samplinganalog-to-digitalconverters(ADCs). The OPA313 features 1-MHz bandwidth and 0.5-V/μs slew rate with only 50-μA supply current per channel, providing good ac performance at very low power consumption. DC applications are also well served with a low input noise voltage of 25 nV/√Hz at 1 kHz, low input bias current (0.2 pA), and an input offset voltage of 0.5 mV (typical). The typical offset voltage drift is 2 μV/°C; over the full temperature range the input offset voltage changesonly200μV(0.5mVto0.7mV). OPERATING VOLTAGE The OPA313 series op amps are fully specified and ensured for operation from +1.8 V to +5.5 V. In addition, many specifications apply from –40°C to +125°C. Parameters that vary significantly with operating voltages or temperature are shown in the Typical Characteristics graphs. Power-supply pins should be bypassed with 0.01- μFceramiccapacitors. RAIL-TO-RAIL INPUT The input common-mode voltage range of the OPA313 series extends 200 mV beyond the supply rails. This performance is achieved with a complementary input stage: an N-channel input differential pair in parallel with a P-channel differential pair, as shown in Figure 34. The N-channel pair is active for input voltages close to the positive rail, typically (V+) – 1.3 V to 200 mV above the positive supply, while the P-channel pair is on for inputs from200mVbelowthenegativesupplytoapproximately(V+)– 1.3V.Thereisasmalltransitionregion,typically (V+) – 1.4 V to (V+) – 1.2 V, in which both pairs are on. This 200-mV transition region can vary up to 300 mV with process variation. Thus, the transition region (both stages on) can range from (V+) – 1.7 V to (V+) – 1.5 V on the low end, up to (V+) – 1.1 V to (V+) – 0.9 V on the high end. Within this transition region, PSRR, CMRR, offsetvoltage,offsetdrift,andTHDmaybedegradedcomparedtodeviceoperationoutsidethisregion. V+ Reference Current VIN+ VIN- VBIAS1 Class AB Control V O Circuitry V BIAS2 V- (Ground) Figure34. SimplifiedSchematic 16 SubmitDocumentationFeedback Copyright©2012–2013,TexasInstrumentsIncorporated ProductFolderLinks:OPA313OPA2313OPA4313

OPA313 OPA2313 OPA4313 www.ti.com SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 INPUT AND ESD PROTECTION The OPA313 family incorporates internal electrostatic discharge (ESD) protection circuits on all pins. In the case of input and output pins, this protection primarily consists of current-steering diodes connected between the input and power-supply pins. These ESD protection diodes also provide in-circuit, input overdrive protection, as long as the current is limited to 10 mA as stated in the Absolute Maximum Ratings. Figure 35 shows how a series input resistor may be added to the driven input to limit the input current. The added resistor contributes thermal noiseattheamplifierinputanditsvalueshouldbekepttoaminimuminnoise-sensitiveapplications. V+ I OVERLOAD 10-mAmax Device VOUT V IN 5 kW Figure35. InputCurrentProtection COMMON-MODE REJECTION RATIO (CMRR) CMRR for the OPA313 is specified in several ways so the best match for a given application may be used; see the Electrical Characteristics. First, the CMRR of the device in the common-mode range below the transition region [V < (V+) – 1.3 V] is given. This specification is the best indicator of the capability of the device when CM the application requires use of one of the differential input pairs. Second, the CMRR over the entire common- mode range is specified at (V = –0.2 V to 5.7 V). This last value includes the variations seen through the CM transitionregion(seeFigure7). EMI SUSCEPTIBILITY AND INPUT FILTERING Operational amplifiers vary with regard to the susceptibility of the device to electromagnetic interference (EMI). If conducted EMI enters the op amp, the dc offset observed at the amplifier output may shift from its nominal value while EMI is present. This shift is a result of signal rectification associated with the internal semiconductor junctions. While all op amp pin functions can be affected by EMI, the signal input pins are likely to be the most susceptible.TheOPA313operationalamplifierfamilyincorporateaninternalinputlow-passfilterthatreducesthe amplifiers response to EMI. Both common-mode and differential mode filtering are provided by this filter. The filterisdesignedforacutofffrequencyofapproximately35MHz(–3dB),witharoll-offof20dBperdecade. Texas Instruments has developed the ability to accurately measure and quantify the immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. The EMI rejection ratio (EMIRR) metric allows op amps to be directly compared by the EMI immunity. Figure 33 illustrates the results of this testing on the OPA313 family. Detailed information can also be found in the application report, EMI Rejection RatioofOperationalAmplifiers(SBOA128),availablefordownloadfromwww.ti.com. RAIL-TO-RAIL OUTPUT Designedasamicro-power,low-noiseoperationalamplifier,theOPA313deliversarobustoutputdrivecapability. AclassABoutputstagewithcommon-sourcetransistorsisusedtoachievefullrail-to-railoutputswingcapability. For resistive loads up to 10 kΩ, the output swings typically to within 5 mV of either supply rail regardless of the power-supply voltage applied. Different load conditions change the ability of the amplifier to swing close to the rails;refertothetypicalcharacteristicgraph,OutputVoltageSwingvsOutputCurrent. Copyright©2012–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:OPA313OPA2313OPA4313

OPA313 OPA2313 OPA4313 SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 www.ti.com CAPACITIVE LOAD AND STABILITY The OPA313 is designed to be used in applications where driving a capacitive load is required. As with all op amps, there may be specific instances where the OPA313 can become unstable. The particular op amp circuit configuration, layout, gain, and output loading are some of the factors to consider when establishing whether or not an amplifier is stable in operation. An op amp in the unity-gain (+1-V/V) buffer configuration that drives a capacitive load exhibits a greater tendency to be unstable than an amplifier operated at a higher noise gain. The capacitive load, in conjunction with the op amp output resistance, creates a pole within the feedback loop that degrades the phase margin. The degradation of the phase margin increases as the capacitive loading increases. When operating in the unity-gain configuration, the OPA313 remains stable with a pure capacitive load up to approximately 1 nF. The equivalent series resistance (ESR) of some very large capacitors (C greater than 1 μF) L is sufficient to alter the phase characteristics in the feedback loop such that the amplifier remains stable. Increasing the amplifier closed-loop gain allows the amplifier to drive increasingly larger capacitance. This increased capability is evident when observing the overshoot response of the amplifier at higher voltage gains. Seethetypicalcharacteristicgraph,Small-SignalOvershootvs.CapacitiveLoad. One technique for increasing the capacitive load drive capability of the amplifier operating in a unity-gain configuration is to insert a small resistor, typically 10 Ω to 20 Ω, in series with the output, as shown in Figure 36. This resistor significantly reduces the overshoot and ringing associated with large capacitive loads. One possible problem with this technique, however, is that a voltage divider is created with the added series resistor and any resistor connected in parallel with the capacitive load. The voltage divider introduces a gain error at the output thatreducestheoutputswing. V+ R S Device VOUT V 10Wto IN 20W RL CL Figure36. ImprovingCapacitiveLoadDrive DFN PACKAGE The OPA2313 (dual version) uses the DFN style package (also known as SON); this package is a QFN with contacts on only two sides of the package bottom. This leadless package maximizes printed circuit board (PCB) space and offers enhanced thermal and electrical characteristics through an exposed pad. One of the primary advantages of the DFN package is its low, 0.9-mm height. DFN packages are physically small, have a smaller routing area, improved thermal performance, reduced electrical parasitics, and use a pinout scheme that is consistent with other commonly-used packages, such as SO and MSOP. Additionally, the absence of external leadseliminatesbent-leadissues. The DFN package can easily be mounted using standard PCB assembly techniques. See Application Note, QFN/SON PCB Attachment (SLUA271) and Application Report, Quad Flatpack No-Lead Logic Packages (SCBA017),bothavailablefordownloadfromwww.ti.com. NOTE The exposed leadframe die pad on the bottom of the DFN package should be connected tothemostnegativepotential(V–). 18 SubmitDocumentationFeedback Copyright©2012–2013,TexasInstrumentsIncorporated ProductFolderLinks:OPA313OPA2313OPA4313

OPA313 OPA2313 OPA4313 www.ti.com SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 APPLICATION EXAMPLES GENERAL CONFIGURATIONS When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to establish this limited bandwidth is to place an RC filter at the noninverting terminal of the amplifier,asFigure37shows. R R G F R V 1 OUT V IN C 1 1 f-3dB= 2pRC 1 1 VOUT= ( 1 +RF(( 1 ( V R 1 + sRC IN G 1 1 Figure37. Single-PoleLow-PassFilter If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task, as Figure 38 shows. For best results, the amplifier should have a bandwidth that is eight to 10 times the filterfrequencybandwidth.Failuretofollowthisguidelinecanresultinphaseshiftoftheamplifier. C 1 R =R = R 1 2 C =C = C R R 1 2 1 2 Q = Peaking factor VIN (Butterworth Q = 0.707) V C2 OUT f-3dB= 2p1RC R F R F RG RG= (2- Q1( Figure38. Two-PoleLow-PassSallen-KeyFilter Copyright©2012–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:OPA313OPA2313OPA4313

OPA313 OPA2313 OPA4313 SBOS649C–SEPTEMBER2012–REVISEDMARCH2013 www.ti.com REVISION HISTORY NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionB(December2012)toRevisionC Page • ChangedfirstOpen-LoopGain,A typicalspecificationinElectricalCharacteristics:+5.5Vtable ................................... 3 OL • UpdatedFigure10 .............................................................................................................................................................. 11 • UpdatedFigure19throughFigure22 ................................................................................................................................ 12 ChangesfromRevisionA(Sepetmber2012)toRevisionB Page • Changedtitleofdocument .................................................................................................................................................... 1 • ChangedthirdparagraphofDescriptionsection .................................................................................................................. 1 • ChangedtitleofElectricalCharacteristics:+5.5Vtable....................................................................................................... 3 • DeletedmiddletworowsfromInputVoltageRange,CMRRparameterinElectricalCharacteristics:+5.5Vtable ............ 3 • ChangedtestconditionsofInputVoltageRange,CMRRparameterinElectricalCharacteristics:+5.5Vtable ................. 3 • AddedfootnotetoInputBiasCurrent,I andI parametersinElectricalCharacteristics:+5.5Vtable ............................. 3 B OS • ChangedOpen-LoopGain,A parameterinElectricalCharacteristics:+5.5Vtable......................................................... 3 OL • DeletedfirstrowfromFrequencyResponse,GBWparameterinElectricalCharacteristics:+5.5Vtable .......................... 4 • DeletedfirstrowfromFrequencyResponse,SRparameterinElectricalCharacteristics:+5.5Vtable .............................. 4 • ChangedOutput,V parameterinElectricalCharacteristics:+5.5Vtable .......................................................................... 4 O • ChangedOutput,I parameterinElectricalCharacteristics:+5.5Vtable .......................................................................... 4 SC • ChangedtestconditionsforthefirstrowinthePowerSupply,I parameterinElectricalCharacteristics:+5.5Vtable..... 4 Q • ChangedElectricalCharacteristics:+1.8Vtable ................................................................................................................. 5 • ChangedconditionsofElectricalCharacteristics:+1.8Vtable ............................................................................................ 5 • ChangedlastrowofInputVoltageRange,CMRRparameterinElectricalCharacteristics:+1.8Vtable ........................... 5 • ChangedfootnotetoInputBiasCurrent,I andI parametersinElectricalCharacteristics:+1.8Vtable......................... 5 B OS • ChangedOpen-LoopGain,A parameterinElectricalCharacteristics:+1.8Vtable......................................................... 5 OL • ChangedFrequencyResponse,GBWparametertestconditionsinElectricalCharacteristics:+1.8Vtable ...................... 6 • ChangedFrequencyResponse,SRparametertestconditionsinElectricalCharacteristics:+1.8Vtable ......................... 6 • ChangedOutput,V parametertestconditionsinElectricalCharacteristics:+1.8Vtable.................................................. 6 O • ChangedOutput,I parameterinElectricalCharacteristics:+1.8Vtable .......................................................................... 6 SC • DeletedlastrowfromPowerSupply,I parameterinElectricalCharacteristics:+1.8Vtable ............................................ 6 Q • UpdatedFigure2 ................................................................................................................................................................ 10 ChangesfromOriginal(September2012)toRevisionA Page • Changedfromproductpreviewtoproductiondata............................................................................................................... 1 20 SubmitDocumentationFeedback Copyright©2012–2013,TexasInstrumentsIncorporated ProductFolderLinks:OPA313OPA2313OPA4313

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) OPA2313ID ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OP2313 & no Sb/Br) OPA2313IDGK ACTIVE VSSOP DGK 8 80 Green (RoHS NIPDAUAG Level-2-260C-1 YEAR -40 to 125 OUSS & no Sb/Br) OPA2313IDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS NIPDAUAG Level-2-260C-1 YEAR -40 to 125 OUSS & no Sb/Br) OPA2313IDR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OP2313 & no Sb/Br) OPA2313IDRGR ACTIVE SON DRG 8 3000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 SDY & no Sb/Br) OPA2313IDRGT ACTIVE SON DRG 8 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 SDY & no Sb/Br) OPA313IDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 SIE & no Sb/Br) OPA313IDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 SIE & no Sb/Br) OPA313IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 125 SIF & no Sb/Br) OPA313IDCKT ACTIVE SC70 DCK 5 250 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 125 SIF & no Sb/Br) OPA4313IPW ACTIVE TSSOP PW 14 90 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA4313 & no Sb/Br) OPA4313IPWR ACTIVE TSSOP PW 14 2000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA4313 & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF OPA2313 : •Automotive: OPA2313-Q1 NOTE: Qualified Version Definitions: •Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 24-Apr-2020 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) OPA2313IDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 OPA2313IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 OPA2313IDRGR SON DRG 8 3000 330.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 OPA2313IDRGT SON DRG 8 250 180.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 OPA313IDBVR SOT-23 DBV 5 3000 178.0 9.0 3.3 3.2 1.4 4.0 8.0 Q3 OPA313IDBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 OPA313IDCKR SC70 DCK 5 3000 178.0 9.0 2.4 2.5 1.2 4.0 8.0 Q3 OPA4313IPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 24-Apr-2020 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) OPA2313IDGKR VSSOP DGK 8 2500 366.0 364.0 50.0 OPA2313IDR SOIC D 8 2500 340.5 338.1 20.6 OPA2313IDRGR SON DRG 8 3000 367.0 367.0 35.0 OPA2313IDRGT SON DRG 8 250 210.0 185.0 35.0 OPA313IDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 OPA313IDBVT SOT-23 DBV 5 250 180.0 180.0 18.0 OPA313IDCKR SC70 DCK 5 3000 180.0 180.0 18.0 OPA4313IPWR TSSOP PW 14 2000 367.0 367.0 35.0 PackMaterials-Page2

None

None

PACKAGE OUTLINE DBV0005A SOT-23 - 1.45 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR C 3.0 2.6 0.1 C 1.75 1.45 1.45 B A 0.90 PIN 1 INDEX AREA 1 5 2X 0.95 3.05 2.75 1.9 1.9 2 4 3 0.5 5X 0.3 0.15 0.2 C A B (1.1) TYP 0.00 0.25 GAGE PLANE 0.22 TYP 0.08 8 TYP 0.6 0 0.3 TYP SEATING PLANE 4214839/E 09/2019 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Refernce JEDEC MO-178. 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. www.ti.com

EXAMPLE BOARD LAYOUT DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM (1.9) 2 2X (0.95) 3 4 (R0.05) TYP (2.6) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:15X SOLDER MASK SOLDER MASK METAL UNDER METAL OPENING OPENING SOLDER MASK EXPOSED METAL EXPOSED METAL 0.07 MAX 0.07 MIN ARROUND ARROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4214839/E 09/2019 NOTES: (continued) 5. Publication IPC-7351 may have alternate designs. 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM 2 (1.9) 2X(0.95) 3 4 (R0.05) TYP (2.6) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:15X 4214839/E 09/2019 NOTES: (continued) 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 8. Board assembly site may have different recommendations for stencil design. www.ti.com

None

None

PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com

EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

None

None

None

PACKAGE OUTLINE DRG0008A WSON - 0.8 mm max height SCALE 5.000 PLASTIC SMALL OUTLINE - NO LEAD 3.1 B A 2.9 3.1 PIN 1 INDEX AREA 2.9 0.8 0.7 C SEATING PLANE 0.05 0.00 0.08 C (0.2) TYP EXPOSED 1.2 0.1 THERMAL PAD 4 5 2X 1.5 2 0.1 8 1 6X 0.5 0.3 8X 0.2 PIN 1 ID 0.6 8X 0.1 C A B 0.4 0.08 C 4218885/A 03/2020 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. www.ti.com

EXAMPLE BOARD LAYOUT DRG0008A WSON - 0.8 mm max height PLASTIC SMALL OUTLINE - NO LEAD (1.2) 8X (0.7) SYMM 1 8 8X (0.25) SYMM (2) (0.75) 6X (0.5) 4 5 (R0.05) TYP ( 0.2) VIA (0.35) TYP (2.7) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:20X 0.07 MAX 0.07 MIN ALL AROUND ALL AROUND EXPOSED EXPOSED METAL METAL SOLDER MASK METAL METAL UNDER SOLDER MASK OPENING SOLDER MASK OPENING NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4218885/A 03/2020 NOTES: (continued) 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. www.ti.com

EXAMPLE STENCIL DESIGN DRG0008A WSON - 0.8 mm max height PLASTIC SMALL OUTLINE - NO LEAD SYMM 8X (0.7) METAL TYP 8X (0.25) 1 8 SYMM (1.79) 6X (0.5) 4 5 (R0.05) TYP (1.13) (2.7) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL EXPOSED PAD 84% PRINTED SOLDER COVERAGE BY AREA SCALE:25X 4218885/A 03/2020 NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. www.ti.com

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated