图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: M24LR04E-RMC6T/2
  • 制造商: STMicroelectronics
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

M24LR04E-RMC6T/2产品简介:

ICGOO电子元器件商城为您提供M24LR04E-RMC6T/2由STMicroelectronics设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 M24LR04E-RMC6T/2价格参考。STMicroelectronicsM24LR04E-RMC6T/2封装/规格:RFID,RF 接入,监控 IC, RFID Transponder IC 13.56MHz ISO 15693, ISO 18000-3, NFC I²C 1.8V ~ 5.5V 8-UFDFN Exposed Pad。您可以下载M24LR04E-RMC6T/2参考资料、Datasheet数据手册功能说明书,资料中有M24LR04E-RMC6T/2 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

射频/IF 和 RFID

描述

NFC/RFID 4KBIT EEPROM 13.56MHZ

产品分类

RFID IC

品牌

STMicroelectronics

数据手册

点击此处下载产品Datasheet

产品图片

产品型号

M24LR04E-RMC6T/2

RF类型

读/写

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

-

供应商器件封装

8-UFDFPN(2x3)

其它名称

497-13743-2

包装

带卷 (TR)

封装/外壳

8-UFDFN 裸露焊盘

标准包装

5,000

特性

ISO 18000-3 模式 1,ISO 15693

配用

/product-detail/zh/ANT3-M24LR04E/497-14587-ND/4766104

频率

13.56MHz

推荐商品

型号:MFRC52201HN1,157

品牌:NXP USA Inc.

产品名称:射频/IF 和 RFID

获取报价

型号:SLRC61002HN,157

品牌:NXP USA Inc.

产品名称:射频/IF 和 RFID

获取报价

型号:ST95HF-VMD5T

品牌:STMicroelectronics

产品名称:射频/IF 和 RFID

获取报价

型号:ATA5283P-6AQJ

品牌:Microchip Technology

产品名称:射频/IF 和 RFID

获取报价

型号:PN5120A0HN1/C1,118

品牌:NXP USA Inc.

产品名称:射频/IF 和 RFID

获取报价

型号:MLX90109EDC-AAA-000-SP

品牌:Melexis Technologies NV

产品名称:射频/IF 和 RFID

获取报价

型号:U3280M-NFBG3Y-18

品牌:Microchip Technology

产品名称:射频/IF 和 RFID

获取报价

型号:PN5310A3HN/C203:55

品牌:NXP USA Inc.

产品名称:射频/IF 和 RFID

获取报价

样品试用

万种样品免费试用

去申请
M24LR04E-RMC6T/2 相关产品

PN5110A0HN1/C2,118

品牌:NXP USA Inc.

价格:

MFRC63102HN,557

品牌:NXP USA Inc.

价格:

ATA5790N-P3QW 18

品牌:Microchip Technology

价格:

PN5331B3HN/C270,51

品牌:NXP USA Inc.

价格:

TRF7961RHBTG4

品牌:Texas Instruments

价格:

PN5120A0HN/C2,551

品牌:NXP USA Inc.

价格:¥50.90-¥61.27

MFRC52302HN1,151

品牌:NXP USA Inc.

价格:¥57.97-¥86.65

PN512AA0HN1/C2,551

品牌:NXP USA Inc.

价格:

PDF Datasheet 数据手册内容提取

M24LR04E-R Dynamic NFC/RFID tag IC with 4-Kbit EEPROM, energy harvesting, I²C bus and ISO 15693 RF interface Datasheet - production data • From tag: load modulation using Manchester coding with 423 kHz and 484 kHz subcarriers in low (6.6 kbit/s) or high (26 kbit/s) data rate mode. Supports the 53 kbit/s data rate with SO8 (MN) Fast commands UFDFPN8 (MC) 150 mils width TSSOP8 (DW) • Internal tuning capacitance: 27.5pF • 64-bit unique identifier (UID) • Read Block & Write (32-bit blocks) Digital output pin • User configurable pin: RF write in progress or RF busy mode Wafer (SB12I) Energy harvesting • Analog pin for energy harvesting Features • 4 sink current configurable ranges • Belonging to ST25 family, which includes all Temperature range NFC/RF ID tag and reader products from ST • From –40 to 85 °C I2C interface • Two-wires I2C serial interface supports Memory 400 kHz protocol • 4-Kbit EEPROM organized into: • Single supply voltage: – 512 bytes in I2C mode – 1.8 V to 5.5 V – 128 blocks of 32 bits in RF mode • Byte and Page Write (up to 4 bytes) • Write time 2 • Random and Sequential read modes – I C: 5 ms (max.) • Self-timed programming cycle – RF: 5.75 ms including the internal Verify time • Automatic address incrementing • Write cycling endurance: – 1 million write cycles at 25 °C • Enhanced ESD/latch-up protection – 150k write cycles at 85 °C • I²C timeout • More than 40-year data retention Contactless interface • Multiple password protection in RF mode • ISO 15693 and ISO 18000-3 mode 1 compatible • Single password protection in I2C mode • 13.56 MHz ± 7 kHz carrier frequency • Package • To tag: 10% or 100% ASK modulation using 1 out – SO8 (ECOPACK2®) of 4 (26 Kbit/s) or 1 out of 256 (1.6 Kbit/s) pulse – TSSOP8 (ECOPACK2®) position coding – UFDFPN8 (ECOPACK2®) July 2017 DocID022208 Rev 11 1/146 This is information on a product in full production. www.st.com

Contents M24LR04E-R Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Serial clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Serial data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 RF Write in progress / RF Busy (RF WIP/BUSY) . . . . . . . . . . . . . . . . . . . 15 2.4 Energy harvesting analog output (Vout) . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Antenna coil (AC0, AC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5.1 Device reset in RF mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.6 V ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 SS 2.7 Supply voltage (V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 CC 2.7.1 Operating supply voltage V CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 2.7.2 Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.7.3 Device reset in I²C mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.7.4 Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 User memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 System memory area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1 M24LR04E-R block security in RF mode . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.1 Example of the M24LR04E-R security protection in RF mode . . . . . . . 25 4.2 M24LR04E-R block security in I²C mode (I2C_Write_Lock bit area) . . . . 26 4.3 Configuration byte and Control register . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3.1 RF WIP/BUSY pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3.2 Energy harvesting configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3.3 FIELD_ON indicator bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3.4 Configuration byte access in I²C and RF modes . . . . . . . . . . . . . . . . . . 29 4.3.5 Control register access in I²C or RF mode . . . . . . . . . . . . . . . . . . . . . . 29 4.4 ISO 15693 system parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 I2C device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.1 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2/146 DocID022208 Rev 11

M24LR04E-R Contents 5.3 Acknowledge bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.4 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.5 I²C timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.5.1 I²C timeout on Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.5.2 I²C timeout on clock period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.6 Memory addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.7 Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.8 Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.9 Page write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.10 Minimizing system delays by polling on Ack . . . . . . . . . . . . . . . . . . . . . . 36 5.11 Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.12 Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.13 Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.14 Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.15 Acknowledge in Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.16 M24LR04E-R I2C password security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.16.1 I2C present password command description . . . . . . . . . . . . . . . . . . . . . 38 5.16.2 I2C write password command description . . . . . . . . . . . . . . . . . . . . . . . 39 6 M24LR04E-R memory initial state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7 RF device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.1 RF communication and energy harvesting . . . . . . . . . . . . . . . . . . . . . . . . 41 7.2 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.3 Initial dialog for vicinity cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.3.1 Power transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.3.2 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.3.3 Operating field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 8 Communication signal from VCD to M24LR04E-R . . . . . . . . . . . . . . . . 44 9 Data rate and data coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.1 Data coding mode: 1 out of 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.2 Data coding mode: 1 out of 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 9.3 VCD to M24LR04E-R frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 DocID022208 Rev 11 3/146 7

Contents M24LR04E-R 9.4 Start of frame (SOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 10 Communication signal from M24LR04E-R to VCD . . . . . . . . . . . . . . . . 50 10.1 Load modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 10.2 Subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 10.3 Data rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 11 Bit representation and coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 11.1 Bit coding using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 11.1.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 11.1.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 11.2 Bit coding using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11.2.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11.2.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 12 M24LR04E-R to VCD frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 12.1 SOF when using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 12.1.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 12.1.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 12.2 SOF when using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 12.2.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 12.2.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 12.3 EOF when using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 12.3.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 12.3.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 12.4 EOF when using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 12.4.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 12.4.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 13 Unique identifier (UID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 14 Application family identifier (AFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 15 Data storage format identifier (DSFID) . . . . . . . . . . . . . . . . . . . . . . . . . 60 15.1 CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 16 M24LR04E-R protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4/146 DocID022208 Rev 11

M24LR04E-R Contents 17 M24LR04E-R states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 17.1 Power-off state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 17.2 Ready state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 17.3 Quiet state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 17.4 Selected state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 18 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 18.1 Addressed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 18.2 Non-addressed mode (general request) . . . . . . . . . . . . . . . . . . . . . . . . . 65 18.3 Select mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 19 Request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 19.1 Request flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 20 Response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 20.1 Response flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 20.2 Response error code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 21 Anticollision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 21.1 Request parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 22 Request processing by the M24LR04E-R . . . . . . . . . . . . . . . . . . . . . . . 72 23 Explanation of the possible cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 24 Inventory Initiated command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 25 Timing definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 25.1 t1: M24LR04E-R response delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 25.2 t2: VCD new request delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 25.3 t : VCD new request delay when no response is received 3 from the M24LR04E-R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 26 Command codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 26.1 Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 26.2 Stay Quiet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 DocID022208 Rev 11 5/146 7

Contents M24LR04E-R 26.3 Read Single Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 26.4 Write Single Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 26.5 Read Multiple Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 26.6 Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 26.7 Reset to Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 26.8 Write AFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 26.9 Lock AFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 26.10 Write DSFID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 26.11 Lock DSFID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 26.12 Get System Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 26.13 Get Multiple Block Security Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 26.14 Write-sector Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 26.15 Lock-sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 26.16 Present-sector Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 26.17 Fast Read Single Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 26.18 Fast Inventory Initiated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 26.19 Fast Initiate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 26.20 Fast Read Multiple Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 26.21 Inventory Initiated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 26.22 Initiate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 26.23 ReadCfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 26.24 WriteEHCfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 26.25 WriteDOCfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 26.26 SetRstEHEn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 26.27 CheckEHEn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 27 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 28 I2C DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 29 Write cycle definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 30 RF electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 31 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6/146 DocID022208 Rev 11

M24LR04E-R Contents 31.1 SO8N package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 31.2 UFDFN8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 31.3 TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 32 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Appendix A Anticollision algorithm (informative). . . . . . . . . . . . . . . . . . . . . . . 139 A.1 Algorithm for pulsed slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Appendix B CRC (informative) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 B.1 CRC error detection method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 B.2 CRC calculation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Appendix C Application family identifier (AFI) (informative) . . . . . . . . . . . . . . 143 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 DocID022208 Rev 11 7/146 7

List of tables M24LR04E-R List of tables Table 1. Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 2. Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 3. Address most significant byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 4. Address least significant byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 5. Sector details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 6. Sector security status byte area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 7. Sector security status byte organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 8. Read / Write protection bit setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 9. Password control bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 10. Password system area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 11. M24LR04E-R sector security protection after power-up. . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 12. M24LR04E-R sector security protection after a valid presentation of password 1. . . . . . . 25 Table 13. I2C_Write_Lock bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 14. Configuration byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 15. Control register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 16. EH_enable bit value after power-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 17. System parameter sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 18. Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 19. 10% modulation parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 20. Response data rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 21. UID format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 22. CRC transmission rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 23. VCD request frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 24. M24LR04E-R Response frame format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 25. M24LR04E-R response depending on Request_flags. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Table 26. General request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Table 27. Definition of request flags 1 to 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Table 28. Request flags 5 to 8 when Bit 3 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Table 29. Request flags 5 to 8 when Bit 3 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Table 30. General response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Table 31. Definitions of response flags 1 to 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Table 32. Response error code definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Table 33. Inventory request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Table 34. Example of the addition of 0-bits to an 11-bit mask value . . . . . . . . . . . . . . . . . . . . . . . . . 70 Table 35. Timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Table 36. Command codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 37. Inventory request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Table 38. Inventory response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Table 39. Stay Quiet request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Table 40. Read Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Table 41. Read Single Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . . 81 Table 42. Sector security status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Table 43. Read Single Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . 81 Table 44. Write Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Table 45. Write Single Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . . 82 Table 46. Write Single Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . 83 Table 47. Read Multiple Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Table 48. Read Multiple Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . 86 8/146 DocID022208 Rev 11

M24LR04E-R List of tables Table 49. Sector security status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Table 50. Read Multiple Block response format when Error_flag is set. . . . . . . . . . . . . . . . . . . . . . . 86 Table 51. Select request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Table 52. Select Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . . . . . . . 87 Table 53. Select response format when Error_flag is set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Table 54. Reset to Ready request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Table 55. Reset to Ready response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . 89 Table 56. Reset to ready response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Table 57. Write AFI request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Table 58. Write AFI response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Table 59. Write AFI response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Table 60. Lock AFI request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Table 61. Lock AFI response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Table 62. Lock AFI response format when Error_flag is set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Table 63. Write DSFID request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Table 64. Write DSFID response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . 93 Table 65. Write DSFID response format when Error_flag is set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Table 66. Lock DSFID request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Table 67. Lock DSFID response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . . . . . . . 94 Table 68. Lock DSFID response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Table 69. Get System Info request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Table 70. Get System Info response format when Protocol_extension_flag = 0 and Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Table 71. Get System Info response format when Error_flag is set. . . . . . . . . . . . . . . . . . . . . . . . . . 96 Table 72. Get Multiple Block Security Status request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Table 73. Get Multiple Block Security Status response format when Error_flag is NOT set . . . . . . . 98 Table 74. Sector security status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Table 75. Get Multiple Block Security Status response format when Error_flag is set. . . . . . . . . . . . 99 Table 76. Write-sector Password request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Table 77. Write-sector Password response format when Error_flag is NOT set . . . . . . . . . . . . . . . 100 Table 78. Write-sector Password response format when Error_flag is set. . . . . . . . . . . . . . . . . . . . 100 Table 79. Lock-sector request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Table 80. Sector security status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Table 81. Lock-sector response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . 101 Table 82. Lock-sector response format when Error_flag is set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Table 83. Present-sector Password request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Table 84. Present-sector Password response format when Error_flag is NOT set . . . . . . . . . . . . . 103 Table 85. Present-sector Password response format when Error_flag is set. . . . . . . . . . . . . . . . . . 103 Table 86. Fast Read Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Table 87. Fast Read Single Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . 105 Table 88. Sector security status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Table 89. Fast Read Single Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . 105 Table 90. Fast Inventory Initiated request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Table 91. Fast Inventory Initiated response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Table 92. Fast Initiate request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Table 93. Fast Initiate response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Table 94. Fast Read Multiple Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Table 95. Fast Read Multiple Block response format when Error_flag is NOT set. . . . . . . . . . . . . . 109 Table 96. Sector security status if Option_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Table 97. Fast Read Multiple Block response format when Error_flag is set. . . . . . . . . . . . . . . . . . 110 Table 98. Inventory Initiated request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Table 99. Inventory Initiated response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 DocID022208 Rev 11 9/146 10

List of tables M24LR04E-R Table 100. Initiate request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Table 101. Initiate Initiated response format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Table 102. ReadCfg request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Table 103. ReadCfg response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Table 104. ReadCfg response format when Error_flag is set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Table 105. WriteEHCfg request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Table 106. WriteEHCfg response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . 114 Table 107. WriteEHCfg response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Table 108. WriteDOCfg request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Table 109. WriteDOCfg response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . . . . . . 116 Table 110. WriteDOCfg response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Table 111. SetRstEHEn request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Table 112. SetRstEHEn response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . 117 Table 113. SetRstEHEn response format when Error_flag is set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Table 114. CheckEHEn request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Table 115. CheckEHEn response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . . . . . . 118 Table 116. CheckEHEn response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Table 117. Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Table 118. I2C operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Table 119. AC test measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Table 120. Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Table 121. I2C DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Table 122. I2C AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Table 123. Write cycle endurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Table 124. RF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Table 125. Operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Table 126. Energy harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Table 127. SO8N – 8-lead plastic small outline, 150 mils body width, package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Table 128. UFDFN8 - 8-lead, 2 × 3 mm, 0.5 mm pitch ultra thin profile fine pitch dual flat package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Table 129. TSSOP8 – 8-lead thin shrink small outline, 3 x 6.4 mm, 0.65 mm pitch, package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Table 130. Ordering information scheme for bare die devices or packaged devices. . . . . . . . . . . . . 137 Table 131. Ordering and marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Table 132. CRC definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Table 133. AFI coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Table 134. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 10/146 DocID022208 Rev 11

M24LR04E-R List of figures List of figures Figure 1. Logic diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 2. 8-pin package connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 3. I2C Fast mode (f = 400 kHz): maximum R value vs. bus parasitic capacitance (C ) 17 C bus bus Figure 4. I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 5. Circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 6. Memory sector organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 7. I²C timeout on Start condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 8. Write mode sequences with I2C_Write_Lock bit = 1 (data write inhibited). . . . . . . . . . . . . 33 Figure 9. Write mode sequences with I2C_Write_Lock bit = 0 (data write enabled). . . . . . . . . . . . . 35 Figure 10. Write cycle polling flowchart using Ack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 11. Read mode sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 12. I2C present password command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 13. I2C write password command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 14. 100% modulation waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 15. 10% modulation waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 16. 1 out of 256 coding mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 17. Detail of a time period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 18. 1 out of 4 coding mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Figure 19. 1 out of 4 coding example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Figure 20. SOF to select 1 out of 256 data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 21. SOF to select 1 out of 4 data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 22. EOF for either data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 23. Logic 0, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure 24. Logic 0, high data rate, fast commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure 25. Logic 1, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure 26. Logic 1, high data rate, fast commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure 27. Logic 0, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 28. Logic 0, low data rate, fast commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 29. Logic 1, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 30. Logic 1, low data rate, fast commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 31. Logic 0, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Figure 32. Logic 1, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Figure 33. Logic 0, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Figure 34. Logic 1, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Figure 35. Start of frame, high data rate, one subcarrier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Figure 36. Start of frame, high data rate, one subcarrier, fast commands. . . . . . . . . . . . . . . . . . . . . . 54 Figure 37. Start of frame, low data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Figure 38. Start of frame, low data rate, one subcarrier, fast commands . . . . . . . . . . . . . . . . . . . . . . 55 Figure 39. Start of frame, high data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Figure 40. Start of frame, low data rate, two subcarriers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Figure 41. End of frame, high data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Figure 42. End of frame, high data rate, one subcarrier, fast commands . . . . . . . . . . . . . . . . . . . . . . 56 Figure 43. End of frame, low data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Figure 44. End of frame, low data rate, one subcarrier, Fast commands . . . . . . . . . . . . . . . . . . . . . . 56 Figure 45. End of frame, high data rate, two subcarriers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Figure 46. End of frame, low data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Figure 47. M24LR04E-R decision tree for AFI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure 48. M24LR04E-R protocol timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 DocID022208 Rev 11 11/146 12

List of figures M24LR04E-R Figure 49. M24LR04E-R state transition diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure 50. Principle of comparison between the mask, the slot number and the UID. . . . . . . . . . . . . 71 Figure 51. Description of a possible anticollision sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Figure 52. M24LR04E-R RF-Busy management following Inventory command . . . . . . . . . . . . . . . . . 79 Figure 53. Stay Quiet frame exchange between VCD and M24LR04E-R. . . . . . . . . . . . . . . . . . . . . . 80 Figure 54. Read Single Block frame exchange between VCD and M24LR04E-R. . . . . . . . . . . . . . . . 82 Figure 55. Write Single Block frame exchange between VCD and M24LR04E-R. . . . . . . . . . . . . . . . 83 Figure 56. M24LR04E-R RF_Busy management following Write command. . . . . . . . . . . . . . . . . . . . 84 Figure 57. M24LR04E RF_Wip management following Write command. . . . . . . . . . . . . . . . . . . . . . . 85 Figure 58. Read Multiple Block frame exchange between VCD and M24LR04E-R . . . . . . . . . . . . . . 87 Figure 59. Select frame exchange between VCD and M24LR04E-R . . . . . . . . . . . . . . . . . . . . . . . . . 88 Figure 60. Reset to Ready frame exchange between VCD and M24LR04E-R. . . . . . . . . . . . . . . . . . 89 Figure 61. Write AFI frame exchange between VCD and M24LR04E-R. . . . . . . . . . . . . . . . . . . . . . . 91 Figure 62. Lock AFI frame exchange between VCD and M24LR04E-R . . . . . . . . . . . . . . . . . . . . . . . 92 Figure 63. Write DSFID frame exchange between VCD and M24LR04E-R . . . . . . . . . . . . . . . . . . . . 94 Figure 64. Lock DSFID frame exchange between VCD and M24LR04E-R. . . . . . . . . . . . . . . . . . . . . 95 Figure 65. Get System Info frame exchange between VCD and M24LR04E-R . . . . . . . . . . . . . . . . . 97 Figure 66. Get Multiple Block Security Status frame exchange between VCD and M24LR04E-R . . . 99 Figure 67. Write-sector Password frame exchange between VCD and M24LR04E-R . . . . . . . . . . . 100 Figure 68. Lock-sector frame exchange between VCD and M24LR04E-R . . . . . . . . . . . . . . . . . . . . 102 Figure 69. Present-sector Password frame exchange between VCD and M24LR04E-R . . . . . . . . . 104 Figure 70. Fast Read Single Block frame exchange between VCD and M24LR04E-R. . . . . . . . . . . 106 Figure 71. Fast Initiate frame exchange between VCD and M24LR04E-R . . . . . . . . . . . . . . . . . . . . 108 Figure 72. Fast Read Multiple Block frame exchange between VCD and M24LR04E-R . . . . . . . . . 110 Figure 73. Initiate frame exchange between VCD and M24LR04E-R. . . . . . . . . . . . . . . . . . . . . . . . 112 Figure 74. ReadCfg frame exchange between VCD and M24LR04E-R . . . . . . . . . . . . . . . . . . . . . . 113 Figure 75. WriteEHCfg frame exchange between VCD and M24LR04E-R. . . . . . . . . . . . . . . . . . . . 115 Figure 76. WriteDOCfg frame exchange between VCD and M24LR04E-R. . . . . . . . . . . . . . . . . . . . 116 Figure 77. SetRstEHEn frame exchange between VCD and M24LR04E-R . . . . . . . . . . . . . . . . . . . 118 Figure 78. CheckEHEn frame exchange between VCD and M24LR04E-R. . . . . . . . . . . . . . . . . . . . 119 Figure 79. AC test measurement I/O waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Figure 80. I2C AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Figure 81. ASK modulated signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Figure 82. Vout vs. Isink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Figure 83. Range 11 domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Figure 84. Range 10 domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Figure 85. Range 01 domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Figure 86. Range 00 domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Figure 87. SO8N – 8-lead plastic small outline, 150 mils body width, package outline. . . . . . . . . . . 132 Figure 88. SO8N – 8-lead plastic small outline, 150 mils body width, package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Figure 89. UFDFN8 - 8-lead, 2 × 3 mm, 0.5 mm pitch ultra thin profile fine pitch dual flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Figure 90. TSSOP8 – 8-lead thin shrink small outline, 3 x 6.4 mm, 0.65 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 12/146 DocID022208 Rev 11

M24LR04E-R Description 1 Description The M24LR04E-R device is a Dynamic NFC/RFID tag IC with a dual-interface, electrically erasable programmable memory (EEPROM). The logic scheme is shown in Figure 1. It features an I2C interface and can be operated from a V power supply. It is also a CC contactless memory powered by the received carrier electromagnetic wave. The M24LR04E-R is organized as 512 × 8 bits in the I2C mode and as 128 × 32 bits in RF mode. The M24LR04E-R also features an energy harvesting analog output, as well as a user- configurable digital output pin toggling during either RF write in progress or RF busy mode. Figure 1. Logic diagram (cid:57) (cid:38)(cid:38) (cid:54)(cid:38)(cid:47) (cid:57) (cid:82)(cid:88)(cid:87) (cid:54)(cid:39)(cid:36) (cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53) (cid:36)(cid:38)(cid:19) (cid:53)(cid:41)(cid:3)(cid:58)(cid:44)(cid:51)(cid:3)(cid:18)(cid:3)(cid:37)(cid:56)(cid:54)(cid:60) (cid:36)(cid:38)(cid:20) (cid:57) (cid:54)(cid:54) (cid:48)(cid:54)(cid:23)(cid:19)(cid:24)(cid:19)(cid:22)(cid:57)(cid:20) I2C uses a two-wire serial interface, comprising a bidirectional data line and a clock line. The devices carry a built-in 4-bit device type identifier code (1010) in accordance with the I2C bus definition. The device behaves as a slave in the I2C protocol, with all memory operations synchronized by the serial clock. Read and Write operations are initiated by a Start condition, generated by the bus master. The Start condition is followed by a device select code and Read/Write bit (RW) (as described in Table 2), terminated by an acknowledge bit. When writing data to the memory, the device inserts an acknowledge bit during the 9th bit time, following the bus master’s 8-bit transmission. When data is read by the bus master, the bus master acknowledges the receipt of the data byte in the same way. Data transfers are terminated by a Stop condition after an Ack for Write, and after a NoAck for Read. In the ISO15693/ISO18000-3 mode 1 RF mode, the M24LR04E-R is accessed via the 13.56 MHz carrier electromagnetic wave on which incoming data are demodulated from the received signal amplitude modulation (ASK: amplitude shift keying). When connected to an antenna, the operating power is derived from the RF energy and no external power supply is required. The received ASK wave is 10% or 100% modulated with a data rate of 1.6 Kbit/s using the 1/256 pulse coding mode or a data rate of 26 Kbit/s using the 1/4 pulse coding mode. Outgoing data are generated by the M24LR04E-R load variation using Manchester coding with one or two subcarrier frequencies at 423 kHz and 484 kHz. Data are transferred from the M24LR04E-R at 6.6 Kbit/s in low data rate mode and 26 Kbit/s high data rate mode. The DocID022208 Rev 11 13/146 145

Description M24LR04E-R M24LR04E-R supports the 53 Kbit/s fast mode in high data rate mode using one subcarrier frequency at 423 kHz. The M24LR04E-R follows the ISO 15693 and ISO 18000-3 mode 1 recommendation for radio-frequency power and signal interface. The M24LR04E-R provides an Energy harvesting mode on the analog output pin Vout. When the Energy harvesting mode is activated, the M24LR04E-R can output the excess energy coming from the RF field on the Vout analog pin. In case the RF field strength is insufficient or when Energy harvesting mode is disabled, the analog output pin Vout goes into high-Z state and Energy harvesting mode is automatically stopped. The M24LR04E-R features a user configurable digital out pin RF WIP/BUSY that can be used to drive a micro controller interrupt input pin (available only when the M24LR04E-R is correctly powered on the Vcc pin). When configured in the RF write in progress mode (RF WIP mode), the RF WIP/BUSY pin is driven low for the entire duration of the RF internal write operation. When configured in the RF busy mode (RF BUSY mode), the RF WIP/BUSY pin is driven low for the entire duration of the RF command progress. The RF WIP/BUSY pin is an open drain output and must be connected to a pull-up resistor. Table 1. Signal names Signal name Function Direction Vout Energy harvesting Output Analog output SDA Serial Data I/O SCL Serial Clock Input AC0, AC1 Antenna coils I/O V Supply voltage - CC RF WIP/BUSY Digital signal Digital output V Ground - SS Figure 2. 8-pin package connections (cid:57)(cid:82)(cid:88)(cid:87) (cid:20) (cid:27) (cid:57)(cid:38)(cid:38) (cid:36)(cid:38)(cid:19) (cid:21) (cid:26) (cid:53)(cid:41)(cid:3)(cid:58)(cid:44)(cid:51)(cid:18)(cid:37)(cid:56)(cid:54)(cid:60) (cid:36)(cid:38)(cid:20) (cid:22) (cid:25) (cid:54)(cid:38)(cid:47) (cid:57)(cid:54)(cid:54) (cid:23) (cid:24) (cid:54)(cid:39)(cid:36) (cid:48)(cid:54)(cid:20)(cid:28)(cid:26)(cid:23)(cid:21)(cid:57)(cid:20) 1. See Section 31 for package dimensions, and how to identify pin-1. 14/146 DocID022208 Rev 11

M24LR04E-R Signal descriptions 2 Signal descriptions 2.1 Serial clock (SCL) This input signal is used to strobe all data in and out of the device. In applications where this signal is used by slave devices to synchronize the bus to a slower clock, the bus master must have an open drain output, and a pull-up resistor must be connected from Serial Clock (SCL) to V . (Figure 3 indicates how the value of the pull-up resistor can be calculated). In CC most applications, though, this method of synchronization is not employed, and so the pull- up resistor is not necessary, provided that the bus master has a push-pull (rather than open drain) output. 2.2 Serial data (SDA) This bidirectional signal is used to transfer data in or out of the device. It is an open drain output that may be wire-OR’ed with other open drain or open collector signals on the bus. A pull up resistor must be connected from Serial Data (SDA) to V . (Figure 3 indicates how CC the value of the pull-up resistor can be calculated). 2.3 RF Write in progress / RF Busy (RF WIP/BUSY) This configurable output signal is used either to indicate that the M24LR04E-R is executing an internal write cycle from the RF channel or that an RF command is in progress. RF WIP and signals are available only when the M24LR04E-R is powered by the Vcc pin. It is an open drain output and a pull up resistor must be connected from RF WIP/BUSY to V . CC 2.4 Energy harvesting analog output (Vout) This analog output pin is used to deliver the analog voltage Vout available when the Energy harvesting mode is enabled and the RF field strength is sufficient. When the Energy harvesting mode is disabled or the RF field strength is not sufficient, the energy harvesting analog voltage output Vout is in high-Z state. 2.5 Antenna coil (AC0, AC1) These inputs are used to connect the device to an external coil exclusively. It is advised not to connect any other DC or AC path to AC0 or AC1. When correctly tuned, the coil is used to power and access the device using the ISO 15693 and ISO 18000-3 mode 1 protocols. 2.5.1 Device reset in RF mode To ensure a proper reset of the RF circuitry, the RF field must be turned off (100% modulation) for a minimum t period of time. RF_OFF DocID022208 Rev 11 15/146 145

Signal descriptions M24LR04E-R 2.6 V ground SS V is the reference for the V supply voltage and Vout analog output voltage. SS CC 2.7 Supply voltage (V ) CC This pin can be connected to an external DC supply voltage. Note: An internal voltage regulator allows the external voltage applied on V to supply the CC M24LR04E-R, while preventing the internal power supply (rectified RF waveforms) to output a DC voltage on the V pin. CC 2.7.1 Operating supply voltage V CC Prior to selecting the memory and issuing instructions to it, a valid and stable V voltage CC within the specified [V (min), V (max)] range must be applied (see Table 118). To CC CC maintain a stable DC supply voltage, it is recommended to decouple the V line with a CC suitable capacitor (usually of the order of 10 nF) close to the V /V package pins. CC SS This voltage must remain stable and valid until the end of the transmission of the instruction and, for a Write instruction, until the completion of the internal I²C write cycle (t ). W 2.7.2 Power-up conditions When the power supply is turned on, V rises from V to V . The V rise time must not CC SS CC CC vary faster than 1V/µs. 2.7.3 Device reset in I²C mode In order to prevent inadvertent write operations during power-up, a power-on reset (POR) circuit is included. At power-up (continuous rise of V ), the device does not respond to any CC I²C instruction until V has reached the power-on reset threshold voltage (this threshold is CC lower than the minimum V operating voltage defined in Table 118). When V passes CC CC over the POR threshold, the device is reset and enters the Standby power mode. However, the device must not be accessed until V has reached a valid and stable V voltage CC CC within the specified [V (min), V (max)] range. CC CC In a similar way, during power-down (continuous decrease in V ), as soon as V drops CC CC below the power-on reset threshold voltage, the device stops responding to any instruction sent to it. 2.7.4 Power-down conditions During power-down (continuous decay of V ), the device must be in Standby power mode CC (mode reached after decoding a Stop condition, assuming that there is no internal write cycle in progress). 16/146 DocID022208 Rev 11

M24LR04E-R Signal descriptions Figure 3. I2C Fast mode (f = 400 kHz): maximum R value vs. bus parasitic capacitance (C ) C bus bus (cid:82)(cid:0) (cid:17)(cid:16)(cid:16) (cid:79) (cid:83)(cid:84) (cid:83)(cid:73) (cid:34)(cid:85)(cid:83)(cid:0)(cid:76)(cid:73)(cid:78)(cid:69)(cid:0)(cid:80)(cid:85)(cid:76)(cid:76)(cid:13)(cid:85)(cid:80)(cid:0)(cid:82)(cid:69)(cid:9)(cid:8)(cid:75) (cid:17)(cid:20)(cid:0)(cid:75)(cid:16)(cid:189) (cid:40)(cid:69)(cid:82)(cid:69)(cid:0)(cid:50)(cid:66)(cid:85)(cid:83)(cid:0)(cid:167)(cid:0)(cid:35)(cid:66)(cid:85)(cid:83)(cid:0)(cid:29)(cid:0)(cid:17)(cid:18)(cid:16)(cid:50)(cid:0)(cid:66)(cid:78)(cid:85)(cid:83)(cid:83)(cid:0)(cid:167)(cid:0)(cid:35)(cid:66)(cid:85)(cid:83)(cid:0)(cid:29)(cid:0)(cid:20)(cid:16)(cid:16)(cid:0)(cid:78)(cid:83) (cid:52)(cid:77)(cid:84)(cid:79)(cid:73)(cid:77)(cid:78)(cid:72)(cid:85)(cid:0)(cid:69)(cid:69)(cid:83)(cid:84)(cid:72)(cid:0)(cid:84)(cid:0)(cid:50)(cid:0)(cid:67)(cid:69)(cid:66)(cid:79)(cid:0)(cid:0)(cid:66)(cid:69)(cid:0)(cid:76)(cid:78)(cid:0)(cid:69)(cid:85)(cid:0)(cid:0)(cid:83)(cid:83)(cid:66)(cid:0)(cid:70)(cid:0)(cid:84)(cid:84)(cid:69)(cid:88)(cid:14)(cid:65)(cid:0)(cid:76)(cid:78)(cid:79)(cid:35)(cid:84)(cid:87)(cid:0)(cid:66)(cid:0)(cid:0)(cid:76)(cid:85)(cid:0)(cid:0)(cid:73)(cid:78)(cid:84)(cid:0)(cid:83)(cid:72)(cid:0)(cid:0)(cid:69)(cid:84)(cid:69)(cid:73)(cid:77)(cid:0)(cid:82)(cid:0)(cid:20)(cid:69)(cid:69)(cid:0)(cid:16)(cid:80)(cid:0)(cid:67)(cid:16)(cid:82)(cid:69)(cid:79)(cid:0)(cid:78)(cid:83)(cid:78)(cid:83)(cid:69)(cid:83)(cid:78)(cid:84)(cid:65)(cid:84)(cid:69)(cid:78)(cid:68)(cid:84)(cid:41)(cid:163)(cid:35)(cid:0)(cid:66)(cid:85)(cid:83) (cid:51)(cid:35)(cid:44) (cid:54)(cid:35)(cid:35)(cid:50)(cid:66)(cid:85)(cid:83) (cid:45)(cid:18)(cid:20)(cid:88)(cid:88)(cid:88) (cid:77)(cid:65)(cid:83)(cid:84)(cid:69)(cid:82) (cid:51)(cid:36)(cid:33) (cid:17) (cid:19)(cid:16)(cid:0)(cid:80)(cid:38) (cid:17)(cid:16) (cid:17)(cid:16)(cid:16) (cid:17)(cid:16)(cid:16)(cid:16) (cid:35)(cid:66)(cid:85)(cid:83) (cid:34)(cid:85)(cid:83)(cid:0)(cid:76)(cid:73)(cid:78)(cid:69)(cid:0)(cid:67)(cid:65)(cid:80)(cid:65)(cid:67)(cid:73)(cid:84)(cid:79)(cid:82)(cid:0)(cid:8)(cid:80)(cid:38)(cid:9) (cid:65)(cid:73)(cid:17)(cid:20)(cid:23)(cid:25)(cid:22)(cid:66) Figure 4. I2C bus protocol DocID022208 Rev 11 17/146 145

Signal descriptions M24LR04E-R Table 2. Device select code Device type identifier(1) Chip Enable address RW - b7 b6 b5 b4 b3 b2 b1 b0 Device select code 1 0 1 0 E2(2) 1 1 RW 1. The most significant bit, b7, is sent first. 2. E2 is not connected to any external pin. It is however used to address the M24LR04E-R as described in Section 3 and Section 4. Table 3. Address most significant byte b15 b14 b13 b12 b11 b10 b9 b8 Table 4. Address least significant byte b7 b6 b5 b4 b3 b2 b1 b0 18/146 DocID022208 Rev 11

M24LR04E-R User memory organization 3 User memory organization The M24LR04E-R is divided into four sectors of 32 blocks of 32 bits, as shown in Table 5. Figure 6 shows the memory sector organization. Each sector can be individually read- and/or write-protected using a specific password command. Read and write operations are possible if the addressed data are not in a protected sector. The M24LR04E-R also has a 64-bit block that is used to store the 64-bit unique identifier (UID). The UID is compliant with the ISO 15963 description, and its value is used during the anticollision sequence (Inventory). This block is not accessible by the user in RF device operation and its value is written by ST on the production line. The M24LR04E-R includes an AFI register that stores the application family identifier, and a DSFID register that stores the data storage family identifier used in the anticollision algorithm. The M24LR04E-R has four 32-bit blocks that store an I2C password plus three RF password codes. Figure 5. Circuit diagram (cid:57) (cid:82)(cid:88)(cid:87) (cid:85) (cid:72) (cid:71) (cid:82) (cid:40)(cid:40)(cid:51)(cid:53)(cid:50)(cid:48) (cid:70) (cid:72) (cid:53)(cid:41)(cid:3)(cid:58)(cid:44)(cid:51)(cid:18)(cid:37)(cid:56)(cid:54)(cid:60) (cid:71) (cid:3) (cid:90) (cid:82) (cid:36)(cid:38)(cid:19) (cid:53) (cid:47)(cid:68)(cid:87)(cid:70)(cid:75) (cid:54)(cid:38)(cid:47) (cid:53)(cid:41) (cid:47)(cid:82)(cid:74)(cid:76)(cid:70) (cid:44)(cid:21)(cid:38) (cid:54)(cid:39)(cid:36) (cid:36)(cid:38)(cid:20) (cid:57) (cid:38)(cid:38) (cid:53)(cid:41)(cid:3)(cid:57) (cid:51)(cid:82)(cid:90)(cid:72)(cid:85)(cid:3)(cid:80)(cid:68)(cid:81)(cid:68)(cid:74)(cid:72)(cid:80)(cid:72)(cid:81)(cid:87) (cid:38)(cid:82)(cid:81)(cid:87)(cid:68)(cid:70)(cid:87)(cid:3)(cid:57) (cid:38)(cid:38) (cid:38)(cid:38) (cid:57) (cid:54)(cid:54) (cid:48)(cid:54)(cid:23)(cid:19)(cid:24)(cid:19)(cid:24)(cid:57)(cid:20) DocID022208 Rev 11 19/146 145

User memory organization M24LR04E-R Figure 6. Memory sector organization (cid:54)(cid:72)(cid:70)(cid:87)(cid:82)(cid:85)(cid:3)(cid:86)(cid:72)(cid:70)(cid:88)(cid:85)(cid:76)(cid:87)(cid:92) (cid:54)(cid:72)(cid:70)(cid:87)(cid:82)(cid:85) (cid:36)(cid:85)(cid:72)(cid:68) (cid:86)(cid:87)(cid:68)(cid:87)(cid:88)(cid:86) (cid:19) (cid:24)(cid:3)(cid:69)(cid:76)(cid:87)(cid:86) (cid:20)(cid:3)(cid:46)(cid:69)(cid:76)(cid:87)(cid:3)(cid:40)(cid:40)(cid:51)(cid:53)(cid:50)(cid:48)(cid:3)(cid:86)(cid:72)(cid:70)(cid:87)(cid:82)(cid:85) (cid:20) (cid:20)(cid:3)(cid:46)(cid:69)(cid:76)(cid:87)(cid:3)(cid:40)(cid:40)(cid:51)(cid:53)(cid:50)(cid:48)(cid:3)(cid:86)(cid:72)(cid:70)(cid:87)(cid:82)(cid:85) (cid:24)(cid:3)(cid:69)(cid:76)(cid:87)(cid:86) (cid:21) (cid:20)(cid:3)(cid:46)(cid:69)(cid:76)(cid:87)(cid:3)(cid:40)(cid:40)(cid:51)(cid:53)(cid:50)(cid:48)(cid:3)(cid:86)(cid:72)(cid:70)(cid:87)(cid:82)(cid:85) (cid:24)(cid:3)(cid:69)(cid:76)(cid:87)(cid:86) (cid:22) (cid:20)(cid:3)(cid:46)(cid:69)(cid:76)(cid:87)(cid:3)(cid:40)(cid:40)(cid:51)(cid:53)(cid:50)(cid:48)(cid:3)(cid:86)(cid:72)(cid:70)(cid:87)(cid:82)(cid:85) (cid:24)(cid:3)(cid:69)(cid:76)(cid:87)(cid:86) (cid:44)(cid:240)(cid:38)(cid:3)(cid:83)(cid:68)(cid:86)(cid:86)(cid:90)(cid:82)(cid:85)(cid:71) (cid:54)(cid:92)(cid:86)(cid:87)(cid:72)(cid:80) (cid:53)(cid:41)(cid:3)(cid:83)(cid:68)(cid:86)(cid:86)(cid:90)(cid:82)(cid:85)(cid:71)(cid:3)(cid:20) (cid:54)(cid:92)(cid:86)(cid:87)(cid:72)(cid:80) (cid:53)(cid:41)(cid:3)(cid:83)(cid:68)(cid:86)(cid:86)(cid:90)(cid:82)(cid:85)(cid:71)(cid:3)(cid:21) (cid:54)(cid:92)(cid:86)(cid:87)(cid:72)(cid:80) (cid:53)(cid:41)(cid:3)(cid:83)(cid:68)(cid:86)(cid:86)(cid:90)(cid:82)(cid:85)(cid:71)(cid:3)(cid:22) (cid:54)(cid:92)(cid:86)(cid:87)(cid:72)(cid:80) (cid:27)(cid:16)(cid:69)(cid:76)(cid:87)(cid:3)(cid:39)(cid:54)(cid:41)(cid:44)(cid:39) (cid:54)(cid:92)(cid:86)(cid:87)(cid:72)(cid:80) (cid:27)(cid:16)(cid:69)(cid:76)(cid:87)(cid:3)(cid:36)(cid:41)(cid:44) (cid:54)(cid:92)(cid:86)(cid:87)(cid:72)(cid:80) (cid:25)(cid:23)(cid:16)(cid:69)(cid:76)(cid:87)(cid:3)(cid:56)(cid:44)(cid:39) (cid:27)(cid:16)(cid:69)(cid:76)(cid:87)(cid:3)(cid:70)(cid:82)(cid:81)(cid:73)(cid:76)(cid:74)(cid:88)(cid:85)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81) (cid:54)(cid:92)(cid:86)(cid:87)(cid:72)(cid:80) (cid:20)(cid:25)(cid:16)(cid:69)(cid:76)(cid:87)(cid:3)(cid:3)(cid:44)(cid:240)(cid:38)(cid:3)(cid:58)(cid:85)(cid:76)(cid:87)(cid:72)(cid:3)(cid:47)(cid:82)(cid:70)(cid:78)(cid:66)(cid:69)(cid:76)(cid:87) (cid:54)(cid:92)(cid:86)(cid:87)(cid:72)(cid:80) (cid:21)(cid:19)(cid:16)(cid:69)(cid:76)(cid:87)(cid:3)(cid:54)(cid:54)(cid:54) (cid:54)(cid:92)(cid:86)(cid:87)(cid:72)(cid:80) (cid:48)(cid:54)(cid:20)(cid:28)(cid:26)(cid:25)(cid:25)(cid:57)(cid:20) Sector details The M24LR04E-R user memory is divided into four sectors. Each sector contains 1024 bits. The protection scheme is described in Section 4: System memory area. In RF mode, a sector provides 32 blocks of 32 bits. Each read and write access is done by block. Read and write block accesses are controlled by a Sector Security Status byte that defines the access rights to the 32 blocks contained in the sector. If the sector is not protected, a Write command updates the complete 32 bits of the selected block. In I2C mode, a sector provides 128 bytes that can be individually accessed in Read and Write modes. When protected by the corresponding I2C_Write_Lock bit, the entire sector is write-protected. To access the user memory, the device select code used for any I2C command must have the E2 Chip Enable address at 0. 20/146 DocID022208 Rev 11

M24LR04E-R User memory organization Table 5. Sector details Sector RF block I2C byte Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] number address address 0 0 user user user user 1 4 user user user user 2 8 user user user user 3 12 user user user user 4 16 user user user user 5 20 user user user user 6 24 user user user user 7 28 user user user user 8 32 user user user user 9 36 user user user user 10 40 user user user user 11 44 user user user user 12 48 user user user user 13 52 user user user user 14 56 user user user user 15 60 user user user user 0 16 64 user user user user 17 68 user user user user 18 72 user user user user 19 76 user user user user 20 80 user user user user 21 84 user user user user 22 88 user user user user 23 92 user user user user 24 96 user user user user 25 100 user user user user 26 104 user user user user 27 108 user user user user 28 112 user user user user 29 116 user user user user 30 120 user user user user 31 124 user user user user DocID022208 Rev 11 21/146 145

User memory organization M24LR04E-R Table 5. Sector details (continued) Sector RF block I2C byte Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] number address address 32 128 user user user user 33 132 user user user user 34 136 user user user user 35 140 user user user user 1 36 144 user user user user 37 148 user user user user 38 152 user user user user 39 156 user user user user ... ... ... ... ... ... 2 ... ... ... ... ... ... ... ... ... ... ... ... 3 127 508 user user user user 22/146 DocID022208 Rev 11

M24LR04E-R System memory area 4 System memory area 4.1 M24LR04E-R block security in RF mode The M24LR04E-R provides a special protection mechanism based on passwords. In RF mode, each memory sector of the M24LR04E-R can be individually protected by one out of three available passwords, and each sector can also have Read/Write access conditions set. Each memory sector of the M24LR04E-R is assigned with a Sector security status byte including a Sector Lock bit, two Password Control bits and two Read/Write protection bits, as shown in Table 7. Table 6 describes the organization of the Sector security status byte, which can be read using the Read Single Block and Read Multiple Block commands with the Option_flag set to 1. On delivery, the default value of the SSS bytes is set to 00h. Table 6. Sector security status byte area I2C byte address Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] E2 = 1 0 SSS 3 SSS 2 SSS 1 SSS 0 Table 7. Sector security status byte organization b b b b b b b b 7 6 5 4 3 2 1 0 Read / Write Sector 0 0 0 Password control bits protection bits Lock When the Sector Lock bit is set to 1, for instance by issuing a Lock-sector command, the two Read/Write protection bits (b , b ) are used to set the Read/Write access of the sector 1 2 as described in Table 8. Table 8. Read / Write protection bit setting Sector Sector access Sector access b , b Lock 2 1 when password presented when password not presented 0 xx Read Write Read Write 1 00 Read Write Read No Write 1 01 Read Write Read Write 1 10 Read Write No Read No Write 1 11 Read No Write No Read No Write The next two bits of the Sector security status byte (b , b ) are the password control bits. 3 4 The value of these two bits is used to link a password to the sector, as defined in Table 9. DocID022208 Rev 11 23/146 145

System memory area M24LR04E-R Table 9. Password control bits b , b Password 4 3 00 The sector is not protected by a password. 01 The sector is protected by password 1. 10 The sector is protected by password 2. 11 The sector is protected by password 3. The M24LR04E-R password protection is organized around a dedicated set of commands, plus a system area of three password blocks where the password values are stored. This system area is described in Table 10. Table 10. Password system area Add 1 Password 1 2 Password 2 3 Password 3 The dedicated commands for protection in RF mode are: • Write-sector password: The Write-sector password command is used to write a 32-bit block into the password system area. This command must be used to update password values. After the write cycle, the new password value is automatically activated. It is possible to modify a password value after issuing a valid Present-sector password command. On delivery, the three default password values are set to 0000 0000h and are activated. • Lock-sector: The Lock-sector command is used to set the sector security status byte of the selected sector. Bits b to b of the sector security status byte are affected by the Lock-sector 4 1 command. The sector lock bit, b , is set to 1 automatically. After issuing a Lock-sector 0 command, the protection settings of the selected sector are activated. The protection of a locked block cannot be changed in RF mode. A Lock-sector command sent to a locked sector returns an error code. 24/146 DocID022208 Rev 11

M24LR04E-R System memory area • Present-sector password: The Present-sector password command is used to present one of the three passwords to the M24LR04E-R in order to modify the access rights of all the memory sectors linked to that password (Table 8) including the password itself. If the presented password is correct, the access rights remain activated until the tag is powered off or until a new Present-sector password command is issued. If the presented password value is not correct, all the access rights of all the memory sectors are deactivated. • Sector security status byte area access conditions in I2C mode: In I2C mode, read access to the sector security status byte area is always allowed. Write access depends on the correct presentation of the I2C password (see Section 5.16.1: I2C present password command description). To access the Sector security status byte area, the device select code used for any I2C command must have the E2 Chip Enable address at 1. An I2C write access to a sector security status byte re-initializes the RF access condition to the given memory sector. 4.1.1 Example of the M24LR04E-R security protection in RF mode Table 11 and Table 12 show the sector security protections before and after a valid Present-sector password command. Table 11 shows the sector access rights of an M24LR04E-R after power-up. After a valid Present-sector password command with password 1, the memory sector access is changed as shown in Table 12. Table 11. M24LR04E-R sector security protection after power-up Sector security status byte Sector Protection address b b b b b b b b 7 6 5 4 3 2 1 0 0 Protection: standard Read No Write xxx 0 0 0 0 1 1 Protection: password 1 Read No Write xxx 0 1 0 0 1 2 Protection: password 1 Read Write xxx 0 1 0 1 1 3 Protection: password 1 No Read No Write xxx 0 1 1 0 1 4 Protection: password 1 No Read No Write xxx 0 1 1 1 1 Table 12. M24LR04E-R sector security protection after a valid presentation of password 1 Sector security status byte Sector Protection address b b b b b b b b 7 6 5 4 3 2 1 0 0 Protection: standard Read No Write xxx 0 0 0 0 1 1 Protection: password 1 Read Write xxx 0 1 0 0 1 2 Protection: password 1 Read Write xxx 0 1 0 1 1 3 Protection: password 1 Read Write xxx 0 1 1 0 1 4 Protection: password 1 Read No Write xxx 0 1 1 1 1 DocID022208 Rev 11 25/146 145

System memory area M24LR04E-R 4.2 M24LR04E-R block security in I²C mode (I2C_Write_Lock bit area) In the I2C mode only, it is possible to protect individual sectors against Write operations. This feature is controlled by the I2C_Write_Lock bits stored in the two bytes of the I2C_Write_Lock bit area. I2C_Write_Lock bit area starts from location 2048 (see Table 13). To access the I2C_Write_Lock bit area, the device select code used for any I2C command must have the E2 Chip Enable address at 1. Using these 16 bits, it is possible to write-protect all the four sectors of the M24LR04E-R memory. Each bit controls the I2C write access to a specific sector as shown in Table 13. It is always possible to unprotect a sector in the I2C mode. When an I2C_Write_Lock bit is reset to 0, the corresponding sector is unprotected. When the bit is set to 1, the corresponding sector is write-protected. In I2C mode, read access to the I2C_Write_Lock bit area is always allowed. Write access depends on the correct presentation of the I2C password. On delivery, the default value of the two bytes of the I2C_Write_Lock bit area is reset to 00h. Table 13. I2C_Write_Lock bit I2C byte address Bits [4:15] Bits [3:0] E2 = 1 2048 Don’t care Sectors 0-3 4.3 Configuration byte and Control register The M24LR04E-R offers an 8-bit non-volatile Configuration byte located at I²C location 2320 of the system area used to store the RF WIP/BUSY pin and the energy harvesting configuration (see Table 14). The M24LR04E-R also offers an 8-bit volatile Control register located at I²C location 2336 of the system area used to store the energy harvesting enable bit as well as a FIELD_ON bit indicator (see Table 15). 4.3.1 RF WIP/BUSY pin configuration The M24LR04E-R features a configurable open drain output RF WIP/BUSY pin used to provide RF activity information to an external device. The RF WIP/BUSY pin functionality depends on the value of bit 3 of the Configuration byte. • RF busy mode When bit 3 of the Configuration byte is set to 0, the RF WIP/BUSY pin is configured in RF busy mode. The purpose of this mode is to indicate to the I²C bus master whether the M24LR04E-R is busy in RF mode or not. In this mode, the RF WIP/BUSY pin is tied to 0 from the RF command Start Of Frame (SOF) until the end of the command execution. If a bad RF command is received, the RF WIP/BUSY pin is tied to 0 from the RF command SOF until the reception of the RF command CRC. Otherwise, the RF WIP/BUSY pin is in high-Z state. 26/146 DocID022208 Rev 11

M24LR04E-R System memory area When tied to 0, the RF WIP/BUSY signal returns to high-Z state if the RF field is cut-off. During execution of I²C commands, the RF WIP/BUSY pin remains in high-Z state. • RF Write in progress When bit 3 of the Configuration byte is set to 1, the RF WIP/BUSY pin is configured in RF Write in progress mode. The purpose of this mode is to indicate to the I²C bus master that some data have been changed in RF mode. In this mode, the RF WIP/BUSY pin is tied to 0 for the duration of an internal write operation (i.e. between the end of a valid RF write command and the beginning of the RF answer). During execution of I²C write operations, the RF WIP/BUSY pin remains in high-Z state. 4.3.2 Energy harvesting configuration The M24LR04E-R features an Energy harvesting mode on the Vout analog output. The general purpose of the Energy harvesting mode is to deliver a part of the non- necessary RF power received by the M24LR04E-R on the AC0-AC1 RF input in order to supply an external device. The current consumption on the analog voltage output Vout is limited to ensure that the M24LR04E-R is correctly supplied during the powering of the external device. When the Energy harvesting mode is enabled and the power delivered on the AC0-AC1 RF input exceeds the minimum required P , the M24LR04E-R is able to deliver a AC0-AC1_min limited and unregulated voltage on the Vout pin, assuming the current consumption on the Vout does not exceed the I maximum value. sink_max If one of the condition above is not met, the analog voltage output pin Vout is set in high-Z state. For robust applications using the Energy harvesting mode, four current fan-out levels can be chosen. • Vout sink current configuration The sink current level is chosen by programming EH_cfg1 and EH_cfg0 into the Configuration byte (see Table 14). The minimum power level required on AC0-AC1 RF input P , the delivered AC0-AC1_min voltage Vout, as well as the maximum current consumption I on the Vout pin sink_max corresponding to the <EH_cfg1,EH_cfg0> bit values are described in Table 126. Table 14. Configuration byte I2C byte address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 BIT 1 BIT 0 E2=1 2320 X(1) X(1) X(1) X(1) RF WIP/BUSY EH_mode EH_cfg1 EH_cfg0 1. Bit 7 to Bit 4 are don’t care bits. DocID022208 Rev 11 27/146 145

System memory area M24LR04E-R • Energy harvesting enable control Delivery of Energy harvesting analog output voltage on the Vout pin depends on the value of the EH_enable bit of the volatile Control register (see Table 15). Table 15. Control register I2C byte address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 BIT 1 BIT 0 E2=1 2336 T-Prog(1) 0(1) 0(1) 0(1) 0(1) 0(1) FIELD_ON(1) EH_enable 1. Bit 7 to Bit 1 are read-only bits. – When set to 1, the EH_enable bit enables the Energy harvesting mode, meaning that the Vout analog output signal is delivered when the P and I AC0-AC1_min sink_max conditions corresponding to the chosen sink current configuration bit are met (see Table 126). – When set to 0, the EH_enable bit disable the Energy harvesting mode and the analog output Vout remains in set in high-Z state. – The T_Prog flag indicates a correct duration of the I²C write time (tw). This bit is reset to 0 after POR and at the beginning of each writing cycle; it is set to 1 only after a correct completion of the writing cycle. • Energy harvesting default mode control At power-up, in I²C or RF mode, the EH_enable bit is updated according to the value of the EH_mode bit stored in the non-volatile Configuration byte (see Table 16). In other words, the EH_mode bit is used to configure whether the Energy harvesting mode is enabled or not by default. Table 16. EH_enable bit value after power-up Energy harvesting EH_mode value EH_enable after power-up after power-up 0 1 enabled 1 0 disabled 4.3.3 FIELD_ON indicator bit The FIELD_ON bit indicator located as Bit 1 of the Control register is a read-only bit used to indicate when the RF power level delivered to the M24LR04E-R is sufficient to execute RF commands. • When FIELD_ON = 0, the M24LR04E-R is not able to execute any RF commands. • When FIELD_ON =1, the M24LR04E-R is able to execute any RF commands. Note: During read access to the Control register in RF mode, the FIELD_ON bit is always read at 1. 28/146 DocID022208 Rev 11

M24LR04E-R System memory area 4.3.4 Configuration byte access in I²C and RF modes In I²C mode, read and write accesses to the non-volatile Configuration byte are always allowed. To access the Configuration byte, the device select code used for any I²C command must have the E2 Chip enable address at 1. The dedicated commands to access the Configuration byte in RF mode are: • Read configuration byte command (ReadCfg): The ReadCfg command is used to read the eight bits of the Configuration byte. • Write energy harvesting configuration command (WriteEHCfg): The WriteEHCfg command is used to write the EH_mode, EH_cfg1 and EH_cfg0 bits into the Configuration byte. • Write RF WIP/BUSY pin configuration command (WriteDOCfg): The WriteDOCfg command is used to write the RF WIP/BUSY bit into the Configuration byte. After any write access to the Configuration byte, the new configuration is automatically applied. 4.3.5 Control register access in I²C or RF mode In I²C mode, read and write accesses to the volatile Control register are always allowed. To access the Control register, the device select code used for any I²C command must have the E2 Chip enable address at 1. The dedicated commands to access the Control register in RF mode are: • Check energy harvesting enable bit command (CheckEHEn): The CheckEHEn command is used to read the eight bits of the Control register. When it is run, the FIELD_ON bit is always read at 1. • Set/reset energy harvesting enable bit command (SetRstEHEn): The SetRstEHEn command is used to set or reset the value of the EH_enable bit into the Control register. 4.4 ISO 15693 system parameters The M24LR04E-R provides the system area required by the ISO 15693 RF protocol, as shown in Table 17. The first 32-bit block starting from I2C address 2304 stores the I2C password. This password is used to activate/deactivate the write protection of the protected sector in I2C mode. At power-on, all user memory sectors protected by the I2C_Write_Lock bits can be read but cannot be modified. To remove the write protection, it is necessary to use the I2C present password described in Figure 12. When the password is correctly presented — that is, when all the presented bits correspond to the stored ones — it is also possible to modify the I2C password using the I2C write password command described in Figure 13. The next three 32-bit blocks store the three RF passwords. These passwords are neither read- nor write- accessible in the I2C mode. DocID022208 Rev 11 29/146 145

System memory area M24LR04E-R The next byte stores the Configuration byte, at I²C location 2320. This Control register is used to store the three energy harvesting configuration bits and the RF WIP/BUSY configuration bit. The next two bytes are used to store the AFI, at I2C location 2322, and the DSFID, at I2C location 2323. These two values are used during the RF inventory sequence. They are read-only in the I2C mode. The next eight bytes, starting from location 2324, store the 64-bit UID programmed by ST on the production line. Bytes at I2C locations 2332 to 2335 store the IC Ref and the Mem_Size data used by the RF Get_System_Info command. The UID, Mem_Size and IC ref values are read-only data. Table 17. System parameter sector I2C byte address Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] E2 = 1 2304 I2C password(1) E2 = 1 2308 RF password 1(1) E2 = 1 2312 RF password 2(1) E2 = 1 2316 RF password 3(1) E2 = 1 2320 DSFID (FFh) AFI (00h) ST reserved (Exh)(2) Configuration byte (F4h) E2 = 1 2324 UID UID UID UID E2 = 1 2328 UID (E0h) UID (02h) UID UID RFU Mem_Size E2 = 1 2332 - IC Ref (5A) (FFh) (03 7F) Programming. completion E2 = 1 2336 - - - and Energy harvesting status(3) 1. Delivery state: I2C password= 0000 0000h, RF password = 0000 0000h, Configuration byte = F4h 2. The product revision is the Most significant nibble of the byte located at address 0x911 (2321 d) in the system area (Device select code E2 =1). From Rev 6, the product revision value is 0xE. The Least significant nibble is ST reserved. 3. Address system 2336 (920h, E2=1) is the control register. Bit 7 is T_Prog (refer to Table 15). When accessed in RF, this bit is not significant and set to 0. Bits 2-6 are RFU and set to 0. Bit 1 is FIELD_ON (refer to Table 15). Bit 0 is EH_enable (refer to Table 15). 30/146 DocID022208 Rev 11

M24LR04E-R I2C device operation 2 5 I C device operation The device supports the I2C protocol. This is summarized in Figure 4. Any device that sends data to the bus is defined as a transmitter, and any device that reads data is defined as a receiver. The device that controls the data transfer is known as the bus master, and the other as the slave device. A data transfer can only be initiated by the bus master, which also provides the serial clock for synchronization. The M24LR04E-R device is a slave in all communications. 5.1 Start condition Start is identified by a falling edge of serial data (SDA) while the serial clock (SCL) is stable in the high state. A Start condition must precede any data transfer command. The device continuously monitors (except during a write cycle) the SDA and the SCL for a Start condition, and does not respond unless one is given. 5.2 Stop condition Stop is identified by a rising edge of serial data (SDA) while the serial clock (SCL) is stable and driven high. A Stop condition terminates communication between the device and the bus master. A Read command that is followed by NoAck can be followed by a Stop condition to force the device into the Standby mode. A Stop condition at the end of a Write command triggers the internal write cycle. 5.3 Acknowledge bit (ACK) The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter, whether it be bus master or slave device, releases the serial data (SDA) after sending eight bits of data. During the 9th clock pulse period, the receiver pulls the SDA low to acknowledge the receipt of the eight data bits. 5.4 Data input During data input, the device samples serial data (SDA) on the rising edge of the serial clock (SCL). For correct device operation, the SDA must be stable during the rising edge of the SCL, and the SDA signal must change only when the SCL is driven low. 5.5 I²C timeout During the execution of an I²C operation, RF communications are not possible. To prevent RF communication freezing due to inadvertent unterminated instructions sent to the I²C bus, the M24LR04E-R features a timeout mechanism that automatically resets the I²C logic block. DocID022208 Rev 11 31/146 145

I2C device operation M24LR04E-R 5.5.1 I²C timeout on Start condition I²C communication with the M24LR04E-R starts with a valid Start condition, followed by a device select code. If the delay between the Start condition and the following rising edge of the Serial Clock (SCL) that samples the most significant of the Device Select exceeds the t time START_OUT (see Table 122), the I²C logic block is reset and further incoming data transfer is ignored until the next valid Start Condition. Figure 7. I²C timeout on Start condition (cid:54)(cid:38)(cid:47) (cid:54)(cid:39)(cid:36) (cid:87) (cid:54)(cid:55)(cid:36)(cid:53)(cid:55)(cid:66)(cid:50)(cid:56)(cid:55) (cid:54)(cid:87)(cid:68)(cid:85)(cid:87)(cid:3)(cid:70)(cid:82)(cid:81)(cid:71)(cid:76)(cid:87)(cid:76)(cid:82)(cid:81) (cid:48)(cid:54)(cid:23)(cid:19)(cid:24)(cid:19)(cid:19)(cid:57)(cid:20) 5.5.2 I²C timeout on clock period During data transfer on the I²C bus, the serial clock high pulse width High (t ) or serial CHCL clock pulse width Low (t ) exceeds the maximum value specified inTable 122, the I²C CLCH logic block is reset and any further incoming data transfer is ignored until the next valid Start condition. 5.6 Memory addressing To start communication between the bus master and the slave device, the bus master must initiate a Start condition. Following this, the bus master sends the device select code (shown in Table 2) on SDA, most significant bit first). Only one memory device can be connected on a single I²C bus. In M24LR04E-R, E1 and E0 are internally set to 1. The eighth bit is the Read/Write bit (RW). It is set to 1 for Read and to 0 for Write operations. If a match occurs on the device select code, the corresponding device gives an acknowledgment on serial data (SDA) during the ninth bit time. If the device does not match the device select code, it deselects itself from the bus, and goes into Standby mode. 32/146 DocID022208 Rev 11

M24LR04E-R I2C device operation Table 18. Operating modes Mode RW bit Bytes Initial sequence Current address read 1 1 Start, device select, RW = 1 0 Start, device select, RW = 0, address Random address read 1 1 reStart, device select, RW = 1 Sequential read 1 ≥ 1 Similar to current or random address read Byte write 0 1 Start, device select, RW = 0 Page write 0 ≤ 4 bytes Start, device select, RW = 0 Figure 8. Write mode sequences with I2C_Write_Lock bit = 1 (data write inhibited) (cid:37)(cid:92)(cid:87)(cid:72)(cid:3)(cid:58)(cid:85)(cid:76)(cid:87)(cid:72) (cid:36)(cid:38)(cid:46) (cid:36)(cid:38)(cid:46) (cid:36)(cid:38)(cid:46) (cid:49)(cid:50)(cid:3)(cid:36)(cid:38)(cid:46) (cid:39)(cid:72)(cid:89)(cid:3)(cid:86)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87) (cid:37)(cid:92)(cid:87)(cid:72)(cid:3)(cid:68)(cid:71)(cid:71)(cid:85)(cid:72)(cid:86)(cid:86) (cid:37)(cid:92)(cid:87)(cid:72)(cid:3)(cid:68)(cid:71)(cid:71)(cid:85)(cid:72)(cid:86)(cid:86) (cid:39)(cid:68)(cid:87)(cid:68)(cid:3)(cid:76)(cid:81) (cid:54)(cid:87)(cid:68)(cid:85)(cid:87) (cid:53)(cid:18)(cid:58) (cid:54)(cid:87)(cid:82)(cid:83) (cid:51)(cid:68)(cid:74)(cid:72)(cid:3)(cid:58)(cid:85)(cid:76)(cid:87)(cid:72) (cid:36)(cid:38)(cid:46) (cid:36)(cid:38)(cid:46) (cid:36)(cid:38)(cid:46) (cid:49)(cid:50)(cid:3)(cid:36)(cid:38)(cid:46) (cid:49)(cid:50)(cid:3)(cid:36)(cid:38)(cid:46) (cid:49)(cid:50)(cid:3)(cid:36)(cid:38)(cid:46) (cid:49)(cid:50)(cid:3)(cid:36)(cid:38)(cid:46) (cid:39)(cid:72)(cid:89)(cid:3)(cid:86)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87) (cid:37)(cid:92)(cid:87)(cid:72)(cid:3)(cid:68)(cid:71)(cid:71)(cid:85)(cid:72)(cid:86)(cid:86) (cid:37)(cid:92)(cid:87)(cid:72)(cid:3)(cid:68)(cid:71)(cid:71)(cid:85)(cid:72)(cid:86)(cid:86) (cid:39)(cid:68)(cid:87)(cid:68)(cid:3)(cid:76)(cid:81)(cid:3)(cid:20) (cid:39)(cid:68)(cid:87)(cid:68)(cid:3)(cid:76)(cid:81)(cid:3)(cid:21) (cid:39)(cid:68)(cid:87)(cid:68)(cid:3)(cid:76)(cid:81)(cid:3)(cid:49) (cid:54)(cid:87)(cid:68)(cid:85)(cid:87) (cid:53)(cid:18)(cid:58) (cid:54)(cid:87)(cid:82)(cid:83) (cid:48)(cid:54)(cid:23)(cid:26)(cid:24)(cid:19)(cid:21)(cid:57)(cid:20) DocID022208 Rev 11 33/146 145

I2C device operation M24LR04E-R 5.7 Write operations Following a Start condition, the bus master sends a device select code with the Read/Write bit (RW) reset to 0. The device acknowledges this, as shown in Figure 8, and waits for two address bytes. The device responds to each address byte with an acknowledge bit, and then waits for the data byte. Writing to the memory may be inhibited if the I2C_Write_Lock bit = 1. A Write instruction issued with the I2C_Write_Lock bit = 1 and with no I2C_Password presented does not modify the memory contents, and the accompanying data bytes are not acknowledged, as shown in Figure 8. Each data byte in the memory has a 16-bit (two byte wide) address. The most significant byte (Table 3) is sent first, followed by the least significant byte (Table 4). Bits b15 to b0 form the address of the byte in memory. When the bus master generates a Stop condition immediately after the Ack bit (in the tenth- bit time slot), either at the end of a byte write or a page write, the internal write cycle is triggered. A Stop condition at any other time slot does not trigger the internal write cycle. After the Stop condition, the delay t , and the successful completion of a Write operation, W the device’s internal address counter is incremented automatically, to point to the next byte address after the last one that was modified. During the internal write cycle, the serial data (SDA) signal is disabled internally, and the device does not respond to any requests. 5.8 Byte write After the device select code and the address bytes, the bus master sends one data byte. If the addressed location is write-protected by the I2C_Write_Lock bit (= 1), the device replies with NoAck, and the location is not modified. If the addressed location is not write-protected, the device replies with Ack. The bus master terminates the transfer by generating a Stop condition, as shown in Figure 9. 5.9 Page write The Page write mode allows up to four bytes to be written in a single write cycle, provided that they are all located in the same “row” in the memory: that is, the most significant memory address bits (b12-b2) are the same. If more bytes are sent than fit up to the end of the row, a condition known as “roll-over” occurs. This should be avoided, as data starts to become overwritten in an implementation-dependent way. The bus master sends from one to four bytes of data, each of which is acknowledged by the device if the I2C_Write_Lock bit = 0 or the I2C_Password was correctly presented. If the I2C_Write_Lock_bit = 1 and the I2C_password are not presented, the contents of the addressed memory location are not modified, and each data byte is followed by a NoAck. After each byte is transferred, the internal byte address counter (inside the page) is incremented. The transfer is terminated by the bus master generating a Stop condition. 34/146 DocID022208 Rev 11

M24LR04E-R I2C device operation Figure 9. Write mode sequences with I2C_Write_Lock bit = 0 (data write enabled) (cid:33)(cid:35)(cid:43) (cid:33)(cid:35)(cid:43) (cid:33)(cid:35)(cid:43) (cid:33)(cid:35)(cid:43) (cid:34)(cid:89)(cid:84)(cid:69)(cid:0)(cid:55)(cid:82)(cid:73)(cid:84)(cid:69) (cid:36)(cid:69)(cid:86)(cid:0)(cid:51)(cid:69)(cid:76)(cid:69)(cid:67)(cid:84) (cid:34)(cid:89)(cid:84)(cid:69)(cid:0)(cid:65)(cid:68)(cid:68)(cid:82)(cid:69)(cid:83)(cid:83) (cid:34)(cid:89)(cid:84)(cid:69)(cid:0)(cid:65)(cid:68)(cid:68)(cid:82)(cid:69)(cid:83)(cid:83) (cid:36)(cid:65)(cid:84)(cid:65)(cid:0)(cid:73)(cid:78) (cid:51)(cid:84)(cid:65)(cid:82)(cid:84) (cid:50)(cid:15)(cid:55) (cid:51)(cid:84)(cid:79)(cid:80) (cid:33)(cid:35)(cid:43) (cid:33)(cid:35)(cid:43) (cid:33)(cid:35)(cid:43) (cid:33)(cid:35)(cid:43) (cid:33)(cid:35)(cid:43) (cid:33)(cid:35)(cid:43) (cid:48)(cid:65)(cid:71)(cid:69)(cid:0)(cid:55)(cid:82)(cid:73)(cid:84)(cid:69) (cid:36)(cid:69)(cid:86)(cid:0)(cid:51)(cid:69)(cid:76)(cid:69)(cid:67)(cid:84) (cid:34)(cid:89)(cid:84)(cid:69)(cid:0)(cid:65)(cid:68)(cid:68)(cid:82)(cid:69)(cid:83)(cid:83) (cid:34)(cid:89)(cid:84)(cid:69)(cid:0)(cid:65)(cid:68)(cid:68)(cid:82)(cid:69)(cid:83)(cid:83) (cid:36)(cid:65)(cid:84)(cid:65)(cid:0)(cid:73)(cid:78)(cid:0)(cid:17) (cid:36)(cid:65)(cid:84)(cid:65)(cid:0)(cid:73)(cid:78)(cid:0)(cid:18) (cid:36)(cid:65)(cid:84)(cid:65)(cid:0)(cid:73)(cid:78)(cid:0)(cid:46) (cid:51)(cid:84)(cid:65)(cid:82)(cid:84) (cid:50)(cid:15)(cid:55) (cid:51)(cid:84)(cid:79)(cid:80) (cid:33)(cid:41)(cid:17)(cid:21)(cid:17)(cid:17)(cid:22) Figure 10. Write cycle polling flowchart using Ack (cid:58)(cid:85)(cid:76)(cid:87)(cid:72)(cid:3)(cid:70)(cid:92)(cid:70)(cid:79)(cid:72)(cid:3)(cid:76)(cid:81)(cid:3)(cid:83)(cid:85)(cid:82)(cid:74)(cid:85)(cid:72)(cid:86)(cid:86) (cid:54)(cid:87)(cid:68)(cid:85)(cid:87)(cid:3)(cid:70)(cid:82)(cid:81)(cid:71)(cid:76)(cid:87)(cid:76)(cid:82)(cid:81) (cid:39)(cid:72)(cid:89)(cid:76)(cid:70)(cid:72)(cid:3)(cid:86)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:3)(cid:90)(cid:76)(cid:87)(cid:75)(cid:3)(cid:53)(cid:58)(cid:3)(cid:32)(cid:3)(cid:19) (cid:49)(cid:82) (cid:36)(cid:70)(cid:78)(cid:3)(cid:85)(cid:72)(cid:87)(cid:88)(cid:85)(cid:81)(cid:72)(cid:71) (cid:41)(cid:76)(cid:85)(cid:86)(cid:87)(cid:3)(cid:69)(cid:92)(cid:87)(cid:72)(cid:3)(cid:82)(cid:73)(cid:3)(cid:76)(cid:81)(cid:86)(cid:87)(cid:85)(cid:88)(cid:70)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3) (cid:60)(cid:72)(cid:86) (cid:90)(cid:76)(cid:87)(cid:75)(cid:3)(cid:53)(cid:58)(cid:3)(cid:32)(cid:3)(cid:19)(cid:3)(cid:68)(cid:79)(cid:85)(cid:72)(cid:68)(cid:71)(cid:92)(cid:3) (cid:71)(cid:72)(cid:70)(cid:82)(cid:71)(cid:72)(cid:71)(cid:3)(cid:69)(cid:92)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:71)(cid:72)(cid:89)(cid:76)(cid:70)(cid:72) (cid:49)(cid:82) (cid:49)(cid:72)(cid:91)(cid:87)(cid:3)(cid:82)(cid:83)(cid:72)(cid:85)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:76)(cid:86) (cid:60)(cid:72)(cid:86) (cid:68)(cid:71)(cid:71)(cid:85)(cid:72)(cid:86)(cid:86)(cid:76)(cid:81)(cid:74)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:80)(cid:72)(cid:80)(cid:82)(cid:85)(cid:92) (cid:54)(cid:72)(cid:81)(cid:71)(cid:3)(cid:68)(cid:71)(cid:71)(cid:85)(cid:72)(cid:86)(cid:86) (cid:68)(cid:81)(cid:71)(cid:3)(cid:53)(cid:72)(cid:70)(cid:72)(cid:76)(cid:89)(cid:72)(cid:3)(cid:36)(cid:70)(cid:78) (cid:53)(cid:72)(cid:54)(cid:87)(cid:68)(cid:85)(cid:87) (cid:49)(cid:82) (cid:60)(cid:72)(cid:86) (cid:54)(cid:87)(cid:68)(cid:85)(cid:87)(cid:3)(cid:70)(cid:82)(cid:81)(cid:71)(cid:76)(cid:87)(cid:76)(cid:82)(cid:81) (cid:54)(cid:87)(cid:82)(cid:83) (cid:39)(cid:68)(cid:87)(cid:68)(cid:3)(cid:73)(cid:82)(cid:85)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3) (cid:39)(cid:72)(cid:89)(cid:76)(cid:70)(cid:72)(cid:3)(cid:86)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:3) (cid:58)(cid:85)(cid:76)(cid:87)(cid:72)(cid:3)(cid:82)(cid:83)(cid:72)(cid:85)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81) (cid:90)(cid:76)(cid:87)(cid:75)(cid:3)(cid:53)(cid:58)(cid:3)(cid:32)(cid:3)(cid:20) (cid:38)(cid:82)(cid:81)(cid:87)(cid:76)(cid:81)(cid:88)(cid:72)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3) (cid:38)(cid:82)(cid:81)(cid:87)(cid:76)(cid:81)(cid:88)(cid:72)(cid:3)(cid:87)(cid:75)(cid:72) (cid:58)(cid:85)(cid:76)(cid:87)(cid:72)(cid:3)(cid:82)(cid:83)(cid:72)(cid:85)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81) (cid:53)(cid:68)(cid:81)(cid:71)(cid:82)(cid:80)(cid:3)(cid:53)(cid:72)(cid:68)(cid:71)(cid:3)(cid:82)(cid:83)(cid:72)(cid:85)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81) (cid:48)(cid:54)(cid:23)(cid:19)(cid:24)(cid:19)(cid:25)(cid:57)(cid:20) DocID022208 Rev 11 35/146 145

I2C device operation M24LR04E-R 5.10 Minimizing system delays by polling on Ack During the internal write cycle, the device disconnects itself from the bus, and writes a copy of the data from its internal latches to the memory cells. The maximum I²C write time (t ) is w shown in Table 122, but the typical time is shorter. To make use of this, a polling sequence can be used by the bus master. The sequence, as shown in Figure 10, is: 1. Initial condition: a write cycle is in progress. 2. Step 1: the bus master issues a Start condition followed by a device select code (the first byte of the new instruction). 3. Step 2: if the device is busy with the internal write cycle, no Ack is returned and the bus master goes back to Step 1. If the device has terminated the internal write cycle, it responds with an Ack, indicating that the device is ready to receive the second part of the instruction (the first byte of this instruction having been sent during Step 1). Figure 11. Read mode sequences (cid:36)(cid:38)(cid:46) (cid:49)(cid:50)(cid:3)(cid:36)(cid:38)(cid:46) (cid:38)(cid:88)(cid:85)(cid:85)(cid:72)(cid:81)(cid:87)(cid:3) (cid:36)(cid:71)(cid:71)(cid:85)(cid:72)(cid:86)(cid:86)(cid:3) (cid:39)(cid:72)(cid:89)(cid:3)(cid:86)(cid:72)(cid:79) (cid:39)(cid:68)(cid:87)(cid:68)(cid:3)(cid:82)(cid:88)(cid:87) (cid:53)(cid:72)(cid:68)(cid:71) (cid:68)(cid:85)(cid:87) (cid:82)(cid:83) (cid:54)(cid:87) (cid:53)(cid:18)(cid:58) (cid:54)(cid:87) (cid:36)(cid:38)(cid:46) (cid:36)(cid:38)(cid:46) (cid:36)(cid:38)(cid:46) (cid:36)(cid:38)(cid:46) (cid:49)(cid:50)(cid:3)(cid:36)(cid:38)(cid:46) (cid:53)(cid:68)(cid:81)(cid:71)(cid:82)(cid:80)(cid:3) (cid:36)(cid:71)(cid:71)(cid:85)(cid:72)(cid:86)(cid:86)(cid:3) (cid:39)(cid:72)(cid:89)(cid:3)(cid:86)(cid:72)(cid:79)(cid:3)(cid:13) (cid:37)(cid:92)(cid:87)(cid:72)(cid:3)(cid:68)(cid:71)(cid:71)(cid:85) (cid:37)(cid:92)(cid:87)(cid:72)(cid:3)(cid:68)(cid:71)(cid:71)(cid:85) (cid:39)(cid:72)(cid:89)(cid:3)(cid:86)(cid:72)(cid:79)(cid:3)(cid:13) (cid:39)(cid:68)(cid:87)(cid:68)(cid:3)(cid:82)(cid:88)(cid:87) (cid:53)(cid:72)(cid:68)(cid:71) (cid:68)(cid:85)(cid:87) (cid:68)(cid:85)(cid:87) (cid:82)(cid:83) (cid:54)(cid:87) (cid:53)(cid:18)(cid:58) (cid:54)(cid:87) (cid:53)(cid:18)(cid:58) (cid:54)(cid:87) (cid:36)(cid:38)(cid:46) (cid:36)(cid:38)(cid:46) (cid:36)(cid:38)(cid:46) (cid:49)(cid:50)(cid:3)(cid:36)(cid:38)(cid:46) (cid:54)(cid:72)(cid:84)(cid:88)(cid:72)(cid:81)(cid:87)(cid:76)(cid:68)(cid:79)(cid:3) (cid:38)(cid:88)(cid:85)(cid:85)(cid:72)(cid:81)(cid:87)(cid:3) (cid:39)(cid:72)(cid:89)(cid:3)(cid:86)(cid:72)(cid:79) (cid:39)(cid:68)(cid:87)(cid:68)(cid:3)(cid:82)(cid:88)(cid:87)(cid:3)(cid:20) (cid:39)(cid:68)(cid:87)(cid:68)(cid:3)(cid:82)(cid:88)(cid:87)(cid:3)(cid:49) (cid:53)(cid:72)(cid:68)(cid:71) (cid:68)(cid:85)(cid:87) (cid:82)(cid:83) (cid:54)(cid:87) (cid:53)(cid:18)(cid:58) (cid:54)(cid:87) (cid:36)(cid:38)(cid:46) (cid:36)(cid:38)(cid:46) (cid:36)(cid:38)(cid:46) (cid:36)(cid:38)(cid:46) (cid:36)(cid:38)(cid:46) (cid:36)(cid:38)(cid:46) (cid:49)(cid:50)(cid:3)(cid:36)(cid:38)(cid:46) (cid:54)(cid:72)(cid:84)(cid:88)(cid:72)(cid:81)(cid:87)(cid:76)(cid:68)(cid:79)(cid:3) (cid:53)(cid:68)(cid:81)(cid:71)(cid:82)(cid:80)(cid:3) (cid:39)(cid:72)(cid:89)(cid:3)(cid:86)(cid:72)(cid:79)(cid:3)(cid:13) (cid:37)(cid:92)(cid:87)(cid:72)(cid:3)(cid:68)(cid:71)(cid:71)(cid:85) (cid:37)(cid:92)(cid:87)(cid:72)(cid:3)(cid:68)(cid:71)(cid:71)(cid:85) (cid:39)(cid:72)(cid:89)(cid:3)(cid:86)(cid:72)(cid:79)(cid:3)(cid:13) (cid:39)(cid:68)(cid:87)(cid:68)(cid:3)(cid:82)(cid:88)(cid:87)(cid:20) (cid:39)(cid:68)(cid:87)(cid:68)(cid:3)(cid:82)(cid:88)(cid:87)(cid:3)(cid:49) (cid:53)(cid:72)(cid:68)(cid:71) (cid:68)(cid:85)(cid:87) (cid:68)(cid:85)(cid:87) (cid:82)(cid:83) (cid:54)(cid:87) (cid:53)(cid:18)(cid:58) (cid:54)(cid:87) (cid:53)(cid:18)(cid:58) (cid:54)(cid:87) (cid:48)(cid:54)(cid:23)(cid:26)(cid:21)(cid:21)(cid:25)(cid:57)(cid:20) 1. The seven most significant bits of the device select code of a random read (in the first and fourth bytes) must be identical. 36/146 DocID022208 Rev 11

M24LR04E-R I2C device operation 5.11 Read operations Read operations are performed independently of the state of the I2C_Write_Lock bit. After the successful completion of a read operation, the device’s internal address counter is incremented by one, to point to the next byte address. 5.12 Random Address Read A dummy write is first performed to load the address into this address counter (as shown in Figure 11) but without sending a Stop condition. Then, the bus master sends another Start condition, and repeats the device select code, with the Read/Write bit (RW) set to 1. The device acknowledges this, and outputs the contents of the addressed byte. The bus master must not acknowledge the byte, and terminates the transfer with a Stop condition. 5.13 Current Address Read For the Current Address Read operation, following a Start condition, the bus master only sends a device select code with the Read/Write bit (RW) set to 1. The device acknowledges this, and outputs the byte addressed by the internal address counter. The counter is then incremented. The bus master terminates the transfer with a Stop condition, as shown in Figure 11, without acknowledging the byte. 5.14 Sequential Read This operation can be used after a Current Address Read or a Random Address Read. The bus master does acknowledge the data byte output, and sends additional clock pulses so that the device continues to output the next byte in sequence. To terminate the stream of bytes, the bus master must not acknowledge the last byte, and must generate a Stop condition, as shown in Figure 11. The output data come from consecutive addresses, with the internal address counter automatically incremented after each byte output. After the last memory address, the address counter “rolls-over”, and the device continues to output data from memory address 00h. 5.15 Acknowledge in Read mode For all Read commands, the device waits, after each byte read, for an acknowledgment during the ninth bit time. If the bus master does not drive Serial Data (SDA) low during this time, the device terminates the data transfer and switches to its Standby mode. DocID022208 Rev 11 37/146 145

I2C device operation M24LR04E-R 2 5.16 M24LR04E-R I C password security The M24LR04E-R controls I2C sector write access using the 32-bit-long I2C password and the 64-bit I2C_Write_Lock bit area. The I2C password value is managed using two I2C commands: I2C present password and I2C write password. 5.16.1 I2C present password command description The I2C present password command is used in I2C mode to present the password to the M24LR04E-R in order to modify the write access rights of all the memory sectors protected by the I2C_Write_Lock bits, including the password itself. If the presented password is correct, the access rights remain activated until the M24LR04E-R is powered off or until a new I2C present password command is issued. Following a Start condition, the bus master sends a device select code with the Read/Write bit (RW) reset to 0 and the Chip Enable bit E2 at 1. The device acknowledges this, as shown in Figure 12, and waits for two I2C password address bytes 09h and 00h. The device responds to each address byte with an acknowledge bit, and then waits for the four password data bytes, the validation code, 09h, and a resend of the four password data bytes. The most significant byte of the password is sent first, followed by the least significant bytes. It is necessary to send the 32-bit password twice to prevent any data corruption during the sequence. If the two 32-bit passwords sent are not exactly the same, the M24LR04E-R does not start the internal comparison. When the bus master generates a Stop condition immediately after the Ack bit (during the tenth bit time slot), an internal delay equivalent to the write cycle time is triggered. A Stop condition at any other time does not trigger the internal delay. During that delay, the M24LR04E-R compares the 32 received data bits with the 32 bits of the stored I2C password. If the values match, the write access rights to all protected sectors are modified after the internal delay. If the values do not match, the protected sectors remains protected. During the internal delay, the serial data (SDA) signal is disabled internally, and the device does not respond to any requests. Figure 12. I2C present password command (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:36)(cid:69)(cid:86)(cid:73)(cid:67)(cid:69)(cid:0)(cid:83)(cid:69)(cid:76)(cid:69)(cid:67)(cid:84) (cid:48)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:48)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:48)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:48)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:48)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:48)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:67)(cid:79)(cid:68)(cid:69) (cid:65)(cid:68)(cid:68)(cid:82)(cid:69)(cid:83)(cid:83)(cid:0)(cid:16)(cid:25)(cid:72) (cid:65)(cid:68)(cid:68)(cid:82)(cid:69)(cid:83)(cid:83)(cid:0)(cid:16)(cid:16)(cid:72) (cid:59)(cid:19)(cid:17)(cid:26)(cid:18)(cid:20)(cid:61) (cid:59)(cid:18)(cid:19)(cid:26)(cid:17)(cid:22)(cid:61) (cid:59)(cid:17)(cid:21)(cid:26)(cid:24)(cid:61) (cid:59)(cid:23)(cid:26)(cid:16)(cid:61) (cid:51)(cid:84)(cid:65)(cid:82)(cid:84) (cid:50)(cid:15)(cid:55) (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:54)(cid:65)(cid:76)(cid:73)(cid:68)(cid:65)(cid:84)(cid:73)(cid:79)(cid:78) (cid:48)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:48)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:48)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:48)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:67)(cid:79)(cid:68)(cid:69)(cid:0)(cid:16)(cid:25)(cid:72) (cid:59)(cid:19)(cid:17)(cid:26)(cid:18)(cid:20)(cid:61) (cid:59)(cid:18)(cid:19)(cid:26)(cid:17)(cid:22)(cid:61) (cid:59)(cid:17)(cid:21)(cid:26)(cid:24)(cid:61) (cid:59)(cid:23)(cid:26)(cid:16)(cid:61) (cid:80) (cid:79) (cid:36)(cid:69)(cid:86)(cid:73)(cid:67)(cid:69)(cid:0)(cid:83)(cid:69)(cid:76)(cid:69)(cid:67)(cid:84)(cid:0)(cid:67)(cid:79)(cid:68)(cid:69)(cid:0)(cid:29)(cid:0)(cid:17)(cid:16)(cid:17)(cid:16)(cid:0)(cid:17)(cid:0)(cid:17)(cid:0)(cid:17) (cid:51)(cid:84) (cid:33)(cid:67)(cid:75)(cid:0)(cid:71)(cid:69)(cid:78)(cid:69)(cid:82)(cid:65)(cid:84)(cid:69)(cid:68)(cid:0)(cid:68)(cid:85)(cid:82)(cid:73)(cid:78)(cid:71)(cid:0)(cid:0)(cid:25)(cid:84)(cid:72)(cid:0)(cid:66)(cid:73)(cid:84)(cid:0)(cid:84)(cid:73)(cid:77)(cid:69)(cid:0)(cid:83)(cid:76)(cid:79)(cid:84)(cid:14) (cid:65)(cid:73)(cid:17)(cid:21)(cid:17)(cid:18)(cid:21)(cid:67) 38/146 DocID022208 Rev 11

M24LR04E-R I2C device operation 5.16.2 I2C write password command description The I2C write password command is used to write a 32-bit block into the M24LR04E-R I2C password system area. This command is used in I2C mode to update the I2C password value. It cannot be used to update any of the RF passwords. After the write cycle, the new I2C password value is automatically activated. The I2C password value can only be modified after issuing a valid I2C present password command. On delivery, the I2C default password value is set to 0000 0000h and is activated. Following a Start condition, the bus master sends a device select code with the Read/Write bit (RW) reset to 0 and the Chip Enable bit E2 at 1. The device acknowledges this, as shown in Figure 13, and waits for the two I2C password address bytes, 09h and 00h. The device responds to each address byte with an acknowledge bit, and then waits for the four password data bytes, the validation code, 07h, and a resend of the four password data bytes. The most significant byte of the password is sent first, followed by the least significant bytes. It is necessary to send twice the 32-bit password to prevent any data corruption during the write sequence. If the two 32-bit passwords sent are not exactly the same, the M24LR04E-R does not modify the I2C password value. When the bus master generates a Stop condition immediately after the Ack bit (during the tenth bit time slot), the internal write cycle is triggered. A Stop condition at any other time does not trigger the internal write cycle. During the internal write cycle, the serial data (SDA) signal is disabled internally, and the device does not respond to any requests. Figure 13. I2C write password command (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:36)(cid:69)(cid:86)(cid:73)(cid:67)(cid:69)(cid:0)(cid:83)(cid:69)(cid:76)(cid:69)(cid:67)(cid:84) (cid:48)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:48)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:46)(cid:69)(cid:87)(cid:0)(cid:80)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:46)(cid:69)(cid:87)(cid:0)(cid:80)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:46)(cid:69)(cid:87)(cid:0)(cid:80)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:46)(cid:69)(cid:87)(cid:0)(cid:80)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:67)(cid:79)(cid:68)(cid:69) (cid:65)(cid:68)(cid:68)(cid:82)(cid:69)(cid:83)(cid:83)(cid:0)(cid:16)(cid:25)(cid:72) (cid:65)(cid:68)(cid:68)(cid:82)(cid:69)(cid:83)(cid:83)(cid:0)(cid:16)(cid:16)(cid:72) (cid:59)(cid:19)(cid:17)(cid:26)(cid:18)(cid:20)(cid:61) (cid:59)(cid:18)(cid:19)(cid:26)(cid:17)(cid:22)(cid:61) (cid:59)(cid:17)(cid:21)(cid:26)(cid:24)(cid:61) (cid:59)(cid:23)(cid:26)(cid:16)(cid:61) (cid:51)(cid:84)(cid:65)(cid:82)(cid:84) (cid:50)(cid:15)(cid:55) (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:33)(cid:67)(cid:75) (cid:54)(cid:65)(cid:76)(cid:73)(cid:68)(cid:65)(cid:84)(cid:73)(cid:79)(cid:78) (cid:46)(cid:69)(cid:87)(cid:0)(cid:80)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:46)(cid:69)(cid:87)(cid:0)(cid:80)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:46)(cid:69)(cid:87)(cid:0)(cid:80)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:46)(cid:69)(cid:87)(cid:0)(cid:80)(cid:65)(cid:83)(cid:83)(cid:87)(cid:79)(cid:82)(cid:68) (cid:67)(cid:79)(cid:68)(cid:69)(cid:0)(cid:16)(cid:23)(cid:72) (cid:59)(cid:19)(cid:17)(cid:26)(cid:18)(cid:20)(cid:61) (cid:59)(cid:18)(cid:19)(cid:26)(cid:17)(cid:22)(cid:61) (cid:59)(cid:17)(cid:21)(cid:26)(cid:24)(cid:61) (cid:59)(cid:23)(cid:26)(cid:16)(cid:61) (cid:80) (cid:79) (cid:36)(cid:69)(cid:86)(cid:73)(cid:67)(cid:69)(cid:0)(cid:83)(cid:69)(cid:76)(cid:69)(cid:67)(cid:84)(cid:0)(cid:67)(cid:79)(cid:68)(cid:69)(cid:0)(cid:29)(cid:0)(cid:17)(cid:16)(cid:17)(cid:16)(cid:0)(cid:17)(cid:0)(cid:17)(cid:0)(cid:17) (cid:51)(cid:84) (cid:33)(cid:67)(cid:75)(cid:0)(cid:71)(cid:69)(cid:78)(cid:69)(cid:82)(cid:65)(cid:84)(cid:69)(cid:68)(cid:0)(cid:68)(cid:85)(cid:82)(cid:73)(cid:78)(cid:71)(cid:0)(cid:0)(cid:25)(cid:84)(cid:72)(cid:0)(cid:66)(cid:73)(cid:84)(cid:0)(cid:84)(cid:73)(cid:77)(cid:69)(cid:0)(cid:83)(cid:76)(cid:79)(cid:84)(cid:14) (cid:65)(cid:73)(cid:17)(cid:21)(cid:17)(cid:18)(cid:22)(cid:66) DocID022208 Rev 11 39/146 145

M24LR04E-R memory initial state M24LR04E-R 6 M24LR04E-R memory initial state The device is delivered with all bits set to 1 in the user memory array. • User Memory content: FFh • System bits delivery • I2C write lock bits: 00h • Sector Security Status: 00h • I2C Password: 0000 0000h • RF Password: 0000 0000h • IC ref: 5Ah • UID: E0 02 xx xx xx xxh • DSFID: FFh • AFI: 00h • Memory size: 03 7Fh • Energy Harvesting Configuration byte: F4h • Bit 7 to bit 4: all set to 1 • Bit 3: set to 0 (RF BUSY mode on RF WIP/BUSY pin) • Bit 2: set to 1 (Energy harvesting not activated by default) • Bit 1 and bit 0: set to 0 (fan-out setting) 40/146 DocID022208 Rev 11

M24LR04E-R RF device operation 7 RF device operation The M24LR04E-R is divided into four sectors of 32 blocks of 32 bits, as shown in Table 5. Each sector can be individually read- and/or write-protected using a specific lock or password command. Read and Write operations are possible if the addressed block is not protected. During a Write, the 32 bits of the block are replaced by the new 32-bit value. The M24LR04E-R also has a 64-bit block that is used to store the 64-bit unique identifier (UID). The UID is compliant with the ISO 15963 description, and its value is used during the anticollision sequence (Inventory). This block is not accessible by the user in RF device operation and its value is written by ST on the production line. The M24LR04E-R also includes an AFI register in which the application family identifier is stored, and a DSFID register in which the data storage family identifier used in the anticollision algorithm is stored. The M24LR04E-R has three 32-bit blocks in which the password codes are stored and a 8- bit Configuration byte in which the Energy harvesting mode and RF WIP/BUSY pin configuration is stored. 7.1 RF communication and energy harvesting Because current consumption can affect the AC signal delivered by the antenna, RF communications with M24LR04E-R are not guaranteed during voltage delivery on the energy harvesting analog output Vout. RF communication can disturb and possibly stop Energy Harvesting mode. DocID022208 Rev 11 41/146 145

RF device operation M24LR04E-R 7.2 Commands The M24LR04E-R supports the following commands: • Inventory, used to perform the anticollision sequence. • Stay quiet, used to put the M24LR04E-R in quiet mode, where it does not respond to any inventory command. • Select, used to select the M24LR04E-R. After this command, the M24LR04E-R processes all Read/Write commands with Select_flag set. • Reset to ready, used to put the M24LR04E-R in the ready state. • Read block, used to output the 32 bits of the selected block and its locking status. • Write block, used to write the 32-bit value in the selected block, provided that it is not locked. • Read multiple blocks, used to read the selected blocks and send back their value. • Write AFI, used to write the 8-bit value in the AFI register. • Lock AFI, used to lock the AFI register. • Write DSFID, used to write the 8-bit value in the DSFID register. • Lock DSFID, used to lock the DSFID register. • Get system info, used to provide the system information value • Get multiple block security status, used to send the security status of the selected block. • Initiate, used to trigger the tag response to the Inventory initiated sequence. • Inventory initiated, used to perform the anticollision sequence triggered by the Initiate command. • Write-sector password, used to write the 32 bits of the selected password. • Lock-sector, used to write the sector security status bits of the selected sector. • Present-sector password, enables the user to present a password to unprotect the user blocks linked to this password. • Fast initiate, used to trigger the tag response to the Inventory initiated sequence. • Fast inventory initiated, used to perform the anticollision sequence triggered by the Initiate command. • Fast read single block, used to output the 32 bits of the selected block and its locking status. • Fast read multiple blocks, used to read the selected blocks and send back their value. • ReadCfg, used to read the 8-bit Configuration byte and send back its value. • WriteEHCfg, used to write the energy harvesting configuration bits into the Configuration byte. • WriteDOCfg, used to write the RF WIP/BUSY pin configuration bit into the Configuration byte. • SetRstEHEn, used to set or reset the EH_enable bit into the volatile Control register. • CheckEHEn, used to send back the value of the volatile Control register. 42/146 DocID022208 Rev 11

M24LR04E-R RF device operation 7.3 Initial dialog for vicinity cards The dialog between the vicinity coupling device or VCD (commonly the “RF reader”) and the vicinity integrated circuit card or VICC (M24LR04E-R) takes place as follows: • activation of the M24LR04E-R by the RF operating field of the VCD, • transmission of a command by the VCD, • transmission of a response by the M24LR04E-R. These operations use the RF power transfer and communication signal interface described below (see Power transfer, Frequency and Operating field). This technique is called RTF (Reader talk first). 7.3.1 Power transfer Power is transferred to the M24LR04E-R by radio frequency at 13.56 MHz via coupling antennas in the M24LR04E-R and the VCD. The RF operating field of the VCD is transformed on the M24LR04E-R antenna to an AC voltage which is rectified, filtered and internally regulated. During communications, the amplitude modulation (ASK) on this received signal is demodulated by the ASK demodulator. 7.3.2 Frequency The ISO 15693 standard defines the carrier frequency (f ) of the operating field as C 13.56 MHz ±7 kHz. 7.3.3 Operating field The M24LR04E-R operates continuously between the minimum and maximum values of the electromagnetic field H defined in Table 124. The VCD has to generate a field within these limits. DocID022208 Rev 11 43/146 145

Communication signal from VCD to M24LR04E-R M24LR04E-R 8 Communication signal from VCD to M24LR04E-R Communications between the VCD and the M24LR04E-R takes place using the modulation principle of ASK (Amplitude shift keying). Two modulation indexes are used, 10% and 100%. The M24LR04E-R decodes both. The VCD determines which index is used. The modulation index is defined as [a – b] / [a + b], where a and b are, respectively the peak signal amplitude and the minimum signal amplitude of the carrier frequency. Depending on the choice made by the VCD, a “pause” is created as shown in Figure 14 and Figure 15. The M24LR04E-R is operational for the 100% modulation index or for any degree of modulation index between 10% and 30% (see Table 124). Figure 14. 100% modulation waveform (cid:38)(cid:68)(cid:85)(cid:85)(cid:76)(cid:72)(cid:85)(cid:3) (cid:87) (cid:87) (cid:68)(cid:80)(cid:83)(cid:79)(cid:76)(cid:87)(cid:88)(cid:71)(cid:72) (cid:20) (cid:22) (cid:87) (cid:23) (cid:20)(cid:19)(cid:24)(cid:8) (cid:68) (cid:28)(cid:24)(cid:8) (cid:25)(cid:19)(cid:8) (cid:410) (cid:1006) (cid:48)(cid:76)(cid:81) (cid:48)(cid:68)(cid:91) (cid:87) (cid:25)(cid:17)(cid:19)(cid:3)(cid:151)(cid:86) (cid:28)(cid:17)(cid:23)(cid:23)(cid:3)(cid:151)(cid:86) (cid:20) (cid:24)(cid:8) (cid:87) (cid:21)(cid:17)(cid:20)(cid:3)(cid:151)(cid:86) (cid:87) (cid:69) (cid:21) (cid:20) (cid:87) (cid:19)(cid:3)(cid:151)(cid:86) (cid:23)(cid:17)(cid:24)(cid:3)(cid:151)(cid:86) (cid:22) (cid:87) (cid:87) (cid:19)(cid:3)(cid:151)(cid:86) (cid:19)(cid:17)(cid:27)(cid:3)(cid:151)(cid:86) (cid:23) (cid:55)(cid:75)(cid:72)(cid:3)(cid:70)(cid:79)(cid:82)(cid:70)(cid:78)(cid:3)(cid:85)(cid:72)(cid:70)(cid:82)(cid:89)(cid:72)(cid:85)(cid:92)(cid:3)(cid:86)(cid:75)(cid:68)(cid:79)(cid:79)(cid:3)(cid:69)(cid:72)(cid:3)(cid:82)(cid:83)(cid:72)(cid:85)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:68)(cid:79)(cid:3)(cid:68)(cid:73)(cid:87)(cid:72)(cid:85)(cid:3)(cid:87) (cid:80)(cid:68)(cid:91) (cid:23)(cid:3) (cid:48)(cid:54)(cid:23)(cid:19)(cid:24)(cid:19)(cid:23)(cid:57)(cid:20) Table 19. 10% modulation parameters Symbol Parameter definition Value hr 0.1 x (a – b) max hf 0.1 x (a – b) max 44/146 DocID022208 Rev 11

M24LR04E-R Communication signal from VCD to M24LR04E-R Figure 15. 10% modulation waveform (cid:38)(cid:68)(cid:85)(cid:85)(cid:76)(cid:72)(cid:85)(cid:3)(cid:68)(cid:80)(cid:83)(cid:79)(cid:76)(cid:87)(cid:88)(cid:71)(cid:72) (cid:87) (cid:20) (cid:87) (cid:87) (cid:21) (cid:22) (cid:92) (cid:68) (cid:75)(cid:73) (cid:69) (cid:92) (cid:75)(cid:85) (cid:87) (cid:48)(cid:76)(cid:81) (cid:48)(cid:68)(cid:91) (cid:87) (cid:25)(cid:17)(cid:19)(cid:3)(cid:151)(cid:86) (cid:28)(cid:17)(cid:23)(cid:23)(cid:3)(cid:151)(cid:86) (cid:20) (cid:92) (cid:19)(cid:17)(cid:19)(cid:24)(cid:3)(cid:11)(cid:68)(cid:16)(cid:69)(cid:12) (cid:87) (cid:22)(cid:17)(cid:19)(cid:3)(cid:151)(cid:86) (cid:87) (cid:21) (cid:20) (cid:75)(cid:73)(cid:15)(cid:3)(cid:75)(cid:85) (cid:19)(cid:17)(cid:20)(cid:3)(cid:11)(cid:68)(cid:16)(cid:69)(cid:12)(cid:3)(cid:80)(cid:68)(cid:91) (cid:87) (cid:19) (cid:23)(cid:17)(cid:24)(cid:3)(cid:151)(cid:86) (cid:22) (cid:48)(cid:82)(cid:71)(cid:88)(cid:79)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:76)(cid:81)(cid:71)(cid:72)(cid:91) (cid:20)(cid:19)(cid:8) (cid:22)(cid:19)(cid:8) (cid:55)(cid:75)(cid:72)(cid:3)(cid:57)(cid:44)(cid:38)(cid:38)(cid:3)(cid:86)(cid:75)(cid:68)(cid:79)(cid:79)(cid:3)(cid:69)(cid:72)(cid:3)(cid:82)(cid:83)(cid:72)(cid:85)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:68)(cid:79)(cid:3)(cid:73)(cid:82)(cid:85)(cid:3)(cid:68)(cid:81)(cid:92)(cid:3)(cid:89)(cid:68)(cid:79)(cid:88)(cid:72)(cid:3)(cid:82)(cid:73)(cid:3)(cid:80)(cid:82)(cid:71)(cid:88)(cid:79)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:76)(cid:81)(cid:71)(cid:72)(cid:91)(cid:3)(cid:69)(cid:72)(cid:87)(cid:90)(cid:72)(cid:72)(cid:81)(cid:3)(cid:20)(cid:19)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:22)(cid:19)(cid:8)(cid:17)(cid:3)(cid:3) (cid:48)(cid:54)(cid:23)(cid:19)(cid:24)(cid:19)(cid:20)(cid:57)(cid:20) DocID022208 Rev 11 45/146 145

Data rate and data coding M24LR04E-R 9 Data rate and data coding The data coding implemented in the M24LR04E-R uses pulse position modulation. Both data coding modes that are described in the ISO15693 are supported by the M24LR04E-R. The selection is made by the VCD and indicated to the M24LR04E-R within the start of frame (SOF). 9.1 Data coding mode: 1 out of 256 The value of one single byte is represented by the position of one pause. The position of the pause on 1 of 256 successive time periods of 18.88 µs (256/f ) determines the value of the C byte. In this case, the transmission of one byte takes 4.833 ms and the resulting data rate is 1.65 Kbits/s (f /8192). C Figure 16 illustrates this pulse position modulation technique. In this figure, data E1h (225 decimal) is sent by the VCD to the M24LR04E-R. The pause occurs during the second half of the position of the time period that determines the value, as shown in Figure 17. A pause during the first period transmits the data value 00h. A pause during the last period transmits the data value FFh (255 decimal). Figure 16. 1 out of 256 coding mode (cid:25)(cid:14)(cid:20)(cid:20)(cid:0)(cid:151)(cid:83) (cid:48)(cid:85)(cid:76)(cid:83)(cid:69) (cid:17)(cid:24)(cid:14)(cid:24)(cid:24)(cid:0)(cid:151)(cid:83) (cid:45)(cid:79)(cid:68)(cid:85)(cid:76)(cid:65)(cid:84)(cid:69)(cid:68) (cid:35)(cid:65)(cid:82)(cid:82)(cid:73)(cid:69)(cid:82) (cid:16)(cid:0)(cid:0)(cid:0)(cid:17)(cid:0)(cid:0)(cid:0)(cid:0)(cid:18)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:19)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:18)(cid:0)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:18)(cid:0)(cid:0)(cid:0)(cid:0)(cid:18)(cid:0)(cid:0)(cid:0)(cid:0)(cid:18)(cid:0)(cid:0)(cid:0)(cid:0)(cid:18) (cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:18)(cid:0)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:21)(cid:0)(cid:0)(cid:0)(cid:0)(cid:21)(cid:0)(cid:0)(cid:0)(cid:0)(cid:21)(cid:0)(cid:0)(cid:0)(cid:0)(cid:21) (cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:21)(cid:0)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:18)(cid:0)(cid:0)(cid:0)(cid:0)(cid:19)(cid:0)(cid:0)(cid:0)(cid:0)(cid:20)(cid:0)(cid:0)(cid:0)(cid:0)(cid:21) (cid:20)(cid:14)(cid:24)(cid:19)(cid:19)(cid:0)(cid:77)(cid:83) (cid:33)(cid:41)(cid:16)(cid:22)(cid:22)(cid:21)(cid:22) 46/146 DocID022208 Rev 11

M24LR04E-R Data rate and data coding Figure 17. Detail of a time period (cid:25)(cid:14)(cid:20)(cid:20)(cid:0)(cid:151)(cid:83) (cid:17)(cid:24)(cid:14)(cid:24)(cid:24)(cid:0)(cid:151)(cid:83) (cid:48)(cid:85)(cid:76)(cid:83)(cid:69) (cid:45)(cid:79)(cid:68)(cid:85)(cid:76)(cid:65)(cid:84)(cid:69)(cid:68) (cid:35)(cid:65)(cid:82)(cid:82)(cid:73)(cid:69)(cid:82) (cid:14)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:14) (cid:14)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:14)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:14) (cid:18) (cid:18) (cid:18) (cid:18) (cid:18) (cid:18) (cid:20) (cid:21) (cid:22) (cid:52)(cid:73)(cid:77)(cid:69)(cid:0)(cid:48)(cid:69)(cid:82)(cid:73)(cid:79)(cid:68) (cid:79)(cid:78)(cid:69)(cid:0)(cid:79)(cid:70)(cid:0)(cid:18)(cid:21)(cid:22) (cid:33)(cid:41)(cid:16)(cid:22)(cid:22)(cid:21)(cid:23) 9.2 Data coding mode: 1 out of 4 The value of two bits is represented by the position of one pause. The position of the pause on 1 of 4 successive time periods of 18.88 µs (256/f ) determines the value of the two bits. C Four successive pairs of bits form a byte, where the least significant pair of bits is transmitted first. In this case, the transmission of one byte takes 302.08 µs and the resulting data rate is 26.48 Kbits/s (f /512). Figure 18 illustrates the 1 out of 4 pulse position technique and C coding. Figure 19 shows the transmission of E1h (225d - 1110 0001b) by the VCD. DocID022208 Rev 11 47/146 145

Data rate and data coding M24LR04E-R Figure 18. 1 out of 4 coding mode (cid:48)(cid:85)(cid:76)(cid:83)(cid:69)(cid:0)(cid:80)(cid:79)(cid:83)(cid:73)(cid:84)(cid:73)(cid:79)(cid:78)(cid:0)(cid:70)(cid:79)(cid:82)(cid:0)(cid:2)(cid:16)(cid:16)(cid:2) (cid:25)(cid:14)(cid:20)(cid:20)(cid:0)(cid:151)(cid:83) (cid:25)(cid:14)(cid:20)(cid:20)(cid:0)(cid:151)(cid:83) (cid:23)(cid:21)(cid:14)(cid:21)(cid:18)(cid:0)(cid:151)(cid:83) (cid:48)(cid:85)(cid:76)(cid:83)(cid:69)(cid:0)(cid:80)(cid:79)(cid:83)(cid:73)(cid:84)(cid:73)(cid:79)(cid:78)(cid:0)(cid:70)(cid:79)(cid:82)(cid:0)(cid:2)(cid:16)(cid:17)(cid:2)(cid:0)(cid:8)(cid:17)(cid:29)(cid:44)(cid:51)(cid:34)(cid:9) (cid:18)(cid:24)(cid:14)(cid:19)(cid:18)(cid:0)(cid:151)(cid:83) (cid:25)(cid:14)(cid:20)(cid:20)(cid:0)(cid:151)(cid:83) (cid:23)(cid:21)(cid:14)(cid:21)(cid:18)(cid:0)(cid:151)(cid:83) (cid:48)(cid:85)(cid:76)(cid:83)(cid:69)(cid:0)(cid:80)(cid:79)(cid:83)(cid:73)(cid:84)(cid:73)(cid:79)(cid:78)(cid:0)(cid:70)(cid:79)(cid:82)(cid:0)(cid:2)(cid:17)(cid:16)(cid:2)(cid:0)(cid:8)(cid:16)(cid:29)(cid:44)(cid:51)(cid:34)(cid:9) (cid:20)(cid:23)(cid:14)(cid:18)(cid:16)(cid:151)(cid:83) (cid:25)(cid:14)(cid:20)(cid:20)(cid:0)(cid:151)(cid:83) (cid:48)(cid:85)(cid:76)(cid:83)(cid:69)(cid:0)(cid:80)(cid:79)(cid:83)(cid:73)(cid:84)(cid:73)(cid:79)(cid:78)(cid:0)(cid:70)(cid:79)(cid:82)(cid:0)(cid:2)(cid:17)(cid:17)(cid:2) (cid:23)(cid:21)(cid:14)(cid:21)(cid:18)(cid:0)(cid:151)(cid:83) (cid:22)(cid:22)(cid:14)(cid:16)(cid:24)(cid:0)(cid:151)(cid:83) (cid:25)(cid:14)(cid:20)(cid:20)(cid:0)(cid:151)(cid:83) (cid:23)(cid:21)(cid:14)(cid:21)(cid:18)(cid:0)(cid:151)(cid:83) (cid:33)(cid:41)(cid:16)(cid:22)(cid:22)(cid:21)(cid:24) Figure 19. 1 out of 4 coding example (cid:4)(cid:3) (cid:3)(cid:3) (cid:3)(cid:4) (cid:4)(cid:4) (cid:8)(cid:6)(cid:2)(cid:6)(cid:5)(cid:1)(cid:13)(cid:12) (cid:8)(cid:6)(cid:2)(cid:6)(cid:5)(cid:1)(cid:13)(cid:12) (cid:8)(cid:6)(cid:2)(cid:6)(cid:5)(cid:1)(cid:13)(cid:12) (cid:8)(cid:6)(cid:2)(cid:6)(cid:5)(cid:1)(cid:13)(cid:12) (cid:10)(cid:11)(cid:3)(cid:7)(cid:7)(cid:6)(cid:9) 9.3 VCD to M24LR04E-R frames Frames are delimited by a start of frame (SOF) and an end of frame (EOF). They are implemented using code violation. Unused options are reserved for future use. The M24LR04E-R is ready to receive a new command frame from the VCD 311.5 µs after sending a response frame to the VCD. The M24LR04E-R takes a power-up time of 0.1 ms after being activated by the powering field. After this delay, the M24LR04E-R is ready to receive a command frame from the VCD. 48/146 DocID022208 Rev 11

M24LR04E-R Data rate and data coding 9.4 Start of frame (SOF) The SOF defines the data coding mode the VCD is to use for the following command frame. The SOF sequence described in Figure 20 selects the 1 out of 256 data coding mode. The SOF sequence described in Figure 21 selects the 1 out of 4 data coding mode. The EOF sequence for either coding mode is described in Figure 22. Figure 20. SOF to select 1 out of 256 data coding mode (cid:9)(cid:2)(cid:6)(cid:6)(cid:1)(cid:13)(cid:12) (cid:9)(cid:2)(cid:6)(cid:6)(cid:1)(cid:13)(cid:12) (cid:5)(cid:8)(cid:2)(cid:8)(cid:7)(cid:1)(cid:13)(cid:12) (cid:5)(cid:8)(cid:2)(cid:8)(cid:7)(cid:1)(cid:13)(cid:12) (cid:10)(cid:11)(cid:3)(cid:7)(cid:7)(cid:7)(cid:4) Figure 21. SOF to select 1 out of 4 data coding mode (cid:8)(cid:2)(cid:5)(cid:5)(cid:1)(cid:12)(cid:11) (cid:8)(cid:2)(cid:5)(cid:5)(cid:1)(cid:12)(cid:11) (cid:8)(cid:2)(cid:5)(cid:5)(cid:1)(cid:12)(cid:11) (cid:4)(cid:7)(cid:2)(cid:7)(cid:6)(cid:1)(cid:12)(cid:11) (cid:4)(cid:7)(cid:2)(cid:7)(cid:6)(cid:1)(cid:12)(cid:11) (cid:9)(cid:10)(cid:3)(cid:6)(cid:6)(cid:6)(cid:3) Figure 22. EOF for either data coding mode (cid:9)(cid:2)(cid:6)(cid:6)(cid:1)(cid:13)(cid:12) (cid:9)(cid:2)(cid:6)(cid:6)(cid:1)(cid:13)(cid:12) (cid:5)(cid:8)(cid:2)(cid:8)(cid:7)(cid:1)(cid:13)(cid:12) (cid:10)(cid:11)(cid:3)(cid:7)(cid:7)(cid:7)(cid:4) DocID022208 Rev 11 49/146 145

Communication signal from M24LR04E-R to VCD M24LR04E-R 10 Communication signal from M24LR04E-R to VCD The M24LR04E-R has several modes defined for some parameters, owing to which it can operate in various noise environments and meet various application requirements. 10.1 Load modulation The M24LR04E-R is capable of communication to the VCD via an inductive coupling area whereby the carrier is loaded to generate a subcarrier with frequency f . The subcarrier is S generated by switching a load in the M24LR04E-R. The load-modulated amplitude received on the VCD antenna must be of at least 10 mV when measured as described in the test methods defined in International Standard ISO10373-7. 10.2 Subcarrier The M24LR04E-R supports the one-subcarrier and two-subcarrier response formats. These formats are selected by the VCD using the first bit in the protocol header. When one subcarrier is used, the frequency f of the subcarrier load modulation is 423.75 kHz (f /32). S1 C When two subcarriers are used, the frequency f is 423.75 kHz (f /32), and frequency f S1 C S2 is 484.28 kHz (f /28). When using the two-subcarrier mode, the M24LR04E-R generates a C continuous phase relationship between f and f . S1 S2 10.3 Data rates The M24LR04E-R can respond using the low or the high data rate format. The selection of the data rate is made by the VCD using the second bit in the protocol header. For fast commands, the selected data rate is multiplied by two. Table 20 shows the different data rates produced by the M24LR04E-R using the different response format combinations. Table 20. Response data rates Data rate One subcarrier Two subcarriers Standard commands 6.62 Kbit/s (f /2048) 6.67 Kbit/s (f /2032) c c Low Fast commands 13.24 Kbit/s (f /1024) Not applicable c Standard commands 26.48 Kbit/s (f /512) 26.69 Kbit/s (f /508) c c High Fast commands 52.97 Kbit/s (f /256) Not applicable c 50/146 DocID022208 Rev 11

M24LR04E-R Bit representation and coding 11 Bit representation and coding Data bits are encoded using Manchester coding, according to the following schemes. For the low data rate, same subcarrier frequency or frequencies is/are used. In this case, the number of pulses is multiplied by four and all times increase by this factor. For the Fast commands using one subcarrier, all pulse numbers and times are divided by 2. 11.1 Bit coding using one subcarrier 11.1.1 High data rate A logic 0 starts with eight pulses at 423.75 kHz (f /32) followed by an unmodulated time of C 18.88 µs, as shown in Figure 23. Figure 23. Logic 0, high data rate (cid:19)(cid:23)(cid:14)(cid:23)(cid:22)(cid:151)(cid:83) (cid:65)(cid:73)(cid:17)(cid:18)(cid:16)(cid:23)(cid:22) For the fast commands, a logic 0 starts with four pulses at 423.75 kHz (f /32) followed by an C unmodulated time of 9.44 µs, as shown in Figure 24. Figure 24. Logic 0, high data rate, fast commands (cid:17)(cid:24)(cid:14)(cid:24)(cid:24)(cid:151)(cid:83) (cid:65)(cid:73)(cid:17)(cid:18)(cid:16)(cid:22)(cid:22) A logic 1 starts with an unmodulated time of 18.88 µs followed by eight pulses at 423.75 kHz (f /32), as shown in Figure 25. C Figure 25. Logic 1, high data rate (cid:19)(cid:23)(cid:14)(cid:23)(cid:22)(cid:151)(cid:83) (cid:65)(cid:73)(cid:17)(cid:18)(cid:16)(cid:23)(cid:23) For the Fast commands, a logic 1 starts with an unmodulated time of 9.44 µs followed by four pulses of 423.75 kHz (f /32), as shown in Figure 26. C Figure 26. Logic 1, high data rate, fast commands (cid:17)(cid:24)(cid:14)(cid:24)(cid:24)(cid:151)(cid:83) (cid:65)(cid:73)(cid:17)(cid:18)(cid:16)(cid:22)(cid:23) DocID022208 Rev 11 51/146 145

Bit representation and coding M24LR04E-R 11.1.2 Low data rate A logic 0 starts with 32 pulses at 423.75 kHz (f /32) followed by an unmodulated time of C 75.52 µs, as shown in Figure 27. Figure 27. Logic 0, low data rate (cid:17)(cid:21)(cid:17)(cid:14)(cid:16)(cid:20)(cid:151)(cid:83) (cid:65)(cid:73)(cid:17)(cid:18)(cid:16)(cid:22)(cid:24) For the Fast commands, a logic 0 starts with 16 pulses at 423.75 kHz (f /32) followed by an C unmodulated time of 37.76 µs, as shown in Figure 28. Figure 28. Logic 0, low data rate, fast commands (cid:23)(cid:21)(cid:14)(cid:21)(cid:18)(cid:151)(cid:83) (cid:65)(cid:73)(cid:17)(cid:18)(cid:16)(cid:22)(cid:25) A logic 1 starts with an unmodulated time of 75.52 µs followed by 32 pulses at 423.75 kHz (f /32), as shown in Figure 29. C Figure 29. Logic 1, low data rate (cid:17)(cid:21)(cid:17)(cid:14)(cid:16)(cid:20)(cid:151)(cid:83) (cid:65)(cid:73)(cid:17)(cid:18)(cid:16)(cid:23)(cid:16) For the Fast commands, a logic 1 starts with an unmodulated time of 37.76 µs followed by 16 pulses at 423.75 kHz (f /32), as shown in Figure 30. C Figure 30. Logic 1, low data rate, fast commands (cid:23)(cid:21)(cid:14)(cid:21)(cid:18)(cid:151)(cid:83) (cid:65)(cid:73)(cid:17)(cid:18)(cid:16)(cid:23)(cid:17) 52/146 DocID022208 Rev 11

M24LR04E-R Bit representation and coding 11.2 Bit coding using two subcarriers 11.2.1 High data rate A logic 0 starts with eight pulses at 423.75 kHz (f /32) followed by nine pulses at C 484.28 kHz (f /28), as shown in Figure 31. Bit coding using two subcarriers is not supported C for the Fast commands. Figure 31. Logic 0, high data rate (cid:1007)(cid:1011)(cid:856)(cid:1008)(cid:1010)(cid:3)(cid:1106)(cid:400) (cid:258)(cid:349)(cid:1005)(cid:1006)(cid:1004)(cid:1011)(cid:1008) A logic 1 starts with nine pulses at 484.28 kHz (f /28) followed by eight pulses at C 423.75 kHz (f /32), as shown in Figure 32. Bit coding using two subcarriers is not supported C for the Fast commands. Figure 32. Logic 1, high data rate (cid:1007)(cid:1011)(cid:856)(cid:1008)(cid:1010)(cid:3)(cid:1106)(cid:400) (cid:258)(cid:349)(cid:1005)(cid:1006)(cid:1004)(cid:1011)(cid:1007) 11.2.2 Low data rate A logic 0 starts with 32 pulses at 423.75 kHz (f /32) followed by 36 pulses at 484.28 kHz C (f /28), as shown in Figure 33. Bit coding using two subcarriers is not supported for the Fast C commands. Figure 33. Logic 0, low data rate (cid:4)(cid:6)(cid:9)(cid:2)(cid:8)(cid:6)(cid:1)(cid:13)(cid:12) (cid:10)(cid:11)(cid:4)(cid:5)(cid:3)(cid:7)(cid:5) A logic 1 starts with 36 pulses at 484.28 kHz (f /28) followed by 32 pulses at 423.75 kHz C (f /32) as shown in Figure 34. Bit coding using two subcarriers is not supported for the Fast C commands. Figure 34. Logic 1, low data rate (cid:4)(cid:6)(cid:10)(cid:2)(cid:9)(cid:6)(cid:1)(cid:14)(cid:13) (cid:11)(cid:12)(cid:4)(cid:5)(cid:3)(cid:8)(cid:7) DocID022208 Rev 11 53/146 145

M24LR04E-R to VCD frames M24LR04E-R 12 M24LR04E-R to VCD frames Frames are delimited by an SOF and an EOF. They are implemented using code violation. Unused options are reserved for future use. For the low data rate, the same subcarrier frequency or frequencies is/are used. In this case, the number of pulses is multiplied by 4. For the Fast commands using one subcarrier, all pulse numbers and times are divided by 2. 12.1 SOF when using one subcarrier 12.1.1 High data rate The SOF includes an unmodulated time of 56.64 µs, followed by 24 pulses at 423.75 kHz (f /32), and a logic 1 that consists of an unmodulated time of 18.88 µs followed by eight C pulses at 423.75 kHz, as shown in Figure 35. Figure 35. Start of frame, high data rate, one subcarrier (cid:4)(cid:4)(cid:6)(cid:2)(cid:5)(cid:8)(cid:1)(cid:12)(cid:11) (cid:3)(cid:5)(cid:2)(cid:5)(cid:4)(cid:1)(cid:7)(cid:6) (cid:9)(cid:10)(cid:4)(cid:5)(cid:3)(cid:7)(cid:8) For the Fast commands, the SOF comprises an unmodulated time of 28.32 µs, followed by 12 pulses at 423.75 kHz (f /32), and a logic 1 that consists of an unmodulated time of C 9.44 µs followed by four pulses at 423.75 kHz, as shown in Figure 36. Figure 36. Start of frame, high data rate, one subcarrier, fast commands (cid:1009)(cid:1010)(cid:856)(cid:1010)(cid:1008)(cid:3)(cid:1106)(cid:400) (cid:1005)(cid:1012)(cid:856)(cid:1012)(cid:1012)(cid:3)(cid:1106)(cid:400) (cid:258)(cid:349)(cid:1005)(cid:1006)(cid:1004)(cid:1011)(cid:1013) 12.1.2 Low data rate The SOF comprises an unmodulated time of 226.56 µs, followed by 96 pulses at 423.75 kHz (f /32), and a logic 1 that consists of an unmodulated time of 75.52 µs followed by 32 C pulses at 423.75 kHz, as shown in Figure 37. Figure 37. Start of frame, low data rate, one subcarrier (cid:1008)(cid:1009)(cid:1007)(cid:856)(cid:1005)(cid:1006)(cid:3)(cid:1106)(cid:400) (cid:1005)(cid:1009)(cid:1005)(cid:856)(cid:1004)(cid:1008)(cid:3)(cid:1106)(cid:400) (cid:258)(cid:349)(cid:1005)(cid:1006)(cid:1004)(cid:1012)(cid:1004)(cid:271) 54/146 DocID022208 Rev 11

M24LR04E-R M24LR04E-R to VCD frames For the Fast commands, the SOF comprises an unmodulated time of 113.28 µs, followed by 48 pulses at 423.75 kHz (f /32), and a logic 1 that includes an unmodulated time of 37.76 C µs followed by 16 pulses at 423.75 kHz, as shown in Figure 38. Figure 38. Start of frame, low data rate, one subcarrier, fast commands (cid:5)(cid:5)(cid:7)(cid:2)(cid:6)(cid:7)(cid:1)(cid:13)(cid:12) (cid:8)(cid:6)(cid:2)(cid:6)(cid:5)(cid:1)(cid:13)(cid:12) (cid:10)(cid:11)(cid:4)(cid:5)(cid:3)(cid:9)(cid:4) 12.2 SOF when using two subcarriers 12.2.1 High data rate The SOF comprises 27 pulses at 484.28 kHz (f /28), followed by 24 pulses at 423.75 kHz C (f /32), and a logic 1 that includes nine pulses at 484.28 kHz followed by eight pulses at C 423.75 kHz, as shown in Figure 39. Bit coding using two subcarriers is not supported for the Fast commands. Figure 39. Start of frame, high data rate, two subcarriers (cid:1005)(cid:1005)(cid:1006)(cid:856)(cid:1007)(cid:1013)(cid:3)(cid:1106)(cid:400) (cid:1007)(cid:1011)(cid:856)(cid:1008)(cid:1010)(cid:3)(cid:1106)(cid:400) (cid:258)(cid:349)(cid:1005)(cid:1006)(cid:1004)(cid:1012)(cid:1006) 12.2.2 Low data rate The SOF comprises 108 pulses at 484.28 kHz (f /28), followed by 96 pulses at 423.75 kHz C (f /32), and a logic 1 that includes 36 pulses at 484.28 kHz followed by 32 pulses at C 423.75 kHz, as shown in Figure 40. Bit coding using two subcarriers is not supported for the Fast commands. Figure 40. Start of frame, low data rate, two subcarriers (cid:1008)(cid:1008)(cid:1013)(cid:856)(cid:1009)(cid:1010)(cid:3)(cid:1106)(cid:400) (cid:1005)(cid:1008)(cid:1013)(cid:856)(cid:1012)(cid:1008)(cid:3)(cid:1106)(cid:400) (cid:258)(cid:349)(cid:1005)(cid:1006)(cid:1004)(cid:1012)(cid:1007) DocID022208 Rev 11 55/146 145

M24LR04E-R to VCD frames M24LR04E-R 12.3 EOF when using one subcarrier 12.3.1 High data rate The EOF comprises a logic 0 that includes eight pulses at 423.75 kHz and an unmodulated time of 18.88 µs, followed by 24 pulses at 423.75 kHz (f /32), and by an unmodulated time C of 56.64 µs, as shown in Figure 41. Figure 41. End of frame, high data rate, one subcarrier (cid:6)(cid:9)(cid:2)(cid:9)(cid:8)(cid:1)(cid:14)(cid:13) (cid:4)(cid:4)(cid:6)(cid:2)(cid:5)(cid:10)(cid:1)(cid:14)(cid:13) (cid:11)(cid:12)(cid:4)(cid:5)(cid:3)(cid:10)(cid:7) For the Fast commands, the EOF comprises a logic 0 that includes four pulses at 423.75 kHz and an unmodulated time of 9.44 µs, followed by 12 pulses at 423.75 kHz (f /32) and an unmodulated time of 37.76 µs, as shown in Figure 42. C Figure 42. End of frame, high data rate, one subcarrier, fast commands (cid:4)(cid:9)(cid:2)(cid:9)(cid:9)(cid:1)(cid:13)(cid:12) (cid:7)(cid:8)(cid:2)(cid:8)(cid:6)(cid:1)(cid:13)(cid:12) (cid:10)(cid:11)(cid:4)(cid:5)(cid:3)(cid:9)(cid:7) 12.3.2 Low data rate The EOF comprises a logic 0 that includes 32 pulses at 423.75 kHz and an unmodulated time of 75.52 µs, followed by 96 pulses at 423.75 kHz (f /32) and an unmodulated time of C 226.56 µs, as shown in Figure 43. Figure 43. End of frame, low data rate, one subcarrier (cid:20)(cid:24)(cid:20)(cid:17)(cid:19)(cid:23)(cid:3)(cid:151)(cid:86) (cid:23)(cid:24)(cid:22)(cid:17)(cid:20)(cid:21)(cid:3)(cid:151)(cid:86) (cid:48)(cid:54)(cid:23)(cid:26)(cid:24)(cid:19)(cid:26)(cid:57)(cid:20) For the Fast commands, the EOF comprises a logic 0 that includes 16 pulses at 423.75 kHz and an unmodulated time of 37.76 µs, followed by 48 pulses at 423.75 kHz (f /32) and an C unmodulated time of 113.28 µs, as shown in Figure 44. Figure 44. End of frame, low data rate, one subcarrier, Fast commands (cid:26)(cid:24)(cid:17)(cid:24)(cid:21)(cid:3)(cid:151)(cid:86) (cid:21)(cid:21)(cid:25)(cid:17)(cid:24)(cid:25)(cid:3)(cid:151)(cid:86) (cid:48)(cid:54)(cid:23)(cid:26)(cid:24)(cid:20)(cid:23)(cid:57)(cid:20) 56/146 DocID022208 Rev 11

M24LR04E-R M24LR04E-R to VCD frames 12.4 EOF when using two subcarriers 12.4.1 High data rate The EOF comprises a logic 0 that includes eight pulses at 423.75 kHz and nine pulses at 484.28 kHz, followed by 24 pulses at 423.75 kHz (f /32) and 27 pulses at 484.28 kHz C (f /28), as shown in Figure 45. C Bit coding using two subcarriers is not supported for the Fast commands. Figure 45. End of frame, high data rate, two subcarriers (cid:22)(cid:26)(cid:17)(cid:23)(cid:25)(cid:3)(cid:151)(cid:86) (cid:20)(cid:20)(cid:21)(cid:17)(cid:22)(cid:28)(cid:3)(cid:151)(cid:86) (cid:48)(cid:54)(cid:23)(cid:26)(cid:24)(cid:20)(cid:19)(cid:57)(cid:20) 12.4.2 Low data rate The EOF comprises a logic 0 that includes 32 pulses at 423.75 kHz and 36 pulses at 484.28 kHz, followed by 96 pulses at 423.75 kHz (f /32) and 108 pulses at 484.28 kHz C (f /28), as shown in Figure 46. C Bit coding using two subcarriers is not supported for the Fast commands. Figure 46. End of frame, low data rate, two subcarriers (cid:1005)(cid:1008)(cid:1013)(cid:856)(cid:1012)(cid:1008)(cid:3)(cid:1106)(cid:400) (cid:1008)(cid:1008)(cid:1013)(cid:856)(cid:1009)(cid:1010)(cid:3)(cid:1106)(cid:400) (cid:258)(cid:349)(cid:1005)(cid:1006)(cid:1004)(cid:1012)(cid:1013) DocID022208 Rev 11 57/146 145

Unique identifier (UID) M24LR04E-R 13 Unique identifier (UID) The M24LR04E-R is uniquely identified by a 64-bit unique identifier (UID). This UID complies with ISO/IEC 15963 and ISO/IEC 7816-6. The UID is a read-only code and comprises: • eight MSBs with a value of E0h, • the IC manufacturer code “ST 02h” on 8 bits (ISO/IEC 7816-6/AM1), • a unique serial number on 48 bits. Table 21. UID format MSB LSB 63 56 55 48 47 0 0xE0 0x02 Unique serial number With the UID, each M24LR04E-R can be addressed uniquely and individually during the anticollision loop and for one-to-one exchanges between a VCD and an M24LR04E-R. 58/146 DocID022208 Rev 11

M24LR04E-R Application family identifier (AFI) 14 Application family identifier (AFI) The AFI (application family identifier) represents the type of application targeted by the VCD and is used to identify, among all the M24LR04E-Rs present, only the M24LR04E-Rs that meet the required application criteria. Figure 47. M24LR04E-R decision tree for AFI (cid:44)(cid:81)(cid:89)(cid:72)(cid:81)(cid:87)(cid:82)(cid:85)(cid:92)(cid:3)(cid:85)(cid:72)(cid:84)(cid:88)(cid:72)(cid:86)(cid:87)(cid:3)(cid:85)(cid:72)(cid:70)(cid:72)(cid:76)(cid:89)(cid:72)(cid:71) (cid:49)(cid:82) (cid:36)(cid:41)(cid:44)(cid:3)(cid:73)(cid:79)(cid:68)(cid:74)(cid:3)(cid:86)(cid:72)(cid:87)(cid:34) (cid:60)(cid:72)(cid:86) (cid:49)(cid:82) (cid:36)(cid:41)(cid:44)(cid:3)(cid:89)(cid:68)(cid:79)(cid:88)(cid:72)(cid:3)(cid:32)(cid:3)(cid:19)(cid:34) (cid:60)(cid:72)(cid:86) (cid:36)(cid:41)(cid:44)(cid:3)(cid:89)(cid:68)(cid:79)(cid:88)(cid:72)(cid:3)(cid:32)(cid:3) (cid:49)(cid:82) (cid:44)(cid:81)(cid:87)(cid:72)(cid:85)(cid:81)(cid:68)(cid:79)(cid:3)(cid:89)(cid:68)(cid:79)(cid:88)(cid:72)(cid:34) (cid:60)(cid:72)(cid:86) (cid:36)(cid:81)(cid:86)(cid:90)(cid:72)(cid:85)(cid:3)(cid:74)(cid:76)(cid:89)(cid:72)(cid:81)(cid:3)(cid:69)(cid:92)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53) (cid:49)(cid:82)(cid:3)(cid:68)(cid:81)(cid:86)(cid:90)(cid:72)(cid:85) (cid:87)(cid:82)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:44)(cid:81)(cid:89)(cid:72)(cid:81)(cid:87)(cid:82)(cid:85)(cid:92)(cid:3)(cid:85)(cid:72)(cid:84)(cid:88)(cid:72)(cid:86)(cid:87) (cid:48)(cid:54)(cid:23)(cid:26)(cid:21)(cid:22)(cid:24)(cid:57)(cid:20) The AFI is programmed by the M24LR04E-R issuer (or purchaser) in the AFI register. Once programmed and locked, it cannot be modified any longer. The most significant nibble of the AFI is used to code one specific or all application families. The least significant nibble of the AFI is used to code one specific or all application subfamilies. Subfamily codes different from 0 are proprietary. See ISO 15693-3 documentation. DocID022208 Rev 11 59/146 145

Data storage format identifier (DSFID) M24LR04E-R 15 Data storage format identifier (DSFID) The data storage format identifier indicates how the data is structured in the M24LR04E-R memory. The logical organization of data can be known instantly using the DSFID. It can be programmed and locked using the Write DSFID and Lock DSFID commands. 15.1 CRC The CRC used in the M24LR04E-R is calculated as per the definition in ISO/IEC 13239. The initial register contents are all ones: “FFFF”. The two-byte CRC is appended to each request and response, within each frame, before the EOF. The CRC is calculated on all the bytes after the SOF up to the CRC field. Upon reception of a request from the VCD, the M24LR04E-R verifies that the CRC value is valid. If it is invalid, the M24LR04E-R discards the frame and does not answer to the VCD. Upon reception of a response from the M24LR04E-R, it is recommended that the VCD verifies whether the CRC value is valid. If it is invalid, actions to be performed are left to the discretion of the VCD designer. The CRC is transmitted least significant byte first. Each byte is transmitted least significant bit first. Table 22. CRC transmission rules LSByte MSByte LSBit MSBit LSBit MSBit CRC 16 (8 bits) CRC 16 (8 bits) 60/146 DocID022208 Rev 11

M24LR04E-R M24LR04E-R protocol description 16 M24LR04E-R protocol description The transmission protocol (or simply “the protocol”) defines the mechanism used to exchange instructions and data between the VCD and the M24LR04E-R in both directions. It is based on the concept of “VCD talks first”. This means that an M24LR04E-R does not start transmitting unless it has received and properly decoded an instruction sent by the VCD. The protocol is based on an exchange of: • a request from the VCD to the M24LR04E-R, • a response from the M24LR04E-R to the VCD. Each request and each response are contained in a frame. The frame delimiters (SOF, EOF) are described in Section 12: M24LR04E-R to VCD frames. Each request consists of: • a request SOF (see Figure 20 and Figure 21), • flags, • a command code, • parameters depending on the command, • application data, • a 2-byte CRC, • a request EOF (see Figure 22). Each response consists of: • an answer SOF (see Figure 35 to Figure 40), • flags, • parameters depending on the command, • application data, • a 2-byte CRC, • an answer EOF (see Figure 41 to Figure 46). The protocol is bit-oriented. The number of bits transmitted in a frame is a multiple of eight (8), that is an integer number of bytes. A single-byte field is transmitted least significant bit (LSBit) first. A multiple-byte field is transmitted least significant byte (LSByte) first and each byte is transmitted least significant bit (LSBit) first. The setting of the flags indicates the presence of the optional fields. When the flag is set (to one), the field is present. When the flag is reset (to zero), the field is absent. Table 23. VCD request frame format Command Request Request SOF Request_flags Parameters Data 2-byte CRC code EOF Table 24. M24LR04E-R Response frame format Response Response Response_flags Parameters Data 2-byte CRC SOF EOF DocID022208 Rev 11 61/146 145

M24LR04E-R protocol description M24LR04E-R Figure 48. M24LR04E-R protocol timing Request Request VCD frame frame (Table 23) (Table 23) Response Response M24LR04E-R frame frame (Table 24) (Table 24) Timing <-t -> <-t -> <-t -> <-t -> 1 2 1 2 62/146 DocID022208 Rev 11

M24LR04E-R M24LR04E-R states 17 M24LR04E-R states An M24LR04E-R can be in one of four states: • Power-off • Ready • Quiet • Selected Transitions between these states are specified in Figure 49 and Table 25. 17.1 Power-off state The M24LR04E-R is in the Power-off state when it does not receive enough energy from the VCD. 17.2 Ready state The M24LR04E-R is in the Ready state when it receives enough energy from the VCD. When in the Ready state, the M24LR04E-R answers any request where the Select_flag is not set. 17.3 Quiet state When in the Quiet state, the M24LR04E-R answers any request except for Inventory requests with the Address_flag set. 17.4 Selected state In the Selected state, the M24LR04E-R answers any request in all modes (see Section 18): • Request in Select mode with the Select_flag set • Request in Addressed mode if the UID matches • Request in Non-Addressed mode as it is the mode for general requests DocID022208 Rev 11 63/146 145

M24LR04E-R states M24LR04E-R Table 25. M24LR04E-R response depending on Request_flags Address_flag Select_flag Flags 1 0 1 0 Addressed Non addressed Selected Non selected M24LR04E-R in Ready or Selected state (devices in Quiet state do not - X - X answer) M24LR04E-R in Selected state - X X - M24LR04E-R in Ready, Quiet or Selected state (the device that X - - X matches the UID) Error (03h) X - X - Figure 49. M24LR04E-R state transition diagram (cid:51)(cid:82)(cid:90)(cid:72)(cid:85)(cid:16)(cid:82)(cid:73)(cid:73) (cid:44)(cid:81)(cid:3)(cid:73)(cid:76)(cid:72)(cid:79)(cid:71) (cid:50)(cid:88)(cid:87)(cid:82)(cid:73)(cid:73)(cid:76)(cid:72)(cid:79)(cid:71) (cid:68)(cid:73)(cid:87)(cid:72)(cid:85)(cid:3)(cid:87) (cid:3) (cid:53)(cid:3)(cid:41)(cid:66)(cid:50)(cid:41)(cid:41) (cid:36)(cid:81)(cid:92)(cid:3)(cid:82)(cid:87)(cid:75)(cid:72)(cid:85)(cid:3)(cid:38)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71) (cid:53)(cid:72)(cid:68)(cid:71)(cid:92) (cid:90)(cid:75)(cid:72)(cid:85)(cid:72)(cid:3)(cid:54)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:66)(cid:41)(cid:79)(cid:68)(cid:74) (cid:76)(cid:86)(cid:3)(cid:81)(cid:82)(cid:87)(cid:3)(cid:86)(cid:72)(cid:87) (cid:50)(cid:88)(cid:87)(cid:3)(cid:82)(cid:73)(cid:3)(cid:53)(cid:41)(cid:3)(cid:73)(cid:76)(cid:72)(cid:79)(cid:71) (cid:68)(cid:73)(cid:87)(cid:72)(cid:85)(cid:3)(cid:87) (cid:3) (cid:39)(cid:12) (cid:53)(cid:3)(cid:41)(cid:66)(cid:50)(cid:41)(cid:41) (cid:53)(cid:72)(cid:86)(cid:72)(cid:87)(cid:3)(cid:87)(cid:82)(cid:3)(cid:85)(cid:72)(cid:68)(cid:71)(cid:92) (cid:54)(cid:87)(cid:68)(cid:92)(cid:3)(cid:84)(cid:88)(cid:76)(cid:72)(cid:87)(cid:11)(cid:56)(cid:44) (cid:54)(cid:72)(cid:54)(cid:79)(cid:72)(cid:72)(cid:70)(cid:53)(cid:79)(cid:87)(cid:72)(cid:11)(cid:72)(cid:70)(cid:71)(cid:86)(cid:87)(cid:76)(cid:66)(cid:73)(cid:72)(cid:73)(cid:41)(cid:72)(cid:87)(cid:3)(cid:54)(cid:85)(cid:79)(cid:87)(cid:68)(cid:82)(cid:72)(cid:72)(cid:74)(cid:3)(cid:81)(cid:85)(cid:79)(cid:3)(cid:72)(cid:87)(cid:72)(cid:76)(cid:3)(cid:86)(cid:70)(cid:56)(cid:68)(cid:3)(cid:87)(cid:71)(cid:86)(cid:44)(cid:3)(cid:11)(cid:72)(cid:92)(cid:56)(cid:3)(cid:87)(cid:90)(cid:3)(cid:44)(cid:82)(cid:39)(cid:75)(cid:85)(cid:12)(cid:72)(cid:85)(cid:72) (cid:50)(cid:68)(cid:73)(cid:88)(cid:87)(cid:72)(cid:3)(cid:87)(cid:85)(cid:82)(cid:3)(cid:3)(cid:3)(cid:3)(cid:87)(cid:73)(cid:53)(cid:53)(cid:41)(cid:66)(cid:3)(cid:41)(cid:3)(cid:50)(cid:3)(cid:41)(cid:73)(cid:41)(cid:76)(cid:72)(cid:79)(cid:71) (cid:39)(cid:12) (cid:54)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:3)(cid:11)(cid:56)(cid:44)(cid:39)(cid:12) (cid:52)(cid:88)(cid:76)(cid:72)(cid:87) (cid:54)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:72)(cid:71) (cid:54)(cid:87)(cid:68)(cid:92)(cid:3)(cid:84)(cid:88)(cid:76)(cid:72)(cid:87)(cid:11)(cid:56)(cid:44)(cid:39)(cid:12) (cid:36)(cid:81)(cid:92)(cid:3)(cid:82)(cid:87)(cid:75)(cid:72)(cid:85)(cid:3)(cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71)(cid:3)(cid:90)(cid:75)(cid:72)(cid:85)(cid:72)(cid:3)(cid:87)(cid:75)(cid:72) (cid:36)(cid:71)(cid:71)(cid:85)(cid:72)(cid:86)(cid:86)(cid:66)(cid:41)(cid:79)(cid:68)(cid:74)(cid:3)(cid:76)(cid:86)(cid:3)(cid:86)(cid:72)(cid:87)(cid:3)(cid:36)(cid:49)(cid:39) (cid:36)(cid:81)(cid:92)(cid:3)(cid:82)(cid:87)(cid:75)(cid:72)(cid:85)(cid:3)(cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71) (cid:90)(cid:75)(cid:72)(cid:85)(cid:72)(cid:3)(cid:44)(cid:81)(cid:89)(cid:72)(cid:81)(cid:87)(cid:82)(cid:85)(cid:92)(cid:66)(cid:41)(cid:79)(cid:68)(cid:74)(cid:3)(cid:76)(cid:86)(cid:3)(cid:81)(cid:82)(cid:87)(cid:3)(cid:86)(cid:72)(cid:87) (cid:36)(cid:44)(cid:19)(cid:25)(cid:25)(cid:27)(cid:20)(cid:69) 1. The M24LR04E-R returns to the Power Off state if the tag is out of the RF field for at least t . Refer to RF_OFF application note AN4125 for more information. 2. The intention of the state transition method is that only one M24LR04E-R should be in the Selected state at any given time. 64/146 DocID022208 Rev 11

M24LR04E-R Modes 18 Modes The term “mode” refers to the mechanism used in a request to specify the set of M24LR04E-Rs that answers the request. 18.1 Addressed mode When the Address_flag is set to 1 (Addressed mode), the request contains the Unique ID (UID) of the addressed M24LR04E-R. Any M24LR04E-R that receives a request with the Address_flag set to 1 compares the received Unique ID to its own. If it matches, then the M24LR04E-R executes the request (if possible) and returns a response to the VCD as specified in the command description. If the UID does not match, then it remains silent. 18.2 Non-addressed mode (general request) When the Address_flag is cleared to 0 (Non-Addressed mode), the request does not contain a Unique ID. Any M24LR04E-R receiving a request with the Address_flag cleared to 0 executes it and returns a response to the VCD as specified in the command description. 18.3 Select mode When the Select_flag is set to 1 (Select mode), the request does not contain an M24LR04E-R Unique ID. The M24LR04E-R in the Selected state that receives a request with the Select_flag set to 1 executes it and returns a response to the VCD as specified in the command description. Only M24LR04E-Rs in the Selected state answer a request where the Select_flag set to 1. The system design ensures in theory that only one M24LR04E-R can be in the Select state at a time. DocID022208 Rev 11 65/146 145

Request format M24LR04E-R 19 Request format The request consists of: • an SOF • flags • a command code • parameters and data • a CRC • an EOF Table 26. General request format S E O Request_flags Command code Parameters Data CRC O F F 19.1 Request flags In a request, the “flags” field specifies the actions to be performed by the M24LR04E-R and whether corresponding fields are present or not. The flags field consists of eight bits. Bit 3 (Inventory_flag) of the request flag defines the contents of the four MSBs (bits 5 to 8). When bit 3 is reset (0), bits 5 to 8 define the M24LR04E-R selection criteria. When bit 3 is set (1), bits 5 to 8 define the M24LR04E-R Inventory parameters. Table 27. Definition of request flags 1 to 4 Bit No. Flag Level Description A single subcarrier frequency is used by the 0 Bit 1 Subcarrier_flag(1) M24LR04E-R 1 Two subcarrier are used by the M24LR04E-R 0 Low data rate is used Bit 2 Data_rate_flag(2) 1 High data rate is used 0 The meaning of flags 5 to 8 is described in Table 28 Bit 3 Inventory_flag 1 The meaning of flags 5 to 8 is described in Table 29 Bit 4 Protocol_extension_flag(3) 0 No Protocol format extension 1. Subcarrier_flag refers to the M24LR04E-R-to-VCD communication. 2. Data_rate_flag refers to the M24LR04E-R-to-VCD communication. 3. Protocol_extension_flag must always be set to 0. 66/146 DocID022208 Rev 11

M24LR04E-R Request format . Table 28. Request flags 5 to 8 when Bit 3 = 0 Bit No. Flag Level Description Request is executed by any M24LR04E-R according to the setting 0 Bit 5 Select flag(1) of Address_flag 1 Request is executed only by the M24LR04E-R in Selected state Request is not addressed. UID field is not present. The request is 0 executed by all M24LR04E-Rs. Bit 6 Address flag(1) Request is addressed. UID field is present. The request is 1 executed only by the M24LR04E-R whose UID matches the UID specified in the request. 0 Option not activated. Bit 7 Option flag 1 Option activated. Bit 8 RFU 0 - 1. If the Select_flag is set to 1, the Address_flag is set to 0 and the UID field is not present in the request. Table 29. Request flags 5 to 8 when Bit 3 = 1 Bit No. Flag Level Description 0 AFI field is not present Bit 5 AFI flag 1 AFI field is present 0 16 slots Bit 6 Nb_slots flag 1 1 slot Bit 7 Option flag 0 - Bit 8 RFU 0 - DocID022208 Rev 11 67/146 145

Response format M24LR04E-R 20 Response format The response consists of: • an SOF, • flags, • parameters and data, • a CRC, • an EOF. Table 30. General response format S E O Response_flags Parameters Data CRC O F F 20.1 Response flags In a response, the flags indicate how actions have been performed by the M24LR04E-R and whether corresponding fields are present or not. The response flags consist of eight bits. Table 31. Definitions of response flags 1 to 8 Bit No. Flag Level Description 0 No error Bit 1 Error_flag 1 Error detected. Error code is in the “Error” field. Bit 2 RFU 0 - Bit 3 RFU 0 - Bit 4 Extension flag 0 No extension Bit 5 RFU 0 - Bit 6 RFU 0 - Bit 7 RFU 0 - Bit 8 RFU 0 - 68/146 DocID022208 Rev 11

M24LR04E-R Response format 20.2 Response error code If the Error_flag is set by the M24LR04E-R in the response, the Error code field is present and provides information about the error that occurred. Error codes not specified in Table 32 are reserved for future use. Table 32. Response error code definition Error code Meaning 03h The option is not supported. 0Fh Error with no information given. 10h The specified block is not available. 11h The specified block is already locked and thus cannot be locked again. 12h The specified block is locked and its contents cannot be changed. 13h The specified block was not successfully programmed. 14h The specified block was not successfully locked. 15h The specified block is read-protected. DocID022208 Rev 11 69/146 145

Anticollision M24LR04E-R 21 Anticollision The purpose of the anticollision sequence is to inventory the M24LR04E-Rs present in the VCD field using their unique ID (UID). The VCD is the master of communications with one or several M24LR04E-Rs. It initiates M24LR04E-R communication by issuing the Inventory request. The M24LR04E-R sends its response in the determined slot or does not respond. 21.1 Request parameters When issuing the Inventory Command, the VCD: • sets the Nb_slots_flag as desired, • adds the mask length and the mask value after the command field. • The mask length is the number of significant bits of the mask value. • The mask value is contained in an integer number of bytes. The mask length indicates the number of significant bits. LSB is transmitted first. • If the mask length is not a multiple of 8 (bits), as many 0-bits as required are added to the mask value MSB so that the mask value is contained in an integer number of bytes. • The next field starts at the next byte boundary. Table 33. Inventory request format MSB LSB Request_flags Command Optional AFI Mask length Mask value CRC SOF EOF 8 bits 8 bits 8 bits 8 bits 0 to 8 bytes 16 bits In the example provided in Table 34 and Figure 50, the mask length is 11 bits. Five 0-bits are added to the mask value MSB. The 11-bit mask and the current slot number are compared to the UID. Table 34. Example of the addition of 0-bits to an 11-bit mask value (b ) MSB LSB (b ) 15 0 0000 0 100 1100 1111 0-bits added 11-bit mask value 70/146 DocID022208 Rev 11

M24LR04E-R Anticollision Figure 50. Principle of comparison between the mask, the slot number and the UID (cid:45)(cid:51)(cid:34) (cid:44)(cid:51)(cid:34) (cid:45)(cid:65)(cid:83)(cid:75)(cid:0)(cid:86)(cid:65)(cid:76)(cid:85)(cid:69)(cid:0)(cid:82)(cid:69)(cid:67)(cid:69)(cid:73)(cid:86)(cid:69)(cid:68)(cid:0)(cid:73)(cid:78)(cid:0)(cid:84)(cid:72)(cid:69)(cid:0)(cid:41)(cid:78)(cid:86)(cid:69)(cid:78)(cid:84)(cid:79)(cid:82)(cid:89)(cid:0)(cid:67)(cid:79)(cid:77)(cid:77)(cid:65)(cid:78)(cid:68) (cid:16)(cid:16)(cid:16)(cid:16)(cid:16)(cid:17)(cid:16)(cid:16) (cid:17)(cid:17)(cid:16)(cid:16)(cid:17)(cid:17)(cid:17)(cid:17)(cid:66) (cid:17)(cid:22)(cid:0)(cid:66)(cid:73)(cid:84)(cid:83) (cid:45)(cid:51)(cid:34) (cid:44)(cid:51)(cid:34) (cid:52)(cid:72)(cid:69)(cid:0)(cid:45)(cid:65)(cid:83)(cid:75)(cid:0)(cid:86)(cid:65)(cid:76)(cid:85)(cid:69)(cid:0)(cid:76)(cid:69)(cid:83)(cid:83)(cid:0)(cid:84)(cid:72)(cid:69)(cid:0)(cid:80)(cid:65)(cid:68)(cid:68)(cid:73)(cid:78)(cid:71)(cid:0)(cid:16)(cid:83)(cid:0)(cid:73)(cid:83)(cid:0)(cid:76)(cid:79)(cid:65)(cid:68)(cid:69)(cid:68) (cid:17)(cid:16)(cid:16) (cid:17)(cid:17)(cid:16)(cid:16)(cid:17)(cid:17)(cid:17)(cid:17)(cid:66) (cid:17)(cid:17)(cid:0)(cid:66)(cid:73)(cid:84)(cid:83) (cid:73)(cid:78)(cid:84)(cid:79)(cid:0)(cid:84)(cid:72)(cid:69)(cid:0)(cid:52)(cid:65)(cid:71)(cid:0)(cid:67)(cid:79)(cid:77)(cid:80)(cid:65)(cid:82)(cid:65)(cid:84)(cid:79)(cid:82) (cid:52)(cid:72)(cid:69)(cid:0)(cid:51)(cid:76)(cid:79)(cid:84)(cid:0)(cid:67)(cid:79)(cid:85)(cid:78)(cid:84)(cid:69)(cid:82)(cid:0)(cid:73)(cid:83)(cid:0)(cid:67)(cid:65)(cid:76)(cid:67)(cid:85)(cid:76)(cid:65)(cid:84)(cid:69)(cid:68) (cid:45)(cid:51)(cid:34)(cid:44)(cid:51)(cid:34) (cid:46)(cid:66)(cid:63)(cid:83)(cid:76)(cid:79)(cid:84)(cid:83)(cid:63)(cid:70)(cid:76)(cid:65)(cid:71)(cid:83)(cid:0)(cid:29)(cid:0)(cid:16)(cid:0)(cid:8)(cid:17)(cid:22)(cid:0)(cid:83)(cid:76)(cid:79)(cid:84)(cid:83)(cid:9)(cid:12)(cid:0)(cid:51)(cid:76)(cid:79)(cid:84)(cid:0)(cid:35)(cid:79)(cid:85)(cid:78)(cid:84)(cid:69)(cid:82)(cid:0)(cid:73)(cid:83)(cid:0)(cid:20)(cid:0)(cid:66)(cid:73)(cid:84)(cid:83) (cid:88)(cid:88)(cid:88)(cid:88) (cid:20)(cid:0)(cid:66)(cid:73)(cid:84)(cid:83) (cid:52)(cid:72)(cid:69)(cid:0)(cid:51)(cid:76)(cid:79)(cid:84)(cid:0)(cid:67)(cid:79)(cid:85)(cid:78)(cid:84)(cid:69)(cid:82)(cid:0)(cid:73)(cid:83)(cid:0)(cid:67)(cid:79)(cid:78)(cid:67)(cid:65)(cid:84)(cid:69)(cid:78)(cid:69)(cid:68)(cid:0)(cid:84)(cid:79)(cid:0)(cid:84)(cid:72)(cid:69)(cid:0)(cid:45)(cid:65)(cid:83)(cid:75)(cid:0)(cid:86)(cid:65)(cid:76)(cid:85)(cid:69) (cid:45)(cid:51)(cid:34) (cid:44)(cid:51)(cid:34) (cid:46)(cid:66)(cid:63)(cid:83)(cid:76)(cid:79)(cid:84)(cid:83)(cid:63)(cid:70)(cid:76)(cid:65)(cid:71)(cid:83)(cid:0)(cid:29)(cid:0)(cid:16) (cid:88)(cid:88)(cid:88)(cid:88)(cid:17)(cid:16)(cid:16) (cid:17)(cid:17)(cid:16)(cid:16)(cid:17)(cid:17)(cid:17)(cid:17)(cid:66) (cid:17)(cid:21)(cid:0)(cid:66)(cid:73)(cid:84)(cid:83) (cid:53)(cid:41)(cid:36) (cid:66)(cid:22)(cid:19) (cid:66)(cid:16) (cid:52)(cid:72)(cid:69)(cid:0)(cid:67)(cid:79)(cid:78)(cid:67)(cid:65)(cid:84)(cid:69)(cid:78)(cid:65)(cid:84)(cid:69)(cid:68)(cid:0)(cid:82)(cid:69)(cid:83)(cid:85)(cid:76)(cid:84)(cid:0)(cid:73)(cid:83)(cid:0)(cid:67)(cid:79)(cid:77)(cid:80)(cid:65)(cid:82)(cid:69)(cid:68)(cid:0)(cid:87)(cid:73)(cid:84)(cid:72) (cid:88)(cid:88)(cid:88)(cid:88)(cid:88)(cid:88)(cid:88)(cid:88)(cid:14)(cid:14)(cid:14)(cid:14)(cid:14)(cid:88)(cid:88)(cid:88)(cid:88)(cid:88)(cid:88)(cid:88)(cid:88) (cid:88)(cid:88)(cid:88)(cid:88)(cid:88)(cid:88)(cid:88)(cid:88) (cid:88)(cid:88)(cid:88)(cid:88)(cid:88)(cid:88)(cid:88)(cid:88) (cid:66) (cid:22)(cid:20)(cid:0)(cid:66)(cid:73)(cid:84)(cid:83) (cid:84)(cid:72)(cid:69)(cid:0)(cid:76)(cid:69)(cid:65)(cid:83)(cid:84)(cid:0)(cid:83)(cid:73)(cid:71)(cid:78)(cid:73)(cid:70)(cid:73)(cid:67)(cid:65)(cid:78)(cid:84)(cid:0)(cid:66)(cid:73)(cid:84)(cid:83)(cid:0)(cid:79)(cid:70)(cid:0)(cid:84)(cid:72)(cid:69)(cid:0)(cid:52)(cid:65)(cid:71)(cid:0)(cid:53)(cid:41)(cid:36)(cid:14) (cid:34)(cid:73)(cid:84)(cid:83)(cid:0)(cid:73)(cid:71)(cid:78)(cid:79)(cid:82)(cid:69)(cid:68) (cid:35)(cid:79)(cid:77)(cid:80)(cid:65)(cid:82)(cid:69) (cid:33)(cid:41)(cid:16)(cid:22)(cid:22)(cid:24)(cid:18) The AFI field is present if the AFI_flag is set. The pulse is generated according to the definition of the EOF in ISO/IEC 15693-2. The first slot starts immediately after the request EOF is received. To switch to the next slot, the VCD sends an EOF. The following rules and restrictions apply: • If no M24LR04E-R answer is detected, the VCD may switch to the next slot by sending an EOF. • If one or more M24LR04E-R answers are detected, the VCD waits until the complete frame has been received before sending an EOF for switching to the next slot. DocID022208 Rev 11 71/146 145

Request processing by the M24LR04E-R M24LR04E-R 22 Request processing by the M24LR04E-R Upon reception of a valid request, the M24LR04E-R performs the following algorithm: • NbS is the total number of slots (1 or 16) • SN is the current slot number (0 to 15) • LSB (value, n) function returns the n Less Significant Bits of value • MSB (value, n) function returns the n Most Significant Bits of value • “&” is the concatenation operator • Slot_Frame is either an SOF or an EOF SN = 0 if (Nb_slots_flag) then NbS = 1 SN_length = 0 endif else NbS = 16 SN_length = 4 endif label1: if LSB(UID, SN_length + Mask_length) = LSB(SN,SN_length)&LSB(Mask,Mask_length) then answer to inventory request endif wait (Slot_Frame) if Slot_Frame = SOF then Stop Anticollision decode/process request exit endif if Slot_Frame = EOF if SN < NbS-1 then SN = SN + 1 goto label1 exit endif endif 72/146 DocID022208 Rev 11

M24LR04E-R Explanation of the possible cases 23 Explanation of the possible cases Figure 51 summarizes the main possible cases that can occur during an anticollision sequence when the number of slots is 16. The sequence of steps is as follows: • The VCD sends an Inventory request, in a frame terminated by an EOF. The number of slots is 16. • M24LR04E-R_1 transmits its response in Slot 0. It is the only one to do so, therefore no collision occurs and its UID is received and registered by the VCD. • The VCD sends an EOF in order to switch to the next slot. • In Slot 1, two M24LR04E-Rs, M24LR04E-R_2 and M24LR04E-R_3 transmit a response, thus generating a collision. The VCD records the event and registers that a collision was detected in Slot 1. • The VCD sends an EOF in order to switch to the next slot. • In Slot 2, no M24LR04E-R transmits a response. Therefore the VCD does not detect any M24LR04E-R SOF and switches to the next slot by sending an EOF. • In Slot 3, another collision occurs due to responses from M24LR04E-R_4 and M24LR04E-R_5. • The VCD sends a request (for instance a Read Block) to M24LR04E-R_1 whose UID has already been correctly received. • All M24LR04E-Rs detect an SOF and exit the anticollision sequence. They process this request and since the request is addressed to M24LR04E-R_1, only M24LR04E-R_1 transmits a response. • All M24LR04E-Rs are ready to receive another request. If it is an Inventory command, the slot numbering sequence restarts from 0. Note: The decision to interrupt the anticollision sequence is made by the VCD. It could have continued to send EOFs until Slot 16 and only then sent the request to M24LR04E-R. DocID022208 Rev 11 73/146 145

7 Figure 51. Description of a possible anticollision sequence E 4 x /1 p 46 la n a (cid:54)(cid:79)(cid:82)(cid:87)(cid:3)(cid:19) (cid:54)(cid:79)(cid:82)(cid:87)(cid:3)(cid:20) (cid:54)(cid:79)(cid:82)(cid:87)(cid:3)(cid:21) (cid:54)(cid:79)(cid:82)(cid:87)(cid:3)(cid:22) t io n o (cid:57)(cid:38)(cid:39) (cid:54)(cid:50) (cid:44)(cid:81)(cid:89)(cid:72)(cid:81)(cid:87)(cid:82)(cid:85)(cid:92)(cid:3) (cid:40)(cid:50) (cid:40)(cid:50) (cid:40)(cid:50) (cid:40)(cid:50) (cid:54)(cid:50) (cid:53)(cid:72)(cid:84)(cid:88)(cid:72)(cid:86)(cid:87)(cid:3)(cid:87)(cid:82)(cid:3) (cid:40)(cid:50) f th (cid:53)(cid:72)(cid:84)(cid:88)(cid:72)(cid:86)(cid:87) (cid:45)(cid:18)(cid:20)(cid:44)(cid:50)(cid:16)(cid:20)(cid:37)(cid:13)(cid:50)(cid:63)(cid:17) e (cid:41) (cid:41) (cid:41) (cid:41) (cid:41) (cid:41) (cid:41) p o s s ib le (cid:53)(cid:72)(cid:86)(cid:83)(cid:82)(cid:81)(cid:86)(cid:72)(cid:3) (cid:53)(cid:72)(cid:86)(cid:83)(cid:82)(cid:81)(cid:86)(cid:72)(cid:3) c (cid:21) (cid:23) a s e s (cid:53)(cid:72)(cid:86)(cid:83)(cid:82)(cid:81)(cid:86)(cid:72)(cid:3)(cid:73)(cid:85)(cid:82)(cid:80)(cid:3) (cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53)(cid:86) (cid:45)(cid:18)(cid:20)(cid:44)(cid:50)(cid:16)(cid:20)(cid:37)(cid:13)(cid:50)(cid:63)(cid:17) D o c (cid:53)(cid:72)(cid:86)(cid:83)(cid:82)(cid:81)(cid:86)(cid:72)(cid:3) (cid:53)(cid:72)(cid:86)(cid:83)(cid:82)(cid:81)(cid:86)(cid:72)(cid:3) (cid:53)(cid:72)(cid:86)(cid:83)(cid:82)(cid:81)(cid:86)(cid:72)(cid:3) ID 0 (cid:20) (cid:22) (cid:24) 2 2 2 0 8 R e v 1 (cid:55)(cid:76)(cid:80)(cid:76)(cid:81)(cid:74) (cid:87) (cid:87) (cid:87) (cid:87) (cid:87) (cid:87) (cid:87) 1 (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:49)(cid:82)(cid:3) (cid:49)(cid:82)(cid:3) (cid:38)(cid:82)(cid:80)(cid:80)(cid:72)(cid:81)(cid:87) (cid:38)(cid:82)(cid:79)(cid:79)(cid:76)(cid:86)(cid:76)(cid:82)(cid:81) (cid:38)(cid:82)(cid:79)(cid:79)(cid:76)(cid:86)(cid:76)(cid:82)(cid:81) (cid:70)(cid:82)(cid:79)(cid:79)(cid:76)(cid:86)(cid:76)(cid:82)(cid:81) (cid:85)(cid:72)(cid:86)(cid:83)(cid:82)(cid:81)(cid:86)(cid:72)(cid:3)(cid:3) (cid:55)(cid:76)(cid:80)(cid:72)(cid:3)(cid:3) (cid:48)(cid:54)(cid:23)(cid:20)(cid:23)(cid:21)(cid:22)(cid:57)(cid:20) M 2 4 L R 0 4 E - R

M24LR04E-R Inventory Initiated command 24 Inventory Initiated command The M24LR04E-R provides a special feature to improve the inventory time response of moving tags using the Initiate_flag value. This flag, controlled by the Initiate command, allows tags to answer to Inventory Initiated commands. For applications in which multiple tags are moving in front of a reader, it is possible to miss tags using the standard inventory command. The reason is that the inventory sequence has to be performed on a global tree search. For example, a tag with a particular UID value may have to wait the run of a long tree search before being inventoried. If the delay is too long, the tag may be out of the field before it has been detected. Using the Initiate command, the inventory sequence is optimized. When multiple tags are moving in front of a reader, the ones which are within the reader field are initiated by the Initiate command. In this case, a small batch of tags answers to the Inventory Initiated command, which optimizes the time necessary to identify all the tags. When finished, the reader has to issue a new Initiate command in order to initiate a new small batch of tags which are new inside the reader field. It is also possible to reduce the inventory sequence time using the Fast Initiate and Fast Inventory Initiated commands. These commands allow the M24LR04E-Rs to increase their response data rate by a factor of 2, up to 53 Kbit/s. DocID022208 Rev 11 75/146 145

Timing definition M24LR04E-R 25 Timing definition 25.1 t : M24LR04E-R response delay 1 Upon detection of the rising edge of the EOF received from the VCD, the M24LR04E-R waits for a time t before transmitting its response to a VCD request or switching to the 1nom next slot during an inventory process. Values of t are given in Table 35. The EOF is defined 1 in Figure 22. 25.2 t : VCD new request delay 2 t is the time after which the VCD may send an EOF to switch to the next slot when one or 2 more M24LR04E-R responses have been received during an Inventory command. It starts from the reception of the EOF from the M24LR04E-Rs. The EOF sent by the VCD may be either 10% or 100% modulated regardless of the modulation index used for transmitting the VCD request to the M24LR04E-R. t is also the time after which the VCD may send a new request to the M24LR04E-R, as 2 described in Figure 48. Values of t are given in Table 35. 2 25.3 t : VCD new request delay when no response is received 3 from the M24LR04E-R t is the time after which the VCD may send an EOF to switch to the next slot when no 3 M24LR04E-R response has been received. The EOF sent by the VCD may be either 10% or 100% modulated regardless of the modulation index used for transmitting the VCD request to the M24LR04E-R. From the time the VCD has generated the rising edge of an EOF: • If this EOF is 100% modulated, the VCD waits for a time at least equal to t before 3min sending a new EOF. • If this EOF is 10% modulated, the VCD waits for a time at least equal to the sum of t + the M24LR04E-R nominal response time (which depends on the M24LR04E-R 3min data rate and subcarrier modulation mode) before sending a new EOF. Table 35. Timing values(1) Minimum (min) values Nominal (nom) values Maximum (max) values t 318.6 µs 320.9 µs 323.3 µs 1 t 309.2 µs No t No t 2 nom max t t (2) + t (3) No t No t 3 1max SOF nom max 1. The tolerance of specific timings is ± 32/fC. 2. t1max does not apply for write-alike requests. Timing conditions for write-alike requests are defined in the command description. 3. t is the time taken by the M24LR04E-R to transmit an SOF to the VCD. t depends on the current SOF SOF data rate: High data rate or Low data rate. 76/146 DocID022208 Rev 11

M24LR04E-R Command codes 26 Command codes The M24LR04E-R supports the commands described in this section. Their codes are given in Table 36. Table 36. Command codes Command code Command code Function Function standard custom 01h Inventory 2Ch Get Multiple Block Security Status 02h Stay Quiet B1h Write-sector Password 20h Read Single Block B2h Lock-sector 21h Write Single Block B3h Present-sector Password 23h Read Multiple Block C0h Fast Read Single Block 25h Select C1h Fast Inventory Initiated 26h Reset to Ready C2h Fast Initiate 27h Write AFI C3h Fast Read Multiple Block 28h Lock AFI D1h Inventory Initiated 29h Write DSFID D2h Initiate 2Ah Lock DSFID A0h ReadCfg 2Bh Get System Info A1h WriteEHCfg - - A2h SetRstEHEn - - A3h CheckEHEn - - A4h WriteDOCfg DocID022208 Rev 11 77/146 145

Command codes M24LR04E-R 26.1 Inventory When receiving the Inventory request, the M24LR04E-R runs the anticollision sequence. The Inventory_flag is set to 1. The meaning of flags 5 to 8 is shown in Table 29. The request contains: • the flags, • the Inventory command code (see Table 36), • the AFI if the AFI flag is set, • the mask length, • the mask value, • the CRC. The M24LR04E-R does not generate any answer in case of error. Table 37. Inventory request format Request Optional Mask Mask Request Request_flags Inventory CRC16 SOF AFI length value EOF - 8 bits 01h 8 bits 8 bits 0 - 64 bits 16 bits - The response contains: • the flags, • the Unique ID. Table 38. Inventory response format Response Response Response_flags DSFID UID CRC16 SOF EOF - 8 bits 8 bits 64 bits 16 bits - During an Inventory process, if the VCD does not receive an RF M24LR04E-R response, it waits for a time t before sending an EOF to switch to the next slot. t starts from the rising 3 3 edge of the request EOF sent by the VCD. • If the VCD sends a 100% modulated EOF, the minimum value of t is: 3 t = 4384/f (323.3µs) + t 3min C SOF • If the VCD sends a 10% modulated EOF, the minimum value of t is: 3 t = 4384/f (323.3µs) + t 3min C NRT where: • t is the time required by the M24LR04E-R to transmit an SOF to the VCD, SOF • t is the nominal response time of the M24LR04E-R. NRT t and t are dependent on the M24LR04E-R-to-VCD data rate and subcarrier NRT SOF modulation mode. When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF starting the inventory command to the end of the M24LR04E-R response. If the M24LR04E- R does not receive the corresponding slot marker, the RF WIP/BUSY pin remains at 0 until the next RF power-off. 78/146 DocID022208 Rev 11

M24LR04E-R Command codes When configured in the RF write in progress mode, the RF WIP/BUSY pin remains in high-Z state. Figure 52. M24LR04E-R RF-Busy management following Inventory command (cid:20)(cid:12)(cid:3)(cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53)(cid:3)(cid:85)(cid:72)(cid:83)(cid:79)(cid:76)(cid:72)(cid:86)(cid:3)(cid:76)(cid:81)(cid:3)(cid:86)(cid:79)(cid:82)(cid:87)(cid:3)(cid:81)(cid:17)(cid:3)(cid:53)(cid:41)(cid:66)(cid:37)(cid:88)(cid:86)(cid:92)(cid:3)(cid:76)(cid:86)(cid:3)(cid:85)(cid:72)(cid:79)(cid:72)(cid:68)(cid:86)(cid:72)(cid:71)(cid:3)(cid:68)(cid:73)(cid:87)(cid:72)(cid:85)(cid:3)(cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53)(cid:3)(cid:85)(cid:72)(cid:86)(cid:83)(cid:82)(cid:81)(cid:86)(cid:72)(cid:17) (cid:54)(cid:79)(cid:82)(cid:87)(cid:3)(cid:20) (cid:54)(cid:79)(cid:82)(cid:87)(cid:3)(cid:81) (cid:54) (cid:44)(cid:81)(cid:89)(cid:72)(cid:81)(cid:87)(cid:82)(cid:85)(cid:92) (cid:40) (cid:40) (cid:40) (cid:40) (cid:50) (cid:50) (cid:50) (cid:50) (cid:50) (cid:41) (cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71) (cid:41) (cid:41) (cid:41) (cid:41) (cid:54) (cid:44)(cid:85)(cid:72)(cid:83)(cid:79)(cid:92) (cid:40) (cid:50) (cid:50) (cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53) (cid:41) (cid:41) (cid:53)(cid:41)(cid:66)(cid:37)(cid:88)(cid:86)(cid:92) (cid:21)(cid:12)(cid:3)(cid:54)(cid:79)(cid:82)(cid:87)(cid:3)(cid:81)(cid:3)(cid:81)(cid:72)(cid:89)(cid:72)(cid:85)(cid:3)(cid:82)(cid:70)(cid:70)(cid:88)(cid:85)(cid:86)(cid:17)(cid:3)(cid:53)(cid:41)(cid:66)(cid:37)(cid:88)(cid:86)(cid:92)(cid:3)(cid:76)(cid:86)(cid:3)(cid:82)(cid:81)(cid:79)(cid:92)(cid:3)(cid:85)(cid:72)(cid:79)(cid:72)(cid:68)(cid:86)(cid:72)(cid:71)(cid:3)(cid:69)(cid:92)(cid:3)(cid:51)(cid:82)(cid:90)(cid:72)(cid:85)(cid:16)(cid:82)(cid:73)(cid:73)(cid:17) (cid:54)(cid:79)(cid:82)(cid:87)(cid:3)(cid:20) (cid:54)(cid:79)(cid:82)(cid:87)(cid:3)(cid:81) (cid:51)(cid:82)(cid:90)(cid:72)(cid:85)(cid:16)(cid:82)(cid:73)(cid:73) (cid:54) (cid:44)(cid:81)(cid:89)(cid:72)(cid:81)(cid:87)(cid:82)(cid:85)(cid:92) (cid:40) (cid:40) (cid:40) (cid:50) (cid:50) (cid:50) (cid:50) (cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71) (cid:41) (cid:41) (cid:41) (cid:41) (cid:53)(cid:41)(cid:66)(cid:37)(cid:88)(cid:86)(cid:92) (cid:22)(cid:12)(cid:3)(cid:57)(cid:38)(cid:39)(cid:3)(cid:86)(cid:72)(cid:81)(cid:71)(cid:86)(cid:3)(cid:68)(cid:3)(cid:57)(cid:68)(cid:79)(cid:76)(cid:71)(cid:3)(cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71)(cid:3)(cid:69)(cid:72)(cid:73)(cid:82)(cid:85)(cid:72)(cid:3)(cid:86)(cid:79)(cid:82)(cid:87)(cid:3)(cid:81)(cid:17)(cid:3)(cid:53)(cid:41)(cid:66)(cid:37)(cid:88)(cid:86)(cid:92)(cid:3)(cid:76)(cid:86)(cid:3)(cid:85)(cid:72)(cid:79)(cid:72)(cid:68)(cid:86)(cid:72)(cid:71)(cid:3)(cid:68)(cid:73)(cid:87)(cid:72)(cid:85)(cid:3)(cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53)(cid:3)(cid:85)(cid:72)(cid:86)(cid:83)(cid:82)(cid:81)(cid:86)(cid:72) (cid:17) (cid:54)(cid:79)(cid:82)(cid:87)(cid:3)(cid:20) (cid:54) (cid:44)(cid:81)(cid:89)(cid:72)(cid:81)(cid:87)(cid:82)(cid:85)(cid:92) (cid:40) (cid:40) (cid:54) (cid:44)(cid:49)(cid:72)(cid:90) (cid:40) (cid:50) (cid:50) (cid:50) (cid:50) (cid:50) (cid:41) (cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71) (cid:41) (cid:41) (cid:41) (cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71) (cid:41) (cid:54) (cid:44)(cid:85)(cid:72)(cid:83)(cid:79)(cid:92) (cid:40) (cid:50) (cid:50) (cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53) (cid:41) (cid:41) (cid:53)(cid:41)(cid:66)(cid:37)(cid:88)(cid:86)(cid:92) (cid:23)(cid:12)(cid:3)(cid:57)(cid:38)(cid:39)(cid:3)(cid:86)(cid:72)(cid:81)(cid:71)(cid:86)(cid:3)(cid:68)(cid:3)(cid:37)(cid:68)(cid:71)(cid:3)(cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71)(cid:3)(cid:11)(cid:88)(cid:81)(cid:78)(cid:81)(cid:82)(cid:90)(cid:81)(cid:3)(cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71)(cid:3)(cid:70)(cid:82)(cid:71)(cid:72)(cid:15)(cid:3)(cid:73)(cid:68)(cid:79)(cid:86)(cid:72)(cid:3)(cid:38)(cid:53)(cid:38)(cid:17)(cid:17)(cid:17)(cid:12)(cid:3)(cid:69)(cid:72)(cid:73)(cid:82)(cid:85)(cid:72)(cid:3)(cid:86)(cid:79)(cid:82)(cid:87)(cid:3)(cid:81)(cid:17)(cid:3)(cid:53)(cid:41)(cid:66)(cid:37)(cid:88)(cid:86)(cid:92)(cid:3)(cid:76)(cid:86)(cid:3)(cid:85)(cid:72)(cid:79)(cid:72)(cid:68)(cid:86)(cid:72)(cid:71)(cid:3)(cid:68)(cid:73)(cid:87)(cid:72)(cid:85)(cid:3)(cid:57)(cid:38)(cid:39)(cid:3)(cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71)(cid:17) (cid:54)(cid:79)(cid:82)(cid:87)(cid:3)(cid:20) (cid:54) (cid:44)(cid:81)(cid:89)(cid:72)(cid:81)(cid:87)(cid:82)(cid:85)(cid:92) (cid:40) (cid:40) (cid:54) (cid:44)(cid:37)(cid:68)(cid:71) (cid:40) (cid:50) (cid:50) (cid:50) (cid:50) (cid:50) (cid:41) (cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71) (cid:41) (cid:41) (cid:41) (cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71) (cid:41) (cid:53)(cid:41)(cid:66)(cid:37)(cid:88)(cid:86)(cid:92) (cid:48)(cid:54)(cid:20)(cid:28)(cid:26)(cid:25)(cid:26)(cid:57)(cid:22) 26.2 Stay Quiet Command code = 0x02 On receiving the Stay Quiet command, the M24LR04E-R enters the Quiet State if no error occurs, and does NOT send back a response. There is NO response to the Stay Quiet command even if an error occurs. DocID022208 Rev 11 79/146 145

Command codes M24LR04E-R When in the Quiet state: • the M24LR04E-R does not process any request if the Inventory_flag is set, • the M24LR04E-R processes any Addressed request. The M24LR04E-R exits the Quiet State when: • it is reset (power off), • receiving a Select request. It then goes to the Selected state, • receiving a Reset to Ready request. It then goes to the Ready state. Table 39. Stay Quiet request format Request Request Request_flags Stay Quiet UID CRC16 SOF EOF - 8 bits 02h 64 bits 16 bits - The Stay Quiet command must always be executed in Addressed mode (Select_flag is reset to 0 and Address_flag is set to 1). Figure 53. Stay Quiet frame exchange between VCD and M24LR04E-R Stay Quiet VCD SOF EOF request M24LR04E-R When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 during the Stay Quiet command. When configured in the RF write in progress mode, the RF WIP/BUSY pin remains in high-Z state. 80/146 DocID022208 Rev 11

M24LR04E-R Command codes 26.3 Read Single Block On receiving the Read Single Block command, the M24LR04E-R reads the requested block and sends back its 32-bit value in the response. The Protocol_extension_flag should be set to 0 for the M24LR04E-R to operate correctly. Table 40. Read Single Block request format Request Request_ Read Single Block Request UID(1) CRC16 SOF flags Block number EOF - 8 bits 20h 64 bits 8 bits 16 bits - 1. Gray means that the field is optional. Request parameters: • Request flags • UID (optional) • Block number Table 41. Read Single Block response format when Error_flag is NOT set Sector Response Response Response_flags security Data CRC16 SOF EOF status(1) - 8 bits 8 bits 32 bits 16 bits - 1. Gray means that the field is optional. Response parameters: • Sector security status if Option_flag is set (see Table 42) • Four bytes of block data Table 42. Sector security status b b b b b b b b 7 6 5 4 3 2 1 0 Reserved for future Password Read / Write 0: Current sector not locked use. All at 0. control bits protection bits 1: Current sector locked Table 43. Read Single Block response format when Error_flag is set Response Response_ Response Error code CRC16 SOF flags EOF - 8 bits 8 bits 16 bits - Response parameter: • Error code as Error_flag is set – 10h: the specified block is not available – 15h: the specified block is read-protected DocID022208 Rev 11 81/146 145

Command codes M24LR04E-R Figure 54. Read Single Block frame exchange between VCD and M24LR04E-R Read Single Block VCD SOF EOF request Read Single Block M24LR04E-R <-t -> SOF EOF 1 response When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the Read Single Block command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin remains in high-Z state. 26.4 Write Single Block On receiving the Write Single Block command, the M24LR04E-R writes the data contained in the request to the requested block and reports whether the write operation was successful in the response. The Protocol_extension_flag should be set to 0 for the M24LR04E-R to operate correctly. During the RF write cycle W, there should be no modulation (neither 100% nor 10%), t otherwise, the M24LR04E-R may not program correctly the data into the memory. The W t time is equal to t + 18 × 302 µs. 1nom Table 44. Write Single Block request format Write Request Request_ Block Request Single UID(1) Data CRC16 SOF flags number EOF Block - 8 bits 21h 64 bits 8 bits 32 bits 16 bits - 1. Gray means that the field is optional. Request parameters: • Request flags • UID (optional) • Block number • Data Table 45. Write Single Block response format when Error_flag is NOT set Response SOF Response_flags CRC16 Response EOF - 8 bits 16 bits - Response parameter: • No parameter. The response is send back after the writing cycle. 82/146 DocID022208 Rev 11

M24LR04E-R Command codes Table 46. Write Single Block response format when Error_flag is set Response Response_ Response Error code CRC16 SOF flags EOF - 8 bits 8 bits 16 bits - Response parameter: • Error code as Error_flag is set: – 0Fh: error with no information given – 10h: the specified block is not available – 12h: the specified block is locked and its contents cannot be changed – 13h: the specified block was not successfully programmed Fig u re 55. Write Single Block frame exchange between VCD and M24LR04E-R Write Single VCD SOF EOF Block request Write Single Write sequence when M24LR04E-R <-t -> SOF EOF 1 Block response error Write Single M24LR04E-R <------------------- W ---------------> SOF EOF t Block response When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the Write Single Block command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin is tied to 0 for the duration of the internal write cycle (from the end of a valid write single block command to the beginning of the M24LR04E-R response). DocID022208 Rev 11 83/146 145

Command codes M24LR04E-R Figure 56. M24LR04E-R RF_Busy management following Write command (cid:20)(cid:12)(cid:3)(cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53)(cid:3)(cid:85)(cid:72)(cid:83)(cid:79)(cid:76)(cid:72)(cid:86)(cid:17)(cid:3)(cid:53)(cid:41)(cid:66)(cid:37)(cid:88)(cid:86)(cid:92)(cid:3)(cid:76)(cid:86)(cid:3)(cid:85)(cid:72)(cid:79)(cid:72)(cid:68)(cid:86)(cid:72)(cid:71)(cid:3)(cid:68)(cid:73)(cid:87)(cid:72)(cid:85)(cid:3)(cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53)(cid:3)(cid:85)(cid:72)(cid:86)(cid:83)(cid:82)(cid:81)(cid:86)(cid:72)(cid:17) (cid:58)(cid:87) (cid:54) (cid:58)(cid:85)(cid:76)(cid:87)(cid:72) (cid:40) (cid:50) (cid:50) (cid:41) (cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71) (cid:41) (cid:54) (cid:44)(cid:85)(cid:72)(cid:83)(cid:79)(cid:92) (cid:40) (cid:50) (cid:50) (cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53) (cid:41) (cid:41) (cid:53)(cid:41)(cid:66)(cid:37)(cid:88)(cid:86)(cid:92) (cid:21)(cid:12)(cid:3)(cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53)(cid:3)(cid:85)(cid:72)(cid:83)(cid:79)(cid:76)(cid:72)(cid:86)(cid:3)(cid:90)(cid:75)(cid:72)(cid:81)(cid:3)(cid:50)(cid:83)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:73)(cid:79)(cid:68)(cid:74)(cid:3)(cid:76)(cid:86)(cid:3)(cid:86)(cid:72)(cid:87)(cid:17)(cid:3)(cid:53)(cid:41)(cid:66)(cid:37)(cid:88)(cid:86)(cid:92)(cid:3)(cid:76)(cid:86)(cid:3)(cid:85)(cid:72)(cid:79)(cid:72)(cid:68)(cid:86)(cid:72)(cid:71)(cid:3)(cid:68)(cid:73)(cid:87)(cid:72)(cid:85)(cid:3)(cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53)(cid:3)(cid:85)(cid:72)(cid:86)(cid:83)(cid:82)(cid:81)(cid:86)(cid:72)(cid:17) (cid:58)(cid:87) (cid:54) (cid:58)(cid:85)(cid:76)(cid:87)(cid:72) (cid:40) (cid:40) (cid:50) (cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71) (cid:50) (cid:50) (cid:87)(cid:20) (cid:54) (cid:44)(cid:85)(cid:72)(cid:83)(cid:79)(cid:92) (cid:40) (cid:41) (cid:41) (cid:41) (cid:50) (cid:50) (cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53) (cid:41) (cid:41) (cid:53)(cid:41)(cid:66)(cid:37)(cid:88)(cid:86)(cid:92) (cid:22)(cid:12)(cid:3)(cid:57)(cid:38)(cid:39)(cid:3)(cid:86)(cid:72)(cid:81)(cid:71)(cid:86)(cid:3)(cid:68)(cid:3)(cid:73)(cid:82)(cid:85)(cid:69)(cid:76)(cid:71)(cid:71)(cid:72)(cid:81)(cid:3)(cid:58)(cid:85)(cid:76)(cid:87)(cid:72)(cid:3)(cid:11)(cid:86)(cid:72)(cid:70)(cid:87)(cid:82)(cid:85)(cid:3)(cid:79)(cid:82)(cid:70)(cid:78)(cid:15)(cid:3)(cid:83)(cid:68)(cid:86)(cid:86)(cid:90)(cid:82)(cid:85)(cid:71)(cid:16)(cid:83)(cid:85)(cid:82)(cid:87)(cid:72)(cid:70)(cid:87)(cid:72)(cid:71)(cid:12)(cid:17)(cid:3)(cid:53)(cid:41)(cid:66)(cid:37)(cid:88)(cid:86)(cid:92)(cid:3)(cid:76)(cid:86)(cid:3)(cid:85)(cid:72)(cid:79)(cid:72)(cid:68)(cid:86)(cid:72)(cid:71)(cid:3)(cid:68)(cid:73)(cid:87)(cid:72)(cid:85)(cid:3)(cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53)(cid:3)(cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71)(cid:17) (cid:17) (cid:87)(cid:20) (cid:54) (cid:58)(cid:85)(cid:76)(cid:87)(cid:72) (cid:40) (cid:50) (cid:50) (cid:41) (cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71) (cid:41) (cid:54) (cid:44)(cid:85)(cid:72)(cid:83)(cid:79)(cid:92) (cid:40) (cid:50) (cid:50) (cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53) (cid:41) (cid:41) (cid:53)(cid:41)(cid:66)(cid:37)(cid:88)(cid:86)(cid:92) (cid:48)(cid:54)(cid:20)(cid:28)(cid:26)(cid:25)(cid:27)(cid:57)(cid:22) When configuring in the RF Write in progress mode, the RF WIP/BUSY pin is tied to 0 during the Write & verify sequence, as shown in Figure 57. 84/146 DocID022208 Rev 11

M24LR04E-R Command codes Figure 57. M24LR04E RF_Wip management following Write command (cid:20)(cid:12)(cid:3)(cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53)(cid:3)(cid:85)(cid:72)(cid:83)(cid:79)(cid:76)(cid:72)(cid:86)(cid:17)(cid:3)(cid:53)(cid:41)(cid:66)(cid:58)(cid:76)(cid:83)(cid:3)(cid:76)(cid:86)(cid:3)(cid:85)(cid:72)(cid:79)(cid:72)(cid:68)(cid:86)(cid:72)(cid:71)(cid:3)(cid:68)(cid:73)(cid:87)(cid:72)(cid:85)(cid:3)(cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53)(cid:3)(cid:85)(cid:72)(cid:86)(cid:83)(cid:82)(cid:81)(cid:86)(cid:72)(cid:17) (cid:58)(cid:87) (cid:54) (cid:58)(cid:85)(cid:76)(cid:87)(cid:72) (cid:40) (cid:50) (cid:50) (cid:41) (cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71) (cid:41) (cid:54) (cid:44)(cid:85)(cid:72)(cid:83)(cid:79)(cid:92) (cid:40) (cid:50) (cid:50) (cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53) (cid:41) (cid:41) (cid:53)(cid:41)(cid:66)(cid:58)(cid:76)(cid:83) (cid:21)(cid:12)(cid:3)(cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53)(cid:3)(cid:85)(cid:72)(cid:83)(cid:79)(cid:76)(cid:72)(cid:86)(cid:3)(cid:90)(cid:75)(cid:72)(cid:81)(cid:3)(cid:50)(cid:83)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:73)(cid:79)(cid:68)(cid:74)(cid:3)(cid:76)(cid:86)(cid:3)(cid:86)(cid:72)(cid:87)(cid:17)(cid:3)(cid:53)(cid:41)(cid:66)(cid:58)(cid:76)(cid:83)(cid:3)(cid:76)(cid:86)(cid:3)(cid:85)(cid:72)(cid:79)(cid:72)(cid:68)(cid:86)(cid:72)(cid:71)(cid:3)(cid:68)(cid:73)(cid:87)(cid:72)(cid:85)(cid:3)(cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53)(cid:3)(cid:85)(cid:72)(cid:86)(cid:83)(cid:82)(cid:81)(cid:86)(cid:72)(cid:17) (cid:58)(cid:87) (cid:54) (cid:58)(cid:85)(cid:76)(cid:87)(cid:72) (cid:40) (cid:40) (cid:50) (cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71) (cid:50) (cid:50) (cid:87)(cid:20) (cid:54) (cid:44)(cid:85)(cid:72)(cid:83)(cid:79)(cid:92) (cid:40) (cid:41) (cid:41) (cid:41) (cid:50) (cid:50) (cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53) (cid:41) (cid:41) (cid:53)(cid:41)(cid:66)(cid:58)(cid:76)(cid:83) (cid:22)(cid:12)(cid:3)(cid:57)(cid:38)(cid:39)(cid:3)(cid:86)(cid:72)(cid:81)(cid:17)(cid:71)(cid:86)(cid:3)(cid:68)(cid:3)(cid:73)(cid:82)(cid:85)(cid:69)(cid:76)(cid:71)(cid:71)(cid:72)(cid:81)(cid:3)(cid:58)(cid:85)(cid:76)(cid:87)(cid:72)(cid:3)(cid:11)(cid:86)(cid:72)(cid:70)(cid:87)(cid:82)(cid:85)(cid:3)(cid:79)(cid:82)(cid:70)(cid:78)(cid:15)(cid:3)(cid:83)(cid:68)(cid:86)(cid:86)(cid:90)(cid:82)(cid:85)(cid:71)(cid:16)(cid:83)(cid:85)(cid:82)(cid:87)(cid:72)(cid:70)(cid:87)(cid:72)(cid:71)(cid:12)(cid:17)(cid:3)(cid:53)(cid:41)(cid:66)(cid:58)(cid:76)(cid:83)(cid:3)(cid:85)(cid:72)(cid:80)(cid:68)(cid:76)(cid:81)(cid:86)(cid:3)(cid:68)(cid:87)(cid:3)(cid:68)(cid:3)(cid:75)(cid:76)(cid:74)(cid:75)(cid:3)(cid:76)(cid:80)(cid:83)(cid:72)(cid:71)(cid:68)(cid:81)(cid:70)(cid:72)(cid:17) (cid:87)(cid:20) (cid:54) (cid:58)(cid:85)(cid:76)(cid:87)(cid:72) (cid:40) (cid:50) (cid:50) (cid:41) (cid:70)(cid:82)(cid:80)(cid:80)(cid:68)(cid:81)(cid:71) (cid:41) (cid:54) (cid:44)(cid:85)(cid:72)(cid:83)(cid:79)(cid:92) (cid:40) (cid:50) (cid:50) (cid:48)(cid:21)(cid:23)(cid:47)(cid:53)(cid:19)(cid:23)(cid:40)(cid:16)(cid:53) (cid:41) (cid:41) (cid:53)(cid:41)(cid:66)(cid:58)(cid:76)(cid:83) (cid:48)(cid:54)(cid:20)(cid:28)(cid:26)(cid:25)(cid:28)(cid:57)(cid:22) DocID022208 Rev 11 85/146 145

Command codes M24LR04E-R 26.5 Read Multiple Block When receiving the Read Multiple Block command, the M24LR04E-R reads the selected blocks and sends back their value in multiples of 32 bits in the response. The blocks are numbered from 00h to 1FFh in the request and the value is minus one (–1) in the field. For example, if the “Number of blocks” field contains the value 06h, seven blocks are read. The maximum number of blocks is fixed at 32 assuming that they are all located in the same sector. If the number of blocks overlaps sectors, the M24LR04E-R returns an error code. The Protocol_extension_flag should be set to 0 for the M24LR04E-R to operate correctly. Table 47. Read Multiple Block request format Read First Request Request_ Number Request Multiple UID(1) block CRC16 SOF flags of blocks EOF Block number - 8 bits 23h 64 bits 8 bits 8 bits 16 bits - 1. Gray means that the field is optional. Request parameters: • Request flags • UID (optional) • First block number • Number of blocks Table 48. Read Multiple Block response format when Error_flag is NOT set Sector Response Response_ Response security Data CRC16 SOF flags EOF status(1) - 8 bits 8 bits(2) 32 bits(2) 16 bits - 1. Gray means that the field is optional. 2. Repeated as needed. Response parameters: • Sector security status if Option_flag is set (see Table 49) • N blocks of data Table 49. Sector security status b b b b b b b b 7 6 5 4 3 2 1 0 Reserved for future Password Read / Write 0: Current sector not locked use. All at 0. control bits protection bits 1: Current sector locked Table 50. Read Multiple Block response format when Error_flag is set Response SOF Response_flags Error code CRC16 Response EOF - 8 bits 8 bits 16 bits - 86/146 DocID022208 Rev 11

M24LR04E-R Command codes Response parameter: • Error code as Error_flag is set: – 0Fh: error with no information given – 10h: the specified block is not available – 15h: the specified block is read-protected Figure 58. Read Multiple Block frame exchange between VCD and M24LR04E-R Read Multiple VCD SOF EOF Block request Read Multiple M24LR04E-R <-t -> SOF EOF 1 Block response When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the Read Multiple Block command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin remains in high-Z state. 26.6 Select When receiving the Select command: • If the UID is equal to its own UID, the M24LR04E-R enters or stays in the Selected state and sends a response. • If the UID does not match its own, the selected M24LR04E-R returns to the Ready state and does not send a response. The M24LR04E-R answers an error code only if the UID is equal to its own UID. If not, no response is generated. If an error occurs, the M24LR04E-R remains in its current state. Table 51. Select request format Request Request_ Request Select UID CRC16 SOF flags EOF - 8 bits 25h 64 bits 16 bits - Request parameter: • UID Table 52. Select Block response format when Error_flag is NOT set Response Response Response_flags CRC16 SOF EOF - 8 bits 16 bits - DocID022208 Rev 11 87/146 145

Command codes M24LR04E-R Response parameter: • No parameter Table 53. Select response format when Error_flag is set Response Response_ Response Error code CRC16 SOF flags EOF - 8 bits 8 bits 16 bits - Response parameter: • Error code as Error_flag is set: – 03h: the option is not supported Figure 59. Select frame exchange between VCD and M24LR04E-R Select VCD SOF EOF request Select M24LR04E-R <-t -> SOF EOF 1 response When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the Select command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin remains in high-Z state. 88/146 DocID022208 Rev 11

M24LR04E-R Command codes 26.7 Reset to Ready On receiving a Reset to Ready command, the M24LR04E-R returns to the Ready state if no error occurs. In the Addressed mode, the M24LR04E-R answers an error code only if the UID is equal to its own UID. If not, no response is generated. Table 54. Reset to Ready request format Request Request_ Reset to Request UID(1) CRC16 SOF flags Ready EOF - 8 bits 26h 64 bits 16 bits - 1. Gray means that the field is optional. Request parameter: • UID (optional) Table 55. Reset to Ready response format when Error_flag is NOT set Response Response Response_flags CRC16 SOF EOF - 8 bits 16 bits - Response parameter: • No parameter Table 56. Reset to ready response format when Error_flag is set Response Response Response_flags Error code CRC16 SOF EOF - 8 bits 8 bits 16 bits - Response parameter: • Error code as Error_flag is set: – 03h: the option is not supported Figure 60. Reset to Ready frame exchange between VCD and M24LR04E-R Reset to VCD SOF Ready EOF request Reset to M24LR04E-R <-t -> SOF Ready EOF 1 response DocID022208 Rev 11 89/146 145

Command codes M24LR04E-R When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the Reset to ready command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin remains in high-Z state. 26.8 Write AFI On receiving the Write AFI request, the M24LR04E-R programs the 8-bit AFI value to its memory. The Option_flag is supported. During the RF write cycle W, there should be no modulation (neither 100% nor 10%), t otherwise, the M24LR04E-R may not write correctly the AFI value into the memory. The W t time is equal to t + 18 × 302 µs. 1nom Table 57. Write AFI request format Request Request Write Request UID(1) AFI CRC16 SOF _flags AFI EOF - 8 bits 27h 64 bits 8 bits 16 bits - 1. Gray means that the field is optional. Request parameter: • Request flags • UID (optional) • AFI Table 58. Write AFI response format when Error_flag is NOT set Response Response Response_flags CRC16 SOF EOF - 8 bits 16 bits - Response parameter: • No parameter Table 59. Write AFI response format when Error_flag is set Response Response_ Response Error code CRC16 SOF flags EOF - 8 bits 8 bits 16 bits - Response parameter: • Error code as Error_flag is set – 12h: the specified block is locked and its contents cannot be changed – 13h: the specified block was not successfully programmed 90/146 DocID022208 Rev 11

M24LR04E-R Command codes Figure 61. Write AFI frame exchange between VCD and M24LR04E-R Write AFI VCD SOF EOF request Write AFI Write sequence M24LR04E-R <-t -> SOF EOF 1 response when error Write AFI M24LR04E-R <------------------ W --------------> SOF EOF t response When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the Write AFI command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin is tied to 0 for the duration of the internal write cycle (from the end of a valid Write AFI command to the beginning of the M24LR04E-R response). 26.9 Lock AFI On receiving the Lock AFI request, the M24LR04E-R locks the AFI value permanently. The Option_flag is supported. During the RF write cycle W, there should be no modulation (neither 100% nor 10%), t otherwise, the M24LR04E-R may not Lock correctly the AFI value in memory. The W time is t equal to t + 18 × 302 µs. 1nom Table 60. Lock AFI request format Request Request Request_flags Lock AFI UID(1) CRC16 SOF EOF - 8 bits 28h 64 bits 16 bits - 1. Gray means that the field is optional. Request parameter: • Request Flags • UID (optional) Table 61. Lock AFI response format when Error_flag is NOT set Response Response Response_flags CRC16 SOF EOF - 8 bits 16 bits - Response parameter: • No parameter DocID022208 Rev 11 91/146 145

Command codes M24LR04E-R Table 62. Lock AFI response format when Error_flag is set Response Response Response_flags Error code CRC16 SOF EOF - 8 bits 8 bits 16 bits - Response parameter: • Error code as Error_flag is set – 11h: the specified block is already locked and thus cannot be locked again – 14h: the specified block was not successfully locked Figure 62. Lock AFI frame exchange between VCD and M24LR04E-R Lock AFI VCD SOF EOF request Lock AFI Lock sequence M24LR04E-R <-t -> SOF EOF 1 response when error Lock AFI M24LR04E-R <----------------- W -----------> SOF EOF t response When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the Lock AFI command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin is tied to 0 for the entire duration of the internal write cycle (from the end of valid Lock AFI command to the beginning of the M24LR04E-R response). 92/146 DocID022208 Rev 11

M24LR04E-R Command codes 26.10 Write DSFID On receiving the Write DSFID request, the M24LR04E-R programs the 8-bit DSFID value to its memory. The Option_flag is supported. During the RF write cycle W, there should be no modulation (neither 100% nor 10%), t otherwise, the M24LR04E-R may not write correctly the DSFID value in memory. The W t time is equal to t + 18 × 302 µs. 1nom Table 63. Write DSFID request format Request Request_ Write Request UID(1) DSFID CRC16 SOF flags DSFID EOF - 8 bits 29h 64 bits 8 bits 16 bits - 1. Gray means that the field is optional. Request parameter: • Request flags • UID (optional) • DSFID Table 64. Write DSFID response format when Error_flag is NOT set Response Response Response_flags CRC16 SOF EOF - 8 bits 16 bits - Response parameter: • No parameter Table 65. Write DSFID response format when Error_flag is set Response Response Response_flags Error code CRC16 SOF EOF - 8 bits 8 bits 16 bits - Response parameter: • Error code as Error_flag is set – 12h: the specified block is locked and its contents cannot be changed – 13h: the specified block was not successfully programmed DocID022208 Rev 11 93/146 145

Command codes M24LR04E-R Figure 63. Write DSFID frame exchange between VCD and M24LR04E-R Write DSFID EO VCD SOF request F SO Write DSFID EO Write sequence M24LR04E-R <-t -> 1 F response F when error SO Write DSFID M24LR04E-R <---------------- W ----------> EOF t F response When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the Write DSFID command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin is tied to 0 for the duration of the internal write cycle (from the end of a valid Write DSFID command to beginning of the M24LR04E-R response). 26.11 Lock DSFID On receiving the Lock DSFID request, the M24LR04E-R locks the DSFID value permanently. The Option_flag is supported. During the RF write cycle W, there should be no modulation (neither 100% nor 10%), t otherwise, the M24LR04E-R may not lock correctly the DSFID value in memory. The W t time is equal to t + 18 × 302 µs. 1nom Table 66. Lock DSFID request format Request Request_ Lock Request UID(1) CRC16 SOF flags DSFID EOF - 8 bits 2Ah 64 bits 16 bits - 1. Gray means that the field is optional. Request parameter: • Request flags • UID (optional) Table 67. Lock DSFID response format when Error_flag is NOT set Response Response Response_flags CRC16 SOF EOF - 8 bits 16 bits - Response parameter: • No parameter. 94/146 DocID022208 Rev 11

M24LR04E-R Command codes Table 68. Lock DSFID response format when Error_flag is set Response Response Response_flags Error code CRC16 SOF EOF - 8 bits 8 bits 16 bits - Response parameter: • Error code as Error_flag is set: – 11h: the specified block is already locked and thus cannot be locked again – 14h: the specified block was not successfully locked . Figure 64. Lock DSFID frame exchange between VCD and M24LR04E-R Lock VCD SOF DSFID EOF request Lock DSFID Lock sequence M24LR04E-R <-t -> SOF EOF 1 response when error Lock M24LR04E-R <----------------- W ------------> SOF DSFID EOF t response When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the Lock DSFID command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin is tied to 0 for the duration of the internal write cycle (from the end of a valid Lock DSFID command to the beginning of the M24LR04E-R response). DocID022208 Rev 11 95/146 145

Command codes M24LR04E-R 26.12 Get System Info When receiving the Get System Info command, the M24LR04E-R sends back its information data in the response.The Option_flag is not supported. The Get System Info can be issued in both Addressed and Non Addressed modes. The Protocol_extension_flag must be set to 0. Table 70 shows the M24LR04E-R response to the Get System Info command depending on the value of the Protocol_extension_flag. Table 69. Get System Info request format Request Request Request Get System Info UID(1) CRC16 SOF _flags EOF - 8 bits 2Bh 64 bits 16 bits - 1. Gray means that the field is optional. Request parameter: • Request flags • UID (optional) Table 70. Get System Info response format when Protocol_extension_flag = 0 and Error_flag is NOT set Response Response Information Memory IC CRC Response UID DSFID AFI SOF _flags flags size ref. 16 EOF 64 16 - 00h 0Fh 8 bits 8 bits 037F 5A - bits bits Response parameters: • Information flags set to 0Fh. DSFID, AFI, Memory Size and IC reference fields are present. • UID code on 64 bits • DSFID value • AFI value • Memory size. The M24LR04E-R provides 128 blocks (7Fh) of four bytes (03h) • IC reference: the 8 bits are significant. Table 71. Get System Info response format when Error_flag is set Response Response Response_flags Error code CRC16 SOF EOF - 01h 8 bits 16 bits - Response parameter: • Error code as Error_flag is set: – 03h: Option not supported 96/146 DocID022208 Rev 11

M24LR04E-R Command codes Figure 65. Get System Info frame exchange between VCD and M24LR04E-R Get System Info VCD SOF EOF request Get System Info M24LR04E-R <-t -> SOF EOF 1 response When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the Get System Info command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin remains in high-Z state. DocID022208 Rev 11 97/146 145

Command codes M24LR04E-R 26.13 Get Multiple Block Security Status When receiving the Get Multiple Block Security Status command, the M24LR04E-R sends back the sector security status. The blocks are numbered from 00h to 01FFh in the request and the value is minus one (–1) in the field. For example, a value of '06' in the “Number of blocks” field requests to return the security status of seven blocks. The Protocol_extension_flag should be set to 0 for the M24LR04E-R to operate correctly. During the M24LR04E-R response, if the internal block address counter reaches 01FFh, it rolls over to 0000h and the Sector Security Status bytes for that location are sent back to the reader. Table 72. Get Multiple Block Security Status request format Get Multiple First Request Request Number Request Block UID(1) block CRC16 SOF _flags of blocks EOF Security number Status - 8 bits 2Ch 64 bits 8 bits 8 bits 16 bits - 1. Gray means that the field is optional. Request parameter: • Request flags • UID (optional) • First block number • Number of blocks T able 73. Get Multiple Block Security Status response format when Error_flag is NOT set Response Response_ Sector security Response CRC16 SOF flags status EOF - 8 bits 8 bits(1) 16 bits - 1. Repeated as needed. Response parameters: • Sector security status (see Table 74) Table 74. Sector security status b b b b b b b b 7 6 5 4 3 2 1 0 Reserved for future use. Password control Read / Write 0: Current sector not locked All at 0. bits protection bits 1: Current sector locked 98/146 DocID022208 Rev 11

M24LR04E-R Command codes T able 75. Get Multiple Block Security Status response format when Error_flag is set Response Response_ Response Error code CRC16 SOF flags EOF - 8 bits 8 bits 16 bits - Response parameter: • Error code as Error_flag is set: – 03h: the option is not supported – 10h: the specified block is not available Figure 66. Get Multiple Block Security Status frame exchange between VCD and M24LR04E-R Get Multiple Block VCD SOF EOF Security Status Get Multiple Block M24LR04E-R <-t -> SOF EOF 1 Security Status When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the Get Multiple Block Security Status command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin remains in high-Z state. 26.14 Write-sector Password On receiving the Write-sector Password command, the M24LR04E-R uses the data contained in the request to write the password and reports whether the operation was successful in the response. The Option_flag is supported. During the RF write cycle time, W, there must be no modulation at all (neither 100% nor t 10%), otherwise, the M24LR04E-R may not correctly program the data into the memory. The W time is equal to t + 18 × 302 µs. After a successful write, the new value of the t 1nom selected password is automatically activated. It is not required to present the new password value until M24LR04E-R power-down. Table 76. Write-sector Password request format Write- Request Request IC Mfg Password Request sector UID(1) Data CRC16 SOF _flags code number EOF password - 8 bits B1h 02h 64 bits 8 bits 32 bits 16 bits - 1. Gray means that the field is optional. DocID022208 Rev 11 99/146 145

Command codes M24LR04E-R Request parameter: • Request flags • UID (optional) • Password number (01h = Pswd1, 02h = Pswd2, 03h = Pswd3, other = Error) • Data Table 77. Write-sector Password response format when Error_flag is NOT set Response Response Response_flags CRC16 SOF EOF - 8 bits 16 bits - Response parameter: • no parameter. Table 78. Write-sector Password response format when Error_flag is set Response Response_ Response Error code CRC16 SOF flags EOF - 8 bits 8 bits 16 bits - Response parameter: • Error code as Error_flag is set: – 10h: the password number is incorrect – 12h: the session was not opened before the password update – 13h: the specified block was not successfully programmed – 0Fh: the presented password is incorrect Figure 67. Write-sector Password frame exchange between VCD and M24LR04E-R Write- sector VCD SOF EOF Password request Write-sector Write sequence M24LR04E-R <-t -> SOF Password EOF 1 when error response Write- sector M24LR04E-R <---------------- W -------------> SOF EOF t Password response 100/146 DocID022208 Rev 11

M24LR04E-R Command codes When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the Write-sector Password command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin is tied to 0 for the duration of the internal write cycle (from the end of a valid Write sector password command to the beginning of the M24LR04E-R response). 26.15 Lock-sector On receiving the Lock-sector command, the M24LR04E-R sets the access rights and permanently locks the selected sector. The Option_flag is supported. A sector is selected by giving the address of one of its blocks in the Lock-sector request (Sector number field). For example, addresses 0 to 31 are used to select sector 0 and addresses 32 to 63 are used to select sector 1. Care must be taken when issuing the Lock- sector command as all the blocks belonging to the same sector are automatically locked by a single command. The Protocol_extension_flag should be set to 0 for the M24LR04E-R to operate correctly. During the RF write cycle W, there should be no modulation (neither 100% nor 10%), t otherwise, the M24LR04E-R may not correctly lock the memory block. The W time is equal t to t + 18 × 302 µs. 1nom Table 79. Lock-sector request format IC Sector Request Request Lock- Sector Request Mfg UID(1) security CRC16 SOF _flags sector number EOF code status - 8 bits B2h 02h 64 bits 8 bits 8 bits 16 bits - 1. Gray means that the field is optional. Request parameters: • Request flags • (optional) UID • Sector number • Sector security status (refer to Table 80) Table 80. Sector security status b b b b b b b b 7 6 5 4 3 2 1 0 Read / Write protection 0 0 0 password control bits 1 bits Table 81. Lock-sector response format when Error_flag is NOT set Response Response Response_flags CRC16 SOF EOF - 8 bits 16 bits - DocID022208 Rev 11 101/146 145

Command codes M24LR04E-R Response parameter: • No parameter Table 82. Lock-sector response format when Error_flag is set Response Response_ Response Error code CRC16 SOF flags EOF - 8 bits 8 bits 16 bits - Response parameter: • Error code as Error_flag is set: – 10h: the specified block is not available – 11h: the specified block is already locked and thus cannot be locked again – 14h: the specified block was not successfully locked Figure 68. Lock-sector frame exchange between VCD and M24LR04E-R Lock-sector VCD SOF EOF request Lock-sector Lock sequence when M24LR04E-R <-t -> SOF EOF 1 response error Lock-sector M24LR04E-R <--------------- W -----------> SOF EOF t response When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the Lock-sector command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin is tied to 0 for the duration of the internal write cycle (from the end of a valid Lock sector command to the beginning of the M24LR04E-R response). 26.16 Present-sector Password On receiving the Present-sector Password command, the M24LR04E-R compares the requested password with the data contained in the request and reports whether the operation has been successful in the response. The Option_flag is supported. During the comparison cycle equal to W, there should be no modulation (neither 100% nor t 10%), otherwise, the M24LR04E-R the Password value may not be correctly compared. The W time is equal to t + 18 × 302 µs. t 1nom After a successful command, the access to all the memory blocks linked to the password is changed as described in Section 4.1. 102/146 DocID022208 Rev 11

M24LR04E-R Command codes Table 83. Present-sector Password request format Present- IC Request Request Password Request sector Mfg UID(1) Password CRC16 SOF _flags number EOF Password code - 8 bits B3h 02h 64 bits 8 bits 32 bits 16 bits - 1. Gray means that the field is optional. Request parameter: • Request flags • UID (optional) • Password Number (0x01 = Pswd1, 0x02 = Pswd2, 0x03 = Pswd3, other = Error) • Password Table 84. Present-sector Password response format when Error_flag is NOT set Response Response Response_flags CRC16 SOF EOF - 8 bits 16 bits - Response parameter: • No parameter. The response is send back after the write cycle. Table 85. Present-sector Password response format when Error_flag is set Response Response Response_flags Error code CRC16 SOF EOF - 8 bits 8 bits 16 bits - Response parameter: • Error code as Error_flag is set: – 10h: the password number is incorrect – 0Fh: the present password is incorrect DocID022208 Rev 11 103/146 145

Command codes M24LR04E-R F igure 69. Present-sector Password frame exchange between VCD and M24LR04E-R Present- sector password VCD SOF response EOF OR error 0F (bad password) Present-sector sequence when M24LR04E-R <-t -> SOF password EOF 1 error response Present- sector M24LR04E-R <---------------- W ------------> SOF EOF t password response When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the Present Sector Password command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY remains in high-Z state. 104/146 DocID022208 Rev 11

M24LR04E-R Command codes 26.17 Fast Read Single Block On receiving the Fast Read Single Block command, the M24LR04E-R reads the requested block and sends back its 32-bit value in the response. The Option_flag is supported. The data rate of the response is multiplied by 2. The Protocol_extension_flag should be set to 0 for the M24LR04E-R to operate correctly. The subcarrier_flag should be set to 0, otherwise the M24LR04E-R answers with an error code. Table 86. Fast Read Single Block request format Fast Read Request Request_ IC Mfg Block Request Single UID(1) CRC16 SOF flags code number EOF Block - 8 bits C0h 02h 64 bits 8 bits 16 bits - 1. Gray means that the field is optional. Request parameters: • Request flags • UID (optional) • Block number Table 87. Fast Read Single Block response format when Error_flag is NOT set Sector Response Response Response security Data CRC16 SOF _flags EOF status(1) - 8 bits 8 bits 32 bits 16 bits - 1. Gray means that the field is optional. Response parameters: • Sector security status if Option_flag is set (see Table 88) • Four bytes of block data Table 88. Sector security status b b b b b b b b 7 6 5 4 3 2 1 0 Reserved for future used. Password control Read / Write 0: Current sector not locked All at 0. bits protection bits 1: Current sector locked Table 89. Fast Read Single Block response format when Error_flag is set Response Response Response_flags Error code CRC16 SOF EOF - 8 bits 8 bits 16 bits - DocID022208 Rev 11 105/146 145

Command codes M24LR04E-R Response parameter: • Error code as Error_flag is set: – 10h: the specified block is not available – 15h: the specified block is read protected Figure 70. Fast Read Single Block frame exchange between VCD and M24LR04E-R Fast Read Single VCD SOF EOF Block request Fast Read Single M24LR04E-R <-t -> SOF EOF 1 Block response When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the Fast Read Single block command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin remains in high-Z state. 26.18 Fast Inventory Initiated Before receiving the Fast Inventory Initiated command, the M24LR04E-R must have received an Initiate or a Fast Initiate command in order to set the Initiate_ flag. If not, the M24LR04E-R does not answer to the Fast Inventory Initiated command. The subcarrier_flag should be set to 0, otherwise the M24LR04E-R answers with an error code. On receiving the Fast Inventory Initiated request, the M24LR04E-R runs the anticollision sequence. The Inventory_flag must be set to 1. The meaning of flags 5 to 8 is shown in Table 29. The data rate of the response is multiplied by 2. The request contains: • the flags, • the Inventory command code, • the AFI if the AFI flag is set, • the mask length, • the mask value, • the CRC. The M24LR04E-R does not generate any answer in case of error. Table 90. Fast Inventory Initiated request format Fast Request Request IC Mfg Optional Mask Request Inventory Mask value CRC16 SOF _flags code AFI length EOF Initiated - 8 bits C1h 02h 8 bits 8 bits 0 - 64 bits 16 bits - 106/146 DocID022208 Rev 11

M24LR04E-R Command codes The Response contains: • the flags, • the Unique ID. Table 91. Fast Inventory Initiated response format Response Response Response DSFID UID CRC16 SOF _flags EOF - 8 bits 8 bits 64 bits 16 bits - During an Inventory process, if the VCD does not receive an RF M24LR04E-R response, it waits for a time t before sending an EOF to switch to the next slot. t starts from the rising 3 3 edge of the request EOF sent by the VCD. • If the VCD sends a 100% modulated EOF, the minimum value of t is: 3 t = 4384/f (323.3µs) + t 3min C SOF • If the VCD sends a 10% modulated EOF, the minimum value of t is: 3 t = 4384/f (323.3µs) + t 3min C NRT where: • t is the time required by the M24LR04E-R to transmit an SOF to the VCD SOF • t is the nominal response time of the M24LR04E-R NRT t and t are dependent on the M24LR04E-R-to-VCD data rate and subcarrier NRT SOF modulation mode. When configured in the RF busy mode, the RF WIP/BUSY pin is driven to 0 from the SOF starting the inventory command to the end of the M24LR04E-R response.If the M24LR04E- R does not receive the corresponding slot marker, the RF WIP/BUSY pin remains at 0 till the next RF power-off. When configured in the RF write in progress mode, the RF WIP/BUSY pin remains in high-Z state. DocID022208 Rev 11 107/146 145

Command codes M24LR04E-R 26.19 Fast Initiate On receiving the Fast Initiate command, the M24LR04E-R sets the internal Initiate_flag and sends back a response only if it is in the Ready state. The command has to be issued in the Non Addressed mode only (Select_flag is reset to 0 and Address_flag is reset to 0). If an error occurs, the M24LR04E-R does not generate any answer. The Initiate_flag is reset after a power-off of the M24LR04E-R. The data rate of the response is multiplied by 2. The subcarrier_flag should be set to 0, otherwise the M24LR04E-R answers with an error code. The request contains: • No data Table 92. Fast Initiate request format Request Fast IC Mfg Request Request_flags CRC16 SOF Initiate Code EOF - 8 bits C2h 02h 16 bits - The response contains: • the flags, • the Unique ID. Table 93. Fast Initiate response format Response Response Response DSFID UID CRC16 SOF _flags EOF - 8 bits 8 bits 64 bits 16 bits - Figure 71. Fast Initiate frame exchange between VCD and M24LR04E-R Fast Initiate VCD SOF EOF request Fast Initiate M24LR04E-R <-t -> SOF EOF 1 response When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the Fast Initiate command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin remains in high-Z state. 108/146 DocID022208 Rev 11

M24LR04E-R Command codes 26.20 Fast Read Multiple Block On receiving the Fast Read Multiple Block command, the M24LR04E-R reads the selected blocks and sends back their value in multiples of 32 bits in the response. The blocks are numbered from 00h to 1FFh in the request and the value is minus one (–1) in the field. For example, if the “Number of blocks” field contains the value 06h, seven blocks are read. The maximum number of blocks is fixed to 32 assuming that they are all located in the same sector. If the number of blocks overlaps sectors, the M24LR04E-R returns an error code. The Protocol_extension_flag should be set to 0 for the M24LR04E-R to operate correctly. The Option_flag is supported. The data rate of the response is multiplied by 2. The subcarrier_flag should be set to 0, otherwise the M24LR04E-R answers with an error code. Table 94. Fast Read Multiple Block request format Fast First Number Request Request_ Read IC Mfg Request UID(1) block of CRC16 SOF flags Multiple code EOF number blocks Block - 8 bits C3h 02h 64 bits 8 bits 8 bits 16 bits - 1. Gray means that the field is optional. Request parameters: • Request flag • UID (Optional) • First block number • Number of blocks Table 95. Fast Read Multiple Block response format when Error_flag is NOT set Sector Response Response_ Response security Data CRC16 SOF flags EOF status(1) - 8 bits 8 bits(2) 32 bits(2) 16 bits - 1. Gray means that the field is optional. 2. Repeated as needed. Response parameters: • Sector security status if Option_flag is set (see Table 96) • N block of data Table 96. Sector security status if Option_flag is set b b b b b b b b 7 6 5 4 3 2 1 0 Reserved for future use. Password Read / Write 0: Current sector not locked All at 0. control bits protection bits 1: Current sector locked DocID022208 Rev 11 109/146 145

Command codes M24LR04E-R Table 97. Fast Read Multiple Block response format when Error_flag is set Response SOF Response_flags Error code CRC16 Response EOF - 8 bits 8 bits 16 bits - Response parameter: • Error code as Error_flag is set: – 03h: the option is not supported – 10h: block address not available – 15h: block read-protected F igure 72. Fast Read Multiple Block frame exchange between VCD and M24LR04E-R Fast Read VCD SOF Multiple Block EOF request Fast Read M24LR04E-R <-t -> SOF Multiple Block EOF 1 response When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the Fast Read Multiple Block command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin remains in high-Z state. 26.21 Inventory Initiated Before receiving the Inventory Initiated command, the M24LR04E-R must have received an Initiate or a Fast Initiate command in order to set the Initiate_ flag. If not, the M24LR04E-R does not answer to the Inventory Initiated command. On receiving the Inventory Initiated request, the M24LR04E-R runs the anticollision sequence. The Inventory_flag must be set to 1. The meaning of flags 5 to 8 is given in Table 29. The request contains: • the flags, • the Inventory Command code, • the AFI if the AFI flag is set, • the mask length, • the mask value, • the CRC. The M24LR04E-R does not generate any answer in case of error. 110/146 DocID022208 Rev 11

M24LR04E-R Command codes Table 98. Inventory Initiated request format IC Request Request Inventory Optional Mask Request Mfg Mask value CRC16 SOF _flags Initiated AFI length EOF code - 8 bits D1h 02h 8 bits 8 bits 0 - 64 bits 16 bits - The response contains: • the flags, • the Unique ID. Table 99. Inventory Initiated response format Response Response Response DSFID UID CRC16 SOF _flags EOF - 8 bits 8 bits 64 bits 16 bits - During an Inventory process, if the VCD does not receive an RF M24LR04E-R response, it waits for a time t before sending an EOF to switch to the next slot. t starts from the rising 3 3 edge of the request EOF sent by the VCD. • If the VCD sends a 100% modulated EOF, the minimum value of t is: 3 t = 4384/f (323.3µs) + t 3min C SOF • If the VCD sends a 10% modulated EOF, the minimum value of t is: 3 t = 4384/f (323.3µs) + t 3min C NRT where: • t is the time required by the M24LR04E-R to transmit an SOF to the VCD SOF • t is the nominal response time of the M24LR04E-R NRT t and t are dependent on the M24LR04E-R-to-VCD data rate and subcarrier NRT SOF modulation mode. When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF starting the inventory command to the end of the M24LR04E-R response. If the M24LR04E- R does not receive the corresponding slot marker, the RF WIP/BUSY pin remains at 0 till the next RF power-off. When configured in the RF write in progress mode, the RF WIP/BUSY pin remains in high-Z state. DocID022208 Rev 11 111/146 145

Command codes M24LR04E-R 26.22 Initiate On receiving the Initiate command, the M24LR04E-R sets the internal Initiate_flag and sends back a response only if it is in the ready state. The command has to be issued in the Non Addressed mode only (Select_flag is reset to 0 and Address_flag is reset to 0). If an error occurs, the M24LR04E-R does not generate any answer. The Initiate_flag is reset after a power-off of the M24LR04E-R. The request contains: • No data Table 100. Initiate request format Request IC Mfg Request Request_flags Initiate CRC16 SOF code EOF - 8 bits D2h 02h 16 bits - The response contains: • the flags, • the Unique ID. . Table 101. Initiate Initiated response format Response Response Response DSFID UID CRC16 SOF _flags EOF - 8 bits 8 bits 64 bits 16 bits - Figure 73. Initiate frame exchange between VCD and M24LR04E-R Initiate VCD SOF EOF request Initiate M24LR04E-R <-t -> SOF EOF 1 response When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the Initiate command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin remains in high-Z state. 112/146 DocID022208 Rev 11

M24LR04E-R Command codes 26.23 ReadCfg On receiving the ReadCfg command, the M24LR04E-R reads the Configuration byte and sends back its 8-bit value in the response. The Protocol_extension_flag should be set to 0 for the M24LR04E-R to operate correctly. If the Protocol_extension_flag is at 1, the M24LR04E-R answers with an error code. The Option_flag is not supported. The Inventory_flag must be set to 0. Table 102. ReadCfg request format Request Request_ Request ReadCfg IC Mfg code UID(1) CRC16 SOF flags EOF - 8 bits A0h 02h 64 bits 16 bits - 1. Gray means that the field is optional. Request parameters: • UID (optional) Table 103. ReadCfg response format when Error_flag is NOT set Response Response SOF Response_flags Data CRC16 EOF - 8 bits 8 bits 16 bits - Response parameters: • One byte of data: Configuration byte Table 104. ReadCfg response format when Error_flag is set Response Response_ Response Error code CRC16 SOF flags EOF - 8 bits 8 bits 16 bits - Response parameter: • Error code as Error_flag is set – 03h: the option is not supported – 0Fh: error with no information given Figure 74. ReadCfg frame exchange between VCD and M24LR04E-R VCD SOF ReadCfg request EOF M24LR04E-R <-t -> SOF ReadCfg response EOF 1 DocID022208 Rev 11 113/146 145

Command codes M24LR04E-R When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the ReadCfg command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin remains in high-Z state. 26.24 WriteEHCfg On receiving the WriteEHCfg command, the M24LR04E-R writes the data contained in the request to the Configuration byte and reports whether the write operation was successful in the response. The Protocol_extension_flag should be set to 0 for the M24LR04E-R to operate correctly. If the Protocol_extension_flag is at 1, the M24LR04E-R answers with an error code. The Option_flag is supported, the Inventory_flag is not supported. During the RF write cycle W, there should be no modulation (neither 100% nor 10%), t otherwise, the M24LR04E-R may not program correctly the data into the Configuration byte. The W time is equal to t + 18 × 302 µs. t 1nom Table 105. WriteEHCfg request format Request Request_ IC Mfg Request WriteEHCfg UID(1) Data CRC16 SOF flags code EOF - 8 bits A1h 02h 64 bits 8 bits 16 bits - 1. Gray means that the field is optional. Request parameters: • Request flags • UID (optional) • Data: during WriteEHCfg command, bit 3 of the data is ignored (see Table 14). Table 106. WriteEHCfg response format when Error_flag is NOT set Response SOF Response_flags CRC16 Response EOF - 8 bits 16 bits - Response parameter: • No parameter. The response is send back after the writing cycle. Table 107. WriteEHCfg response format when Error_flag is set Response Response_ Response Error code CRC16 SOF flags EOF - 8 bits 8 bits 16 bits - Response parameter: • Error code as Error_flag is set: – 13h: the specified block was not successfully programmed 114/146 DocID022208 Rev 11

M24LR04E-R Command codes Figure 75. WriteEHCfg frame exchange between VCD and M24LR04E-R WriteEHCfg VCD SOF EOF request WriteEHCfg WriteEHCfg sequence M24LR04E-R <-t -> SOF EOF 1 response when error WriteEHCfg M24LR04E-R <------------------- W --------------> SOF EOF t response When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the WriteEHCfg command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin is tied to 0 for the entire duration of the internal write cycle (from the end of a valid WriteEHCfg command to the beginning of the M24LR04E-R response). 26.25 WriteDOCfg On receiving the WriteDOCfg command, the M24LR04E-R writes the data contained in the request to the Configuration byte and reports whether the write operation was successful in the response. The Protocol_extension_flag should be set to 0 for the M24LR04E-R to operate correctly. If the Protocol_extension_flag is at 1, the M24LR04E-R answers with an error code. The Option_flag is supported, the Inventory_flag is not supported. During the RF write cycle W, there should be no modulation (neither 100% nor 10%), t otherwise, the M24LR04E-R may not program correctly the data into the Configuration byte. The W time is equal to t + 18 × 302 µs. t 1nom Table 108. WriteDOCfg request format Request Request_ IC Mfg Request WriteDOCfg UID(1) Data CRC16 SOF flags code EOF - 8 bits A4h 02h 64 bits 8 bits 16 bits - 1. Gray means that the field is optional. Request parameters: • Request flag • UID (optional) • Data: during a WriteDOCfg command, bits 2 to 0 of the data are ignored (see Table 14). DocID022208 Rev 11 115/146 145

Command codes M24LR04E-R Table 109. WriteDOCfg response format when Error_flag is NOT set Response SOF Response_flags CRC16 Response EOF - 8 bits 16 bits - Response parameter: • No parameter. The response is sent back after the writing cycle. Table 110. WriteDOCfg response format when Error_flag is set Response Response_ Response Error code CRC16 SOF flags EOF - 8 bits 8 bits 16 bits - Response parameter: • Error code as Error_flag is set: – 13h: the specified block was not successfully programmed Figure 76. WriteDOCfg frame exchange between VCD and M24LR04E-R WriteDOCfg VCD SOF EOF request WriteDOCfg WriteDOCfg sequence M24LR04E-R <-t -> SOF EOF 1 response when error WriteDOCfg M24LR04E-R <----------------- W --------------> SOF EOF t response When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the WriteEHCfg command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin is tied to 0 for the entire duration of the internal write cycle (from the end of a valid WriteDOCfg command to the beginning of the M24LR04E-R response). 116/146 DocID022208 Rev 11

M24LR04E-R Command codes 26.26 SetRstEHEn On receiving the SetRstEHEn command, the M24LR04E-R sets or resets the EH_enable bit in the volatile Control register. The Protocol_extension_flag should be set to 0 for the M24LR04E-R to operate correctly. If the Protocol_extension_flag is at 1, the M24LR04E-R answers with an error code. The Option_flag and the Inventory_flag are not supported. Table 111. SetRstEHEn request format Request Request_ IC Mfg Request SetRstEHEn UID(1) Data CRC16 SOF flags code EOF - 8 bits A2h 02h 64 bits 8 bits 16 bits - 1. Gray means that the field is optional. Request parameters: • Request flags • UID (optional) • Data: during a SetRstEHEn command, bits 7 to 1 are ignored. Bit 0 is the EH_enable bit. Table 112. SetRstEHEn response format when Error_flag is NOT set Response SOF Response_flags CRC16 Response EOF - 8 bits 16 bits - Response parameter: • No parameter. The response is sent back after t . 1 Table 113. SetRstEHEn response format when Error_flag is set Response Response_ Response Error code CRC16 SOF flags EOF - 8 bits 8 bits 16 bits - Response parameter: • Error code as Error_flag is set: – 03h: the option is not supported DocID022208 Rev 11 117/146 145

Command codes M24LR04E-R F igure 77. SetRstEHEn frame exchange between VCD and M24LR04E-R SetRstEHEn VCD SOF EOF request SetRstEHEn WriteEHCfg sequence M24LR04E-R <-t -> SOF EOF 1 response when no error SetRstEHEn WriteEHCfg sequence M24LR04E-R <-t -> SOF EOF 1 response when error When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the SetRstEHEn command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin remains in high-Z state. 26.27 CheckEHEn On receiving the CheckEHEn command, the M24LR04E-R reads the Control register and sends back its 8-bit value in the response. The Protocol_extension_flag should be set to 0 for the M24LR04E-R to operate correctly. If the Protocol_extension_flag is at 1, the M24LR04E-R answers with an error code. The Option_flag is not supported. The Inventory_flag must be set to 0. Table 114. CheckEHEn request format Request Request_ Request CheckEHEn IC Mfg code UID(1) CRC16 SOF flags EOF - 8 bits A3h 02h 64 bits 16 bits - 1. Gray means that the field is optional. Request parameters: • UID (optional) Table 115. CheckEHEn response format when Error_flag is NOT set Response Response SOF Response_flags Data CRC16 EOF - 8 bits 8 bits 16 bits - Response parameters: • One byte of data: volatile Control register (see Table 15) 118/146 DocID022208 Rev 11

M24LR04E-R Command codes Table 116. CheckEHEn response format when Error_flag is set Response Response_ Response Error code CRC16 SOF flags EOF - 8 bits 8 bits 16 bits - Response parameter: • Error code as Error_flag is set – 03h: the option is not supported Figure 78. CheckEHEn frame exchange between VCD and M24LR04E-R VCD SOF CheckEHEn request EOF CheckEHEn M24LR04E-R <-t -> SOF EOF 1 response When configured in the RF busy mode, the RF WIP/BUSY pin is tied to 0 from the SOF that starts the CheckEHEn command to the end of the M24LR04E-R response. When configured in the RF write in progress mode, the RF WIP/BUSY pin remains in high-Z state. DocID022208 Rev 11 119/146 145

Maximum ratings M24LR04E-R 27 Maximum ratings Stressing the device above the rating listed in Table 117 may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability. Table 117. Absolute maximum ratings Symbol Parameter Min. Max. Unit T Ambient operating temperature -40 85 °C A 15 25 °C T , Sawn wafer - 9(1) months STG Storage conditions h , t on UV tape STG STG Kept in its original packing form UFDFPN8 (MLP8), T Storage temperature -65 150 °C STG SO8, TSSOP8 Lead temperature during UFDFPN8 (MLP8), T See note (2) °C LEAD soldering SO8, TSSOP8 V I C input or output range -0.50 6.5 V IO 2 V I C supply voltage -0.50 6.5 V CC 2 DC output current on pin SDA or I - - 5 mA OL_MAX RF WIP/BUSY (when equal to 0) I (3) RF supply current AC0 - AC1 - - 50 mA CC RF input voltage amplitude peak V (3) to peak between AC0 and AC1, VAC0-VAC1 - 27 V MAX_1 GND pad left floating AC voltage between AC0 and VAC0-GND, or V (3) -1 11 V MAX_2 GND, or AC1 and GND VAC1-GND Electrostatic discharge voltage AC0, AC1 - 1000 (human body model)(4) Other pads - 3500 VESD Electrostatic discharge voltage (Machine model) - 400 V Electrostatic discharge voltage on AC0, AC1 - 4000 antenna (5) 1. Counted from ST shipment date. 2. Compliant with JEDEC Std J-STD-020C (for small body, Sn-Pb or Pb assembly), the ST ECOPACK® 7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU. 3. Based on characterization, not tested in production. 4. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1 = 100 pF, R1 = 1500 Ω, R2 = 500 Ω) 5. Compliant with IEC 61000-4-3 method. (M24LRxxE packaged in S08N is mounted on ST’s reference antenna ANT1- M24LRxxE) 120/146 DocID022208 Rev 11

M24LR04E-R I2C DC and AC parameters 2 28 I C DC and AC parameters This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device in I2C mode. The parameters in the DC and AC characteristic tables that follow are derived from tests performed under the measurement conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters. Table 118. I2C operating conditions Symbol Parameter Min. Max. Unit V Supply voltage 1.8 5.5 V CC T Ambient operating temperature -40 85 °C A Table 119. AC test measurement conditions Symbol Parameter Min. Max. Unit C Load capacitance 100 pF L t, t Input rise and fall times - 50 ns r f V Input levels 0.2 V to 0.8 V V hi-lo CC CC V Input and output timing reference levels 0.3 V to 0.7 V V ref(t) CC CC Figure 79. AC test measurement I/O waveform (cid:41)(cid:78)(cid:80)(cid:85)(cid:84)(cid:0)(cid:44)(cid:69)(cid:86)(cid:69)(cid:76)(cid:83) (cid:41)(cid:78)(cid:80)(cid:85)(cid:84)(cid:0)(cid:65)(cid:78)(cid:68)(cid:0)(cid:47)(cid:85)(cid:84)(cid:80)(cid:85)(cid:84) (cid:52)(cid:73)(cid:77)(cid:73)(cid:78)(cid:71)(cid:0)(cid:50)(cid:69)(cid:70)(cid:69)(cid:82)(cid:69)(cid:78)(cid:67)(cid:69)(cid:0)(cid:44)(cid:69)(cid:86)(cid:69)(cid:76)(cid:83) (cid:16)(cid:14)(cid:24)(cid:54)(cid:35)(cid:35) (cid:16)(cid:14)(cid:23)(cid:54)(cid:35)(cid:35) (cid:16)(cid:14)(cid:19)(cid:54)(cid:35)(cid:35) (cid:16)(cid:14)(cid:18)(cid:54)(cid:35)(cid:35) (cid:33)(cid:41)(cid:16)(cid:16)(cid:24)(cid:18)(cid:21)(cid:34) Table 120. Input parameters Symbol Parameter Min. Max. Unit C Input capacitance (SDA) - 8 pF IN C Input capacitance (other pins) - 6 pF IN t (1) Pulse width ignored (Input filter on SCL and SDA) - 80 ns NS 1. Characterized only. DocID022208 Rev 11 121/146 145

I2C DC and AC parameters M24LR04E-R Table 121. I2C DC characteristics Symbol Parameter Test condition Min. Max. Unit Input leakage current V = V orV I IN SS CC - ± 2 µA LI (SCL, SDA) device in Standby mode external voltage applied on I Vout output leakage current - ± 5 µA LO_Vout Vout: V orV SS CC SDA in Hi-Z, external voltage I Output leakage current - ± 2 µA LO applied on SDA: V orV SS CC V = 1.8 V, f = 100 kHz CC c - 50 (rise/fall time < 50 ns) V = 1.8 V, f = 400 kHz CC c - 100 (rise/fall time < 50 ns) I Supply current (Read)(1) µA CC V = 2.5 V, f = 400 kHz CC c - 200 (rise/fall time < 50 ns) V = 5.5 V, f = 400 kHz CC c - 400 (rise/fall time < 50 ns) I Supply current (Write)(1) V = 1.8 - 5.5 V - 220 µA CC0 CC V = V or V IN SS CC - 30 V = 1.8 V CC V = V or V I Standby supply current IN SS CC - 30 µA CC1 V = 2.5 V CC V = V or V IN SS CC - 100 V = 5.5 V CC V = 1.8 V -0.45 0.25V CC CC Input low voltage V V = 2.5 V -0.45 0.25V V IL (SDA, SCL) CC CC V = 5.5 V -0.45 0.3V CC CC V = 1.8 V 0.75V V +1 CC CC CC Input high voltage V V = 2.5 V 0.75V V +1 V IH (SDA, SCL) CC CC CC V = 5.5 V 0.7V V +1 CC CC CC I = 2.1 mA, V = 1.8 V or V Output low voltage OL CC - 0.4 V OL I = 3 mA, V = 5.5 V OL CC 1. SCL, SDA connected to Ground or V SDA connected to V through a pull-up resistor. CC. CC 122/146 DocID022208 Rev 11

M24LR04E-R I2C DC and AC parameters Table 122. I2C AC characteristics Test conditions specified in Table 118 Symbol Alt. Parameter Min. Max. Unit f f Clock frequency 25 400 kHz C SCL t t Clock pulse width high 0.6 20000(1) µs CHCL HIGH t t Clock pulse width low 1.3 20000(2) µs CLCH LOW t - I²C timeout on Start condition 40 - ms START_OUT t (3) t Input signal rise time 20 300 ns XH1XH2 R t (3) t Input signal fall time 20 300 ns XL1XL2 F t t SDA (out) fall time 20 100 ns DL1DL2 F t t Data in set up time 100 - ns DXCX SU:DAT t t Data in hold time 0 - ns CLDX HD:DAT t t Data out hold time 100 - ns CLQX DH t (4)(5) t Clock low to next data valid (access time) 100 900 ns CLQV AA t (6) t Start condition set up time 600 - ns CHDX SU:STA t t Start condition hold time 0.6 35000(7) µs DLCL HD:STA t t Stop condition set up time 600 - ns CHDH SU:STO Time between Stop condition and next Start t t 1300 - ns DHDL BUF condition t - I²C write time - 5 ms W 1. t timeout CHCL 2. t timeout CLCH 3. Values recommended by the I²C-bus Fast-Mode specification. 4. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA. 5. t is the time (from the falling edge of SCL) required by the SDA bus line to reach 0.8V in a cCoLmQpVatible way with the I2C specification (which specifies t (min) = 100 ns), assuminCgC that the R SU:DAT bus × C time constant is less than 500 ns (as specified in Figure 3). bus 6. For a reStart condition, or following a write cycle. 7. t timeout DLCL DocID022208 Rev 11 123/146 145

I2C DC and AC parameters M24LR04E-R Figure 80. I2C AC waveforms (cid:84)(cid:56)(cid:44)(cid:17)(cid:56)(cid:44)(cid:18) (cid:84)(cid:35)(cid:40)(cid:35)(cid:44) (cid:84)(cid:56)(cid:40)(cid:17)(cid:56)(cid:40)(cid:18) (cid:84)(cid:35)(cid:44)(cid:35)(cid:40) (cid:51)(cid:35)(cid:44) (cid:84)(cid:36)(cid:44)(cid:35)(cid:44) (cid:84)(cid:56)(cid:44)(cid:17)(cid:56)(cid:44)(cid:18) (cid:51)(cid:36)(cid:33)(cid:0)(cid:41)(cid:78) (cid:84)(cid:35)(cid:40)(cid:36)(cid:56) (cid:84)(cid:56)(cid:40)(cid:17)(cid:56)(cid:40)(cid:18) (cid:84)(cid:35)(cid:44)(cid:36)(cid:56) (cid:51)(cid:36)(cid:33) (cid:84)(cid:36)(cid:56)(cid:35)(cid:56) (cid:84)(cid:35)(cid:40)(cid:36)(cid:40) (cid:84)(cid:36)(cid:40)(cid:36)(cid:44) (cid:51)(cid:84)(cid:65)(cid:82)(cid:84) (cid:51)(cid:36)(cid:33) (cid:35)(cid:72)(cid:65)(cid:78)(cid:71)(cid:69) (cid:51)(cid:84)(cid:79)(cid:80) (cid:51)(cid:84)(cid:65)(cid:82)(cid:84) (cid:67)(cid:79)(cid:78)(cid:68)(cid:73)(cid:84)(cid:73)(cid:79)(cid:78) (cid:41)(cid:78)(cid:80)(cid:85)(cid:84) (cid:67)(cid:79)(cid:78)(cid:68)(cid:73)(cid:84)(cid:73)(cid:79)(cid:78) (cid:67)(cid:79)(cid:78)(cid:68)(cid:73)(cid:84)(cid:73)(cid:79)(cid:78) (cid:51)(cid:35)(cid:44) (cid:51)(cid:36)(cid:33)(cid:0)(cid:41)(cid:78) (cid:84)(cid:55) (cid:84)(cid:35)(cid:40)(cid:36)(cid:40) (cid:84)(cid:35)(cid:40)(cid:36)(cid:56) (cid:51)(cid:84)(cid:79)(cid:80) (cid:55)(cid:82)(cid:73)(cid:84)(cid:69)(cid:0)(cid:67)(cid:89)(cid:67)(cid:76)(cid:69) (cid:51)(cid:84)(cid:65)(cid:82)(cid:84) (cid:67)(cid:79)(cid:78)(cid:68)(cid:73)(cid:84)(cid:73)(cid:79)(cid:78) (cid:67)(cid:79)(cid:78)(cid:68)(cid:73)(cid:84)(cid:73)(cid:79)(cid:78) (cid:84)(cid:35)(cid:40)(cid:35)(cid:44) (cid:51)(cid:35)(cid:44) (cid:84)(cid:35)(cid:44)(cid:49)(cid:54) (cid:84)(cid:35)(cid:44)(cid:49)(cid:56) (cid:84)(cid:36)(cid:44)(cid:17)(cid:36)(cid:44)(cid:18) (cid:51)(cid:36)(cid:33)(cid:0)(cid:47)(cid:85)(cid:84) (cid:36)(cid:65)(cid:84)(cid:65)(cid:0)(cid:86)(cid:65)(cid:76)(cid:73)(cid:68) (cid:36)(cid:65)(cid:84)(cid:65)(cid:0)(cid:86)(cid:65)(cid:76)(cid:73)(cid:68) (cid:33)(cid:41)(cid:16)(cid:16)(cid:23)(cid:25)(cid:21)(cid:69) 124/146 DocID022208 Rev 11

M24LR04E-R Write cycle definition 29 Write cycle definition Table 123. Write cycle endurance(1) Symbol Parameter Test conditions Min Max Unit T ≤ + 25 °C A - 1000000 N (2) Write cycle VCC(min) < VCC < VCC(max) Write cycle cycle endurance(3) T ≤ + 85 °C A - 150000 V < V < V CC(min) CC CC(max) 1. A write cycle means the simultaneous writing of one byte, two bytes, three bytes or four bytes (one page). 2. Indicates the total number of write/erase cycles for one memory cell or the overall number of write/erase cycles decoded by the whole memory. 3. Write cycle endurance is defined by characterization and qualification. DocID022208 Rev 11 125/146 145

RF electrical parameters M24LR04E-R 30 RF electrical parameters This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device in RF mode. The parameters in the DC and AC Characteristic tables that follow are derived from tests performed under the Measurement Conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters. Table 124. RF characteristics(1) (2) Symbol Parameter Condition Min Typ Max Unit f External RF signal frequency - 13.553 13.56 13.567 MHz CC H_ISO Operating field according to ISO T = -40 °C to 85 °C 150 - 5000 mA/m A 150 mA/m > H_ISO > 1000 10% carrier modulation index (3) 15 - 30 MI mA/m % CARRIER MI=(A-B)/(A+B) H_ISO > 1000 mA/m 10 - 30 t , t 10% rise and fall time - 0.5 - 3.0 µs RFR RFF t 10% minimum pulse width for bit - 7.1 - 9.44 µs RFSBL MI 100% carrier modulation index MI=(A-B)/(A+B)(4) 95 - 100 % CARRIER t , t 100% rise and fall time - 0.5 - 3.5 µs RFR RFF t 100% minimum pulse width for bit - 7 - 9.44 µs RFSBL Minimum time from carrier t From H-field min - - 1 ms MIN CD generation to first data f Subcarrier frequency high f /32 - 423.75 - kHz SH CC f Subcarrier frequency low f /28 - 484.28 - kHz SL CC t Time for M24LR04E-R response 4224/f 318.6 320.9 323.3 µs 1 S t Time between commands 4224/f 309 311.5 314 µs 2 S RF write time W - - 5.75 - ms t (including internal Verify) I Operating current (Read)(5) VAC0-VAC1 (4 V peak to peak) - 20 - µA CC_RF C Internal tuning capacitor in SO8(6) f = 13.56 MHz 24.8 27.5 30.2 pF TUN Backscattered level V ISO10373-7 10 - - mV BACK as defined by ISO test RF input voltage amplitude between AC0 and AC1, V (3) - - - 20 V MAX_1 GND pad left floating, VAC0-VAC1 peak to peak(7) AC voltage between AC0 and V (3) - -1 - 8.5 V MAX_2 GND or between AC1 and GND 126/146 DocID022208 Rev 11

M24LR04E-R RF electrical parameters Table 124. RF characteristics(1) (2) (continued) Symbol Parameter Condition Min Typ Max Unit RF input voltage amplitude Inventory and Read operations - 4 4.5 V between AC0 and AC1, GND pad V (3) MIN_1 left floating, VAC0-VAC1 peak to Write operations - 4.5 5 V peak(7) AC voltage between AC0 and Inventory and Read operations - 1.8 2 V V (3) MIN_2 GND or between AC1 and GND Write operations - 2 2.2 V t RF OFF time Chip reset 2 - - ms RF_OFF 1. T = –40 to 85 °C. Characterized only. A 2. All timing characterizations were performed on a reference antenna with the following characteristics: External size: 75 mm x 48 mm Number of turns: 5 Width of conductor: 0.5 mm Space between two conductors: 0.3 mm Value of the tuning capacitor in SO8: 27.5 pF (M24LR04E-R) Value of the coil: 5 µH Tuning frequency: 13.56 MHz. 3. 15% (or more) carrier modulation index offers a better signal/noise ratio and therefore a wider operating range with a better noise immunity. 4. Temperature range 0 °C to 90 °C 5. Characterized on bench. 6. Characterized only, at room temperature only, measured at VAC0-VAC1 = 1 V peak to peak. 7. Characterized only, at room temperature only. Table 125. Operating conditions Symbol Parameter Min. Max. Unit T Ambient operating temperature –40 85 °C A Figure 81 shows an ASK modulated signal from the VCD to the M24LR04E-R. The test condition for the AC/DC parameters are: • Close coupling condition with tester antenna (1 mm) • M24LR04E-R performance measured at the tag antenna • M24LR04E-R synchronous timing, transmit and receive DocID022208 Rev 11 127/146 145

RF electrical parameters M24LR04E-R Figure 81. ASK modulated signal (cid:87)(cid:53)(cid:41)(cid:41) (cid:36) (cid:37) (cid:87)(cid:53)(cid:41)(cid:53) (cid:73)(cid:38)(cid:38) (cid:87)(cid:53)(cid:41)(cid:54)(cid:37)(cid:47) (cid:87)(cid:48)(cid:44)(cid:49)(cid:3)(cid:38)(cid:39) (cid:45)(cid:51)(cid:17)(cid:25)(cid:23)(cid:24)(cid:20)(cid:54)(cid:17) Table 126 summarizes respectively the minimum AC0-AC1 input power level P AC0-AC1_min required for the Energy harvesting mode, the corresponding maximum current consumption I , and variation of the analog voltage V for the various Energy harvesting fan-out sink_max out configurations defined by bits b0 and b1 of the Configuration byte. Table 126. Energy harvesting(1) (2) Range H (3) P (4) V @I=0 V @I I @P min min out out sink_max sink_max min 2.7 V min 00 3.5 A/m 100 mW 1.7 V 6 mA 4.5 V max 2.7 V min 01 2.4 A/m 60 mW 1.9 V 3 mA 4.5 V max 2.7 V min 10 1.6 A/m 30 mW 2.1 V 1 mA 4.5 V max 2.7 V min 11 1.0 A/m 16 mW 2.3 V 300 µA 4.5 V max 1. Characterized only 2. Valid from -40 °C to +85 °C 3. H characterized according to ISO10373-7 test method min 4. P calculated from DC measurements min Note: It is recommended to choose the Energy Harvesting Range in respect with the maximum current requested by the application to avoid any disabling of Energy Harvesting mode (for example, choose Range 01 for a max consumption of 2 mA). 128/146 DocID022208 Rev 11

M24LR04E-R RF electrical parameters Figure 82. Vout vs. Isink (cid:55)(cid:80)(cid:86)(cid:85) (cid:19)(cid:15)(cid:24)(cid:1)(cid:55) (cid:19)(cid:15)(cid:20)(cid:1)(cid:55) (cid:19)(cid:15)(cid:18)(cid:1)(cid:55) (cid:18)(cid:15)(cid:26)(cid:1)(cid:55) (cid:18)(cid:15)(cid:24)(cid:1)(cid:55) (cid:17)(cid:15)(cid:20)(cid:1)(cid:78)(cid:34) (cid:18)(cid:1)(cid:78)(cid:34) (cid:20)(cid:1)(cid:78)(cid:34) (cid:23)(cid:1)(cid:78)(cid:34) (cid:42)(cid:84)(cid:74)(cid:79)(cid:76) (cid:45)(cid:51)(cid:17)(cid:25)(cid:23)(cid:23)(cid:23)(cid:54)(cid:17) Figure 83. Range 11 domain (cid:41)(cid:68)(cid:81)(cid:3)(cid:82)(cid:88)(cid:87) (cid:11)(cid:36)(cid:12) (cid:25)(cid:3)(cid:80)(cid:36) (cid:58)(cid:82)(cid:85)(cid:78)(cid:76)(cid:81)(cid:74)(cid:3)(cid:71)(cid:82)(cid:80)(cid:68)(cid:76)(cid:81)(cid:3)(cid:90)(cid:75)(cid:72)(cid:81) (cid:53)(cid:68)(cid:81)(cid:74)(cid:72)(cid:3)(cid:20)(cid:20)(cid:3)(cid:76)(cid:86)(cid:3)(cid:86)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:72)(cid:71) (cid:22)(cid:3)(cid:80)(cid:36) (cid:20)(cid:3)(cid:80)(cid:36) (cid:19)(cid:17)(cid:22)(cid:3)(cid:80)(cid:36) (cid:41)(cid:76)(cid:72)(cid:79)(cid:71) (cid:20)(cid:3)(cid:36)(cid:18)(cid:80) (cid:20)(cid:17)(cid:25)(cid:3)(cid:36)(cid:18)(cid:80) (cid:21)(cid:17)(cid:23)(cid:3)(cid:36)(cid:18)(cid:80) (cid:22)(cid:17)(cid:24)(cid:3)(cid:36)(cid:18)(cid:80) (cid:24)(cid:3)(cid:36)(cid:18)(cid:80) (cid:11)(cid:43)(cid:85)(cid:80)(cid:86)(cid:12) (cid:48)(cid:54)(cid:20)(cid:28)(cid:26)(cid:28)(cid:19)(cid:57)(cid:20) DocID022208 Rev 11 129/146 145

RF electrical parameters M24LR04E-R Figure 84. Range 10 domain (cid:41)(cid:68)(cid:81)(cid:3)(cid:82)(cid:88)(cid:87) (cid:11)(cid:36)(cid:12) (cid:25)(cid:3)(cid:80)(cid:36) (cid:58)(cid:82)(cid:85)(cid:78)(cid:76)(cid:81)(cid:74)(cid:3)(cid:71)(cid:82)(cid:80)(cid:68)(cid:76)(cid:81)(cid:3)(cid:90)(cid:75)(cid:72)(cid:81) (cid:53)(cid:68)(cid:81)(cid:74)(cid:72)(cid:3)(cid:20)(cid:19)(cid:3)(cid:76)(cid:86)(cid:3)(cid:86)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:72)(cid:71) (cid:22)(cid:3)(cid:80)(cid:36) (cid:20)(cid:3)(cid:80)(cid:36) (cid:19)(cid:17)(cid:22)(cid:3)(cid:80)(cid:36) (cid:41)(cid:76)(cid:72)(cid:79)(cid:71) (cid:20)(cid:3)(cid:36)(cid:18)(cid:80) (cid:20)(cid:17)(cid:25)(cid:3)(cid:36)(cid:18)(cid:80) (cid:21)(cid:17)(cid:23)(cid:3)(cid:36)(cid:18)(cid:80) (cid:22)(cid:17)(cid:24)(cid:3)(cid:36)(cid:18)(cid:80) (cid:24)(cid:3)(cid:36)(cid:18)(cid:80) (cid:11)(cid:43)(cid:85)(cid:80)(cid:86)(cid:12) (cid:48)(cid:54)(cid:20)(cid:28)(cid:26)(cid:28)(cid:20)(cid:57)(cid:20) Figure 85. Range 01 domain (cid:41)(cid:68)(cid:81)(cid:3)(cid:82)(cid:88)(cid:87) (cid:11)(cid:36)(cid:12) (cid:25)(cid:3)(cid:80)(cid:36) (cid:58)(cid:82)(cid:85)(cid:78)(cid:76)(cid:81)(cid:74)(cid:3)(cid:71)(cid:82)(cid:80)(cid:68)(cid:76)(cid:81)(cid:3)(cid:90)(cid:75)(cid:72)(cid:81) (cid:53)(cid:68)(cid:81)(cid:74)(cid:72)(cid:3)(cid:19)(cid:20)(cid:3)(cid:76)(cid:86)(cid:3)(cid:86)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:72)(cid:71) (cid:22)(cid:3)(cid:80)(cid:36) (cid:20)(cid:3)(cid:80)(cid:36) (cid:19)(cid:17)(cid:22)(cid:3)(cid:80)(cid:36) (cid:41)(cid:76)(cid:72)(cid:79)(cid:71) (cid:20)(cid:3)(cid:36)(cid:18)(cid:80) (cid:20)(cid:17)(cid:25)(cid:3)(cid:36)(cid:18)(cid:80) (cid:21)(cid:17)(cid:23)(cid:3)(cid:36)(cid:18)(cid:80) (cid:22)(cid:17)(cid:24)(cid:3)(cid:36)(cid:18)(cid:80) (cid:24)(cid:3)(cid:36)(cid:18)(cid:80) (cid:11)(cid:43)(cid:85)(cid:80)(cid:86)(cid:12) (cid:48)(cid:54)(cid:20)(cid:28)(cid:26)(cid:28)(cid:21)(cid:57)(cid:20) 130/146 DocID022208 Rev 11

M24LR04E-R RF electrical parameters Figure 86. Range 00 domain (cid:41)(cid:68)(cid:81)(cid:3)(cid:82)(cid:88)(cid:87) (cid:11)(cid:36)(cid:12) (cid:58)(cid:82)(cid:85)(cid:78)(cid:76)(cid:81)(cid:74)(cid:3)(cid:71)(cid:82)(cid:80)(cid:68)(cid:76)(cid:81)(cid:3)(cid:90)(cid:75)(cid:72)(cid:81) (cid:53)(cid:68)(cid:81)(cid:74)(cid:72)(cid:3)(cid:19)(cid:19)(cid:3)(cid:76)(cid:86)(cid:3)(cid:86)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:72)(cid:71) (cid:25)(cid:3)(cid:80)(cid:36) (cid:22)(cid:3)(cid:80)(cid:36) (cid:20)(cid:3)(cid:80)(cid:36) (cid:19)(cid:17)(cid:22)(cid:3)(cid:80)(cid:36) (cid:41)(cid:76)(cid:72)(cid:79)(cid:71) (cid:20)(cid:3)(cid:36)(cid:18)(cid:80) (cid:20)(cid:17)(cid:25)(cid:3)(cid:36)(cid:18)(cid:80) (cid:21)(cid:17)(cid:23)(cid:3)(cid:36)(cid:18)(cid:80) (cid:22)(cid:17)(cid:24)(cid:3)(cid:36)(cid:18)(cid:80) (cid:24)(cid:3)(cid:36)(cid:18)(cid:80) (cid:11)(cid:43)(cid:85)(cid:80)(cid:86)(cid:12) (cid:48)(cid:54)(cid:20)(cid:28)(cid:26)(cid:28)(cid:22)(cid:57)(cid:20) DocID022208 Rev 11 131/146 145

Package information M24LR04E-R 31 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 31.1 SO8N package information Figure 87. SO8N – 8-lead plastic small outline, 150 mils body width, package outline (cid:72)(cid:0)(cid:88)(cid:0)(cid:20)(cid:21)(cid:131) (cid:33)(cid:18) (cid:33) (cid:67) (cid:67)(cid:67)(cid:67) (cid:66) (cid:69) (cid:19)(cid:17)(cid:21)(cid:24)(cid:3)(cid:80)(cid:80) (cid:36) (cid:42)(cid:36)(cid:56)(cid:42)(cid:40)(cid:3)(cid:51)(cid:47)(cid:36)(cid:49)(cid:40) (cid:75) (cid:24) (cid:37)(cid:17) (cid:37) (cid:17) (cid:33)(cid:17) (cid:44) (cid:44)(cid:17) (cid:54)(cid:50)(cid:16)(cid:36)(cid:66)(cid:57)(cid:21) 1. Drawing is not to scale. Table 127. SO8N – 8-lead plastic small outline, 150 mils body width, package mechanical data millimeters inches(1) Symbol Min. Typ. Max. Min. Typ. Max. A - - 1.750 - - 0.0689 A1 0.100 - 0.250 0.0039 - 0.0098 A2 1.250 - - 0.0492 - - b 0.280 - 0.480 0.0110 - 0.0189 c 0.170 - 0.230 0.0067 - 0.0091 D 4.800 4.900 5.000 0.1890 0.1929 0.1969 E 5.800 6.000 6.200 0.2283 0.2362 0.2441 E1 3.800 3.900 4.000 0.1496 0.1535 0.1575 e - 1.270 - - 0.0500 - h 0.250 - 0.500 0.0098 - 0.0197 k 0° - 8° 0° - 8° L 0.400 - 1.270 0.0157 - 0.0500 132/146 DocID022208 Rev 11

M24LR04E-R Package information Table 127. SO8N – 8-lead plastic small outline, 150 mils body width, package mechanical data (continued) millimeters inches(1) Symbol Min. Typ. Max. Min. Typ. Max. L1 - 1.040 - - 0.0409 - ccc - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to four decimal digits. Figure 88. SO8N – 8-lead plastic small outline, 150 mils body width, package recommended footprint (cid:19)(cid:17)(cid:25)(cid:3)(cid:11)(cid:91)(cid:27)(cid:12) (cid:28)(cid:26) (cid:22)(cid:17)(cid:25)(cid:17) (cid:20)(cid:17)(cid:21)(cid:26) (cid:50)(cid:26)(cid:66)(cid:54)(cid:50)(cid:27)(cid:49)(cid:66)(cid:41)(cid:51)(cid:66)(cid:57)(cid:20) 1. Dimensions are expressed in millimeters. DocID022208 Rev 11 133/146 145

Package information M24LR04E-R 31.2 UFDFN8 package information Figure 89. UFDFN8 - 8-lead, 2 × 3 mm, 0.5 mm pitch ultra thin profile fine pitch dual flat package outline (cid:39) (cid:36) (cid:37) (cid:49) (cid:36) (cid:36)(cid:20) (cid:51)(cid:76)(cid:81)(cid:3)(cid:6)(cid:20)(cid:3) (cid:70)(cid:70)(cid:70) (cid:18) (cid:38) (cid:44)(cid:39)(cid:3)(cid:80)(cid:68)(cid:85)(cid:78)(cid:76)(cid:81)(cid:74) (cid:40) (cid:72)(cid:72)(cid:72) (cid:38) (cid:54)(cid:72)(cid:68)(cid:87)(cid:76)(cid:81)(cid:74)(cid:3)(cid:83)(cid:79)(cid:68)(cid:81)(cid:72) (cid:36)(cid:22) (cid:54)(cid:76)(cid:71)(cid:72)(cid:3)(cid:89)(cid:76)(cid:72)(cid:90) (cid:20) (cid:21) (cid:21)(cid:91) (cid:68)(cid:68)(cid:68) (cid:38) (cid:21)(cid:91) (cid:68)(cid:68)(cid:68)(cid:38) (cid:55)(cid:82)(cid:83)(cid:3)(cid:89)(cid:76)(cid:72)(cid:90) (cid:39)(cid:21) (cid:39)(cid:68)(cid:87)(cid:88)(cid:80)(cid:3)(cid:36) (cid:72) (cid:69) (cid:20) (cid:21) (cid:47)(cid:20) (cid:47)(cid:22) (cid:47) (cid:47)(cid:22) (cid:51)(cid:76)(cid:81)(cid:3)(cid:6)(cid:20)(cid:3) (cid:40)(cid:21) (cid:44)(cid:39)(cid:3)(cid:80)(cid:68)(cid:85)(cid:78)(cid:76)(cid:81)(cid:74) (cid:72)(cid:18)(cid:21) (cid:47)(cid:20) (cid:72) (cid:55)(cid:72)(cid:85)(cid:80)(cid:76)(cid:81)(cid:68)(cid:79)(cid:3)(cid:87)(cid:76)(cid:83) (cid:46) (cid:47) (cid:39)(cid:72)(cid:87)(cid:68)(cid:76)(cid:79)(cid:3)(cid:179)(cid:36)(cid:180) (cid:40)(cid:89)(cid:72)(cid:81)(cid:3)(cid:87)(cid:72)(cid:85)(cid:80)(cid:76)(cid:81)(cid:68)(cid:79) (cid:49)(cid:39)(cid:16)(cid:20)(cid:3)(cid:91)(cid:72) (cid:37)(cid:82)(cid:87)(cid:87)(cid:82)(cid:80)(cid:3)(cid:89)(cid:76)(cid:72)(cid:90) (cid:54)(cid:72)(cid:72)(cid:3)(cid:39)(cid:72)(cid:87)(cid:68)(cid:76)(cid:79)(cid:3)(cid:179)(cid:36)(cid:180) (cid:61)(cid:58)(cid:69)(cid:66)(cid:48)(cid:40)(cid:66)(cid:57)(cid:20) 1. Max. package warpage is 0.05 mm. 2. Exposed copper is not systematic and can appear partially or totally according to the cross section. 3. Drawing is not to scale. 4. The central pad (E2 by D2 in the above illustration) is internally pulled to V . It must not be connected to SS any other voltage or signal line on the PCB, for example during the soldering process. Table 128. UFDFN8 - 8-lead, 2 × 3 mm, 0.5 mm pitch ultra thin profile fine pitch dual flat package mechanical data millimeters inches(1) Symbol Min Typ Max Min Typ Max A 0.450 0.550 0.600 0.0177 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 b(2) 0.200 0.250 0.300 0.0079 0.0098 0.0118 D 1.900 2.000 2.100 0.0748 0.0787 0.0827 D2 1.200 - 1.600 0.0472 - 0.0630 E 2.900 3.000 3.100 0.1142 0.1181 0.1220 134/146 DocID022208 Rev 11

M24LR04E-R Package information Table 128. UFDFN8 - 8-lead, 2 × 3 mm, 0.5 mm pitch ultra thin profile fine pitch dual flat package mechanical data (continued) millimeters inches(1) Symbol Min Typ Max Min Typ Max E2 1.200 - 1.600 0.0472 - 0.0630 e - 0.500 - 0.0197 K 0.300 - - 0.0118 - - L 0.300 - 0.500 0.0118 - 0.0197 L1 - - 0.150 - - 0.0059 L3 0.300 - - 0.0118 - - aaa - - 0.150 - - 0.0059 bbb - - 0.100 - - 0.0039 ccc - - 0.100 - - 0.0039 ddd - - 0.050 - - 0.0020 eee(3) - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to four decimal digits. 2. Dimension b applies to plated terminal and is measured between 0.15 and 0.30 mm from the terminal tip. 3. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from measuring. 31.3 TSSOP8 package information Figure 90.TSSOP8 – 8-lead thin shrink small outline, 3 x 6.4 mm, 0.65 mm pitch, package outline (cid:24) (cid:1012) (cid:1009) (cid:272) (cid:28)(cid:1005) (cid:28) (cid:1005) (cid:1008) (cid:626) (cid:4)(cid:1005) (cid:62) (cid:4) (cid:4)(cid:1006) (cid:18)(cid:87) (cid:62)(cid:1005) (cid:271) (cid:286) (cid:55)(cid:54)(cid:54)(cid:50)(cid:51)(cid:27)(cid:36)(cid:48)(cid:66)(cid:57)(cid:21) 1. Drawing is not to scale. DocID022208 Rev 11 135/146 145

Package information M24LR04E-R Table 129. TSSOP8 – 8-lead thin shrink small outline, 3 x 6.4 mm, 0.65 mm pitch, package mechanical data millimeters inches(1) Symbol Min. Typ. Max. Min. Typ. Max. A - - 1.200 - - 0.0472 A1 0.050 - 0.150 0.0020 - 0.0059 A2 0.800 1.000 1.050 0.0315 0.0394 0.0413 b 0.190 - 0.300 0.0075 - 0.0118 c 0.090 - 0.200 0.0035 - 0.0079 CP - - 0.100 - - 0.0039 D 2.900 3.000 3.100 0.1142 0.1181 0.1220 e - 0.650 - - 0.0256 - E 6.200 6.400 6.600 0.2441 0.2520 0.2598 E1 4.300 4.400 4.500 0.1693 0.1732 0.1772 L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - α 0° - 8° 0° - 8° 1. Values in inches are converted from mm and rounded to four decimal digits. 136/146 DocID022208 Rev 11

M24LR04E-R Ordering information 32 Ordering information Table 130. Ordering information scheme for bare die devices or packaged devices Example: M24LR04E-R MN 6 T /2 Device type M24LR = dynamic NFC/RFID tag IC 04 = memory size in Kbit E = support for energy harvesting Operating voltage R = V = 1.8 to 5.5 V CC Package MN = SO8N (150 mils width) MC = UFDFPN8 (MLP8) DW = TSSOP8 UW20 = inkless, unsawn wafer, with no backgrinding(1) SB12I = 120 µm ± 15 µm bumped and sawn inkless wafer on 8-inch frame Device grade(2) 6 = industrial: device tested with standard test flow over –40 to 85 °C Option(2) T = Tape and reel packing Capacitance /2 = 27.5 pF 1. Delivery type: wafer tested, unsawn, without backgrinding. Wafer thickness: 725 µm ±20 µm. Bad chip identification by STIF wafer maps provided by STMicroelectronics. 2. For packaged devices only. Note: Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DocID022208 Rev 11 137/146 145

Ordering information M24LR04E-R Table 131. Ordering and marking information First line marking Reference Package Ordering code Initial Actual revision revision 0xF 0xE and below TSSOP08 M24LR04E-RDW6T/2 404EU 4BEUB MLP M24LR04E-RMC6T/2 404E 4BEB M24LR04E-R SO8N M24LR04E-RMN6T/2 24L04ER 24LBERB Bare die M24LR04E-RUW20/2 Not applicable Not applicable 138/146 DocID022208 Rev 11

M24LR04E-R Anticollision algorithm (informative) Appendix A Anticollision algorithm (informative) The following pseudocode describes how anticollision could be implemented on the VCD, using recursivity. A.1 Algorithm for pulsed slots function push (mask, address); pushes on private stack function pop (mask, address); pops from private stack function pulse_next_pause; generates a power pulse function store(M24LR04E-R_UID); stores M24LR04E-R_UID function poll_loop (sub_address_size as integer) pop (mask, address) mask = address & mask; generates new mask ; send the request mode = anticollision send_Request (Request_cmd, mode, mask length, mask value) for sub_address = 0 to (2^sub_address_size - 1) pulse_next_pause if no_collision_is_detected ; M24LR04E-R is inventoried then store (M24LR04E-R_UID) else ; remember a collision was detected push(mask,address) endif next sub_address if stack_not_empty ; if some collisions have been detected and then ; not yet processed, the function calls itself poll_loop (sub_address_size); recursively to process the last stored collision endif end poll_loop main_cycle: mask = null address = null push (mask, address) poll_loop(sub_address_size) end_main_cycle DocID022208 Rev 11 139/146 145

CRC (informative) M24LR04E-R Appendix B CRC (informative) B.1 CRC error detection method The cyclic redundancy check (CRC) is calculated on all data contained in a message, from the start of the flags through to the end of Data. The CRC is used from VCD to M24LR04E- R and from M24LR04E-R to VCD. Table 132. CRC definition CRC definition CRC type Length Polynomial Direction Preset Residue ISO/IEC 13239 16 bits X16 + X12 + X5 + 1 = 8408h Backward FFFFh F0B8h To add extra protection against shifting errors, a further transformation on the calculated CRC is made. The one’s complement of the calculated CRC is the value attached to the message for transmission. To check received messages, the two CRC bytes are often also included in the re- calculation, for ease of use. In this case, the expected value for the generated CRC is the residue F0B8h. B.2 CRC calculation example This example in C language illustrates one method of calculating the CRC on a given set of bytes comprising a message. C-example to calculate or check the CRC16 according to ISO/IEC 13239 #define POLYNOMIAL0x8408// x^16 + x^12 + x^5 + 1 #define PRESET_VALUE0xFFFF #define CHECK_VALUE0xF0B8 #define NUMBER_OF_BYTES4// Example: 4 data bytes #define CALC_CRC1 #define CHECK_CRC0 void main() { unsigned int current_crc_value; unsigned char array_of_databytes[NUMBER_OF_BYTES + 2] = {1, 2, 3, 4, 0x91, 0x39}; int number_of_databytes = NUMBER_OF_BYTES; int calculate_or_check_crc; int i, j; calculate_or_check_crc = CALC_CRC; // calculate_or_check_crc = CHECK_CRC;// This could be an other example 140/146 DocID022208 Rev 11

M24LR04E-R CRC (informative) if (calculate_or_check_crc == CALC_CRC) { number_of_databytes = NUMBER_OF_BYTES; } else // check CRC { number_of_databytes = NUMBER_OF_BYTES + 2; } current_crc_value = PRESET_VALUE; for (i = 0; i < number_of_databytes; i++) { current_crc_value = current_crc_value ^ ((unsigned int)array_of_databytes[i]); for (j = 0; j < 8; j++) { if (current_crc_value & 0x0001) { current_crc_value = (current_crc_value >> 1) ^ POLYNOMIAL; } else { current_crc_value = (current_crc_value >> 1); } } } if (calculate_or_check_crc == CALC_CRC) { current_crc_value = ~current_crc_value; printf ("Generated CRC is 0x%04X\n", current_crc_value); // current_crc_value is now ready to be appended to the data stream // (first LSByte, then MSByte) } else // check CRC { if (current_crc_value == CHECK_VALUE) { printf ("Checked CRC is ok (0x%04X)\n", current_crc_value); } else DocID022208 Rev 11 141/146 145

CRC (informative) M24LR04E-R { printf ("Checked CRC is NOT ok (0x%04X)\n", current_crc_value); } } } 142/146 DocID022208 Rev 11

M24LR04E-R Application family identifier (AFI) (informative) Appendix C Application family identifier (AFI) (informative) The AFI (application family identifier) represents the type of application targeted by the VCD and is used to extract from all the M24LR04E-Rs present only the M24LR04E-R meeting the required application criteria. It is programmed by the M24LR04E-R issuer (the purchaser of the M24LR04E-R). Once locked, it cannot be modified. The most significant nibble of the AFI is used to code one specific or all application families, as defined in Table 133. The least significant nibble of the AFI is used to code one specific or all application subfamilies. Subfamily codes different from 0 are proprietary. Table 133. AFI coding(1) AFI AFI most least Meaning Examples / Note significant significant VICCs respond from nibble nibble ‘0’ ‘0’ All families and subfamilies No applicative preselection ‘X’ '0 All subfamilies of family X Wide applicative preselection 'X '‘Y’ Only the Yth subfamily of family X - ‘0’ ‘Y’ Proprietary subfamily Y only - ‘1 '‘0’, ‘Y’ Transport Mass transit, bus, airline,... '2 '‘0’, ‘Y’ Financial IEP, banking, retail,... '3 '‘0’, ‘Y’ Identification Access control,... '4 '‘0’, ‘Y’ Telecommunication Public telephony, GSM,... ‘5’ ‘0’, ‘Y’ Medical - '6 '‘0’, ‘Y’ Multimedia Internet services.... '7 '‘0’, ‘Y’ Gaming - 8 '‘0’, ‘Y’ Data Storage Portable files,... '9 '‘0’, ‘Y’ Item management - 'A '‘0’, ‘Y’ Express parcels - 'B '‘0’, ‘Y’ Postal services - 'C '‘0’, ‘Y’ Airline bags - 'D '‘0’, ‘Y’ RFU - 'E '‘0’, ‘Y’ RFU - ‘F’ ‘0’, ‘Y’ RFU - 1. X = '1' to 'F', Y = '1' to 'F' DocID022208 Rev 11 143/146 145

Revision history M24LR04E-R Revision history Table 134. Document revision history Date Revision Changes 06-Dec-2011 1 Initial release. Updated Table 126: Energy harvesting and added note under the table. 06-Feb-2012 2 Replaced figures 82 to 86. 21-Feb-2012 3 Changed datasheet status to “Full datasheet”. Updated Table 122: I2C AC characteristics and Section 32: Ordering 21-May-2012 4 information. 12-Jun-2012 5 Updated Figure 49: M24LR04E-R state transition diagram. Updated Table 15: Control register, Table 17: System parameter sector, 21-Feb-2013 6 Table 117: Absolute maximum ratings, Table 121: I2C DC characteristics and Table 124: RF characteristics. 07-Mar-2013 7 Added Table 131: Ordering and marking information. Added “Dynamic NFC/RFID tag IC” to the title, Section 1: Description, and the M24LR definition in Table 130: Ordering information scheme for bare die devices or packaged devices. 12-Jun-2013 8 Updated wafer legend on cover page. Updated V and Note 5 in Table 117: Absolute maximum ratings. ESD Removed MB package from Figure 88: UFDFPN8 (MLP8) – 8-lead ultra thin fine pitch dual flat package no lead 2 × 3mm, package outline. Updated figure on Cover page with wafer code SB12I. Updated Figure 1: Logic diagram, Figure 5: Circuit diagram, Figure 7: I²C timeout on Start condition, Figure 10: Write cycle polling flowchart using Ack, Figure 14: 100% modulation waveform and Figure 15: 10% 04-Nov-2015 9 modulation waveform. Updated Table 119: AC test measurement conditions, Table 130: Ordering information scheme for bare die devices or packaged devices and Table 131: Ordering and marking information. Updated Section 31: Package information and its subsections. 144/146 DocID022208 Rev 11

M24LR04E-R Revision history Table 134. Document revision history (continued) Date Revision Changes Updated Features. Updated Table 21: UID format and Table 117: Absolute maximum ratings. 10-May-2016 10 Updated Figure 51: Description of a possible anticollision sequence and Figure 53: Stay Quiet frame exchange between VCD and M24LR04E-R. Added Section 29: Write cycle definition. Updated Figure 8: Write mode sequences with I2C_Write_Lock bit = 1 (data write inhibited), Figure 11: Read mode sequences, Figure 43: End of frame, low data rate, one subcarrier, Figure 44: End of frame, low data rate, one subcarrier, Fast commands, Figure 45: End of frame, high data rate, two subcarriers, Figure 47: M24LR04E-R decision tree for AFI, Figure 52: M24LR04E-R RF-Busy management following Inventory command, Figure 56: M24LR04E-R RF_Busy management following Write command and Figure 57: M24LR04E RF_Wip management 28-Jul-2017 11 following Write command. Added footnote 4 to Figure 89: UFDFN8 - 8-lead, 2 × 3 mm, 0.5 mm pitch ultra thin profile fine pitch dual flat package outline. Updated caption of Figure 90: TSSOP8 – 8-lead thin shrink small outline, 3 x 6.4 mm, 0.65 mm pitch, package outline and of Table 129: TSSOP8 – 8-lead thin shrink small outline, 3 x 6.4 mm, 0.65 mm pitch, package mechanical data. Updated title of Section 32: Ordering information and added Note:. DocID022208 Rev 11 145/146 145

M24LR04E-R IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2017 STMicroelectronics – All rights reserved 146/146 DocID022208 Rev 11

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: S TMicroelectronics: M24LR04E-RMC6T/2 M24LR04E-RMN6T/2 M24LR04E-RDW6T/2