图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: LM3670MF-1.8/NOPB
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

LM3670MF-1.8/NOPB产品简介:

ICGOO电子元器件商城为您提供LM3670MF-1.8/NOPB由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LM3670MF-1.8/NOPB价格参考¥3.52-¥5.01。Texas InstrumentsLM3670MF-1.8/NOPB封装/规格:PMIC - 稳压器 - DC DC 开关稳压器, 固定 降压 开关稳压器 IC 正 1.8V 1 输出 350mA SC-74A,SOT-753。您可以下载LM3670MF-1.8/NOPB参考资料、Datasheet数据手册功能说明书,资料中有LM3670MF-1.8/NOPB 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC REG BUCK 1.8V 0.35A SOT23-5稳压器—开关式稳压器 Mini SD DC-DC Cnvtr

产品分类

PMIC - 稳压器 - DC DC 开关稳压器

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

电源管理 IC,稳压器—开关式稳压器,Texas Instruments LM3670MF-1.8/NOPB-

数据手册

点击此处下载产品Datasheet

产品型号

LM3670MF-1.8/NOPB

PWM类型

电压模式

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30141

产品目录页面

点击此处下载产品Datasheet

产品种类

稳压器—开关式稳压器

供应商器件封装

SOT-23-5

关闭

Shutdown

其它名称

LM3670MF-1.8DKR
LM3670MF-1.8DKR-ND

制造商产品页

http://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&orderablePartNumber=LM3670MF-1.8/NOPB

包装

Digi-Reel®

同步整流器

商标

Texas Instruments

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

SC-74A,SOT-753

封装/箱体

SOT-23

工作温度

-40°C ~ 85°C

工作温度范围

- 40 C to + 85 C

工厂包装数量

1000

开关频率

1000 kHz

拓扑结构

Buck

最大工作温度

+ 85 C

最大输入电压

5.5 V

最小工作温度

- 40 C

最小输入电压

2.5 V

标准包装

1

电压-输入

2.5 V ~ 5.5 V

电压-输出

1.8V

电流-输出

350mA

电源电压-最小

2.5 V

电源电流

5 mA

类型

Step Down

系列

LM3670

设计资源

http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176

负载调节

0.0014 %/mA

输入电压

5.5 V

输出数

1

输出电压

1.8 V

输出电流

0.35 A

输出端数量

1 Output

输出类型

固定

配用

/product-detail/zh/LM3670MF-2.5EV/LM3670MF-2.5EV-ND/1640677/product-detail/zh/LM3670MF-1.8EV/LM3670MF-1.8EV-ND/1640676/product-detail/zh/LM3670MF-1.5EV/LM3670MF-1.5EV-ND/1640675/product-detail/zh/LM3670MF-1.2EV/LM3670MF-1.2EV-ND/1640674

频率-开关

1MHz

推荐商品

型号:BD8312HFN-TR

品牌:Rohm Semiconductor

产品名称:集成电路(IC)

获取报价

型号:MP2490DS-LF-Z

品牌:Monolithic Power Systems Inc.

产品名称:集成电路(IC)

获取报价

型号:LM2585T-12/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LTC3415EUHF#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LT3971IMSE#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:TPS622313DRYR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LM2677SX-12/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TL7660CP

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
LM3670MF-1.8/NOPB 相关产品

LTC3621IDCB-5#TRMPBF

品牌:Linear Technology/Analog Devices

价格:

TPS54335DDA

品牌:Texas Instruments

价格:¥14.50-¥18.12

MAX630MJA/883B

品牌:Maxim Integrated

价格:

LM3671LC-1.3/NOPB

品牌:Texas Instruments

价格:¥3.52-¥8.69

LM25575MH/NOPB

品牌:Texas Instruments

价格:

A7986A

品牌:STMicroelectronics

价格:

LM26400YSDX

品牌:Texas Instruments

价格:

LTC3410ESC6-1.65#TRPBF

品牌:Linear Technology/Analog Devices

价格:

PDF Datasheet 数据手册内容提取

Product Sample & Technical Tools & Support & Folder Buy Documents Software Community LM3670 SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 LM3670 Miniature Step-Down DC-DC Converter for Ultralow Voltage Circuits 1 Features 3 Description • InputVoltageRange:2.5Vto5.5V The LM3670 step-down DC-DC converter is 1 optimizedforpoweringultralowvoltagecircuitsfroma • AdjustableOutputVoltages(V ):0.7Vto2.5V OUT single Li-Ion cell or three-cell NiMH/NiCd batteries. It • FixedOutputVoltages:1.2V,1.5V,1.6V,1.8V, provides up to 350-mA load current, over an input 1.875V,3.3V voltage range from 2.5 V to 5.5 V. There are several • 15-µATypicalQuiescentCurrent different fixed voltage output options available as well asanadjustableoutputvoltageversion. • 350-mAMaximumLoadCapability The device offers superior features and performance • 1-MHzPWMFixedSwitchingFrequency(Typical) for mobile phones and similar portable applications • AutomaticPFMandPWMModeSwitching withcomplexpowermanagementsystems.Automatic • LowDropoutOperation –100%DutyCycleMode intelligent switching between pulse width modulation • InternalSynchronousRectificationforHigh (PWM) low-noise and pulse frequency modulation Efficiency (PFM) low-current mode offers improved system control. During full-power operation, a fixed-frequency • InternalSoftStart 1-MHz (typical) PWM mode drives loads from • 0.1-µATypicalShutdownCurrent approximately 70 mA to 350 mA maximum, with up to • CurrentOverloadProtection 95% efficiency. Hysteretic PFM mode extends the battery life through reduction of the quiescent current • OperatesfromaSingleLi-IonCellorThree-Cell to 15 µA (typical) during light current loads and NiMH/NiCdBatteries system standby. Internal synchronous rectification • OnlyThreeTinySurface-MountExternal provides high efficiency (90% to 95% typical at loads ComponentsRequired(OneInductor,Two between 1 mA and 100 mA). In shutdown mode CeramicCapacitors) (enable (EN) pin pulled low) the device turns off and reducesbatteryconsumptionto0.1µA(typical). 2 Applications The LM3670 is available in a 5-pin SOT-23 package. • MobilePhonesandHandheldDevices Ahighswitchingfrequency(1MHztypical)allowsuse of tiny surface-mount components. Only three • PDAs external surface-mount components, an inductor and • Palm-TopPCs twoceramiccapacitors,arerequired. • PortableInstruments • Battery-PoweredDevices DeviceInformation(1) PARTNUMBER PACKAGE BODYSIZE(NOM) LM3670 SOT-23(5) 2.90mm×1.60mm (1) For all available packages, see the orderable addendum at theendofthedatasheet. space space TypicalApplication:FixedOutput TypicalApplication:AdjustableOutputVoltage V L1 2.5 V t4oIN. 75 C.µ5IFN V GVNIND 21LM36705 SW 10 µF VOUTC1 0O UµTF 2.5 V Vt4oIN. 75 C.µ5IF NV GVNIND 21LM36705 SW4.7 oLr 110 µH VOUT COUT R1 10 µF EN FB 3 4 EN FB 3 4 R2 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

LM3670 SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 www.ti.com Table of Contents 1 Features.................................................................. 1 7.4 DeviceFunctionalModes........................................12 2 Applications........................................................... 1 8 ApplicationandImplementation........................ 14 3 Description............................................................. 1 8.1 ApplicationInformation............................................14 4 RevisionHistory..................................................... 2 8.2 TypicalApplication .................................................14 5 ConnectionDiagram.............................................. 3 9 PowerSupplyRecommendations...................... 18 6 Specifications......................................................... 4 10 Layout................................................................... 19 6.1 AbsoluteMaximumRatings......................................4 10.1 LayoutGuidelines.................................................19 6.2 ESDRatings..............................................................4 10.2 LayoutExample....................................................20 6.3 RecommendedOperatingConditions.......................4 11 DeviceandDocumentationSupport................. 21 6.4 ThermalInformation..................................................4 11.1 DeviceSupport ....................................................21 6.5 ElectricalCharacteristics...........................................5 11.2 CommunityResources..........................................21 6.6 TypicalCharacteristics..............................................7 11.3 Trademarks...........................................................21 7 DetailedDescription............................................ 10 11.4 ElectrostaticDischargeCaution............................21 7.1 Overview.................................................................10 11.5 Glossary................................................................21 7.2 FunctionalBlockDiagram.......................................10 12 Mechanical,Packaging,andOrderable Information........................................................... 21 7.3 FeatureDescription.................................................11 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionE(February2013)toRevisionF Page • Changed"(0.7Vmin)to"0.7Vto2.5V"................................................................................................................................ 1 • AddedDeviceInformationandPinConfigurationandFunctionssections,ESDRatingsandThermalInformation tables,FeatureDescription,DeviceFunctionalModes,ApplicationandImplementation,PowerSupply Recommendations,Layout,DeviceandDocumentationSupport,andMechanical,Packaging,andOrderable Informationsections................................................................................................................................................................ 1 • Deletedphoneandfaxnumbersofmanufacturersfromsuggestedinductorstable........................................................... 15 • Deletedphoneandfaxnumbersofmanufacturersfromsuggestedcapacitorstable ......................................................... 16 • Deletedrestoftextfromparagraphbeginning"Foranyoutputvoltages...."........................................................................ 17 • Deletedrowbeginningwith"1.24..."fromTable3 .............................................................................................................. 18 ChangesfromRevisionD(February2013)toRevisionE Page • ChangedlayoutofNationalDataSheettoTIformat........................................................................................................... 19 2 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3670

LM3670 www.ti.com SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 5 Connection Diagram DBVPackage 5-PinSOT-23 TopView SW FB 5 4 VIN GND EN 1 2 3 PinFunctions PIN NUMBE TYPE DESCRIPTION NAME R Powersupplyinput.Connecttotheinputfiltercapacitor 1 V Power IN (TypicalApplication:FixedOutput). 2 GND Ground Groundpin. 3 EN Digital Enableinput. 4 FB Feedbackanaloginput.Connecttotheoutputfiltercapacitor Analog (TypicalApplication:FixedOutput). SwitchingnodeconnectiontotheinternalPFETswitchandNFETsynchronousrectifier. 5 SW Analog Connecttoaninductorwithasaturationcurrentratingthatexceedsthe750-mAmaximum switchpeakcurrentlimitspecification. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LM3670

LM3670 SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1)(2) MIN MAX UNIT V pin:voltagetoGND –0.2 6 V IN ENpin:voltagetoGND –0.2 6 V FB,SWpins (GND−0.2) V +0.2 V IN Junctiontemperature,T –45 125 °C J-MAX Maximumleadtemperature (soldering,10seconds) 260 °C Storagetemperature,T –45 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) IfMilitary/Aerospacespecifieddevicesarerequired,contacttheTISalesOffice/Distributorsforavailabilityandspecifications. 6.2 ESD Ratings VALUE UNIT Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±2000 V(ESD) Electrostaticdischarge Charged-devicemodel(CDM),perJEDECspecificationJESD22- V C101(2) ±200 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 6.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1) MIN NOM MAX UNIT Inputvoltage 2.5 5.5 A Recommendedloadcurrent 0 350 mA Junctiontemperature,T –40 125 °C J Ambienttemperature,T –40 85 °C A (1) AllvoltagesarewithrespecttothepotentialattheGNDpin. 6.4 Thermal Information LM3670 THERMALMETRIC(1) DBV(SOT-23) UNIT 5PINS R Junction-to-ambientthermalresistance 163.3 °C/W θJA R Junction-to-case(top)thermalresistance 114.3 °C/W θJC(top) R Junction-to-boardthermalresistance 26.8 °C/W θJB ψ Junction-to-topcharacterizationparameter 12.4 °C/W JT ψ Junction-to-boardcharacterizationparameter 26.3 °C/W JB (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report,SPRA953. 4 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3670

LM3670 www.ti.com SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 6.5 Electrical Characteristics Unlessotherwisespecified,limitsfortypicalvaluesareT =25°C,andminimumandmaximumlimitsapplyoverthefull J operatingjunctiontemperaturerange(−40°C≤T ≤+125°C);V =3.6V,V =1.8V,I =150mA,EN=V . J IN OUT OUT IN PARAMETER TESTCONDITIONS MIN TYP MAX UNIT V Inputvoltage See(1) 2.5 5.5 V IN 2.5V≤V ≤5.5V 4% IN –2% I =10mA OUT Fixedoutputvoltage:1.2V 2.5V≤V ≤5.5V 4% IN –4.5% 0mA≤I ≤150mA OUT 2.5V≤V ≤5.5V 4% IN –2.5% I =10mA OUT Fixedoutputvoltage:1.5V 2.5V≤V ≤5.5V 4% IN –5% 0mA≤I ≤350mA OUT 2.5V≤V ≤5.5V 4% IN –2.5% I =10mA OUT Fixedoutputvoltage:1.6V,1.875V 2.5V≤V ≤5.5V 4% IN –5.5% 0mA≤I ≤350mA OUT V OUT 2.5V≤V ≤5.5V 3% IN –1.5% I =10mA OUT Fixedoutputvoltage:1.8V 2.5V≤V ≤5.5V 3% IN –4.5% 0mA≤I ≤350mA OUT 3.6V≤V ≤5.5V 4% IN –2% I =10mA OUT Fixedoutputvoltage:3.3V 3.6V≤V ≤5.5V 4% IN –6% 0mA≤I ≤350mA OUT 2.5V≤V ≤5.5V 4.5% IN –2.5% I =10mA Adjustableoutputvoltage(2) OUT 2.5V≤V ≤5.5V 4.5% IN –4% 0mA≤I ≤150mA OUT 2.5V≤V ≤5.5V Line_reg Lineregulation IN 0.26 %/V I =10mA OUT Load_reg Loadregulation 150mA≤I ≤350mA 0.0014 %/mA OUT V Internalreferencevoltage 0.5 V REF I Shutdownsupplycurrent T =85ºC 0.1 1 µA Q_SHDN A Noload,deviceisnotswitching I DCbiascurrentintoV (V forcedhigherthan 15 30 µA Q IN OUT programmedoutputvoltage) MinimumV belowwhichV is V IN OUT T =−40°C≤T ≤125°C 2.4 V UVLO disabled A J R Pin-pinresistanceforPFET V =V =3.6V 360 690 mΩ DSON(P) IN GS R Pin-pinresistanceforNFET V =V =3.6V 250 660 mΩ DSON(N) IN GS I Pchannelleakagecurrent V =5.5V,T =25°C 0.1 1 µA LKG(P) DS A I Nchannelleakagecurrent V =5.5V,T =25°C 0.1 1.5 µA LKG(N) DS A I Switchpeakcurrentlimit 400 620 750 mA LIM (1) Theinputvoltagerangerecommendedforthespecifiedoutputvoltagesaregivenbelow:V =2.5Vto5.5Vfor0.7V≤V <1.875 IN OUT V,V =(V +V )to5.5for1.875≤V ≤3.3V,whereV =I ×(R +R ). IN OUT DROPOUT OUT DROPOUT LOAD DSON(P) INDUCTOR (2) Outputvoltagespecificationfortheadjustableversionincludestoleranceoftheexternalresistordivider. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LM3670

LM3670 SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 www.ti.com Electrical Characteristics (continued) Unlessotherwisespecified,limitsfortypicalvaluesareT =25°C,andminimumandmaximumlimitsapplyoverthefull J operatingjunctiontemperaturerange(−40°C≤T ≤+125°C);V =3.6V,V =1.8V,I =150mA,EN=V . J IN OUT OUT IN PARAMETER TESTCONDITIONS MIN TYP MAX UNIT V =3.6V,V =1.8V IN OUT 91% I =1mA LOAD V =3.6V,V =1.8V IN OUT 94% I =10mA LOAD V =3.6V,V =1.8V IN OUT 94% I =100mA LOAD η Efficiency V =3.6V,V =1.8V IN OUT 94% I =200mA LOAD V =3.6V,V =1.8V IN OUT 92% I =300mA LOAD V =3.6V,V =1.8V IN OUT 90% I =350mA LOAD V Logichighinput 1.3 V IH V Logiclowinput 0.4 V IL I Enable(EN)inputcurrent 0.01 1 µA EN ƒ Internaloscillatorfrequency PWMmode 550 1000 1300 kHz OSC 6 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3670

LM3670 www.ti.com SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 6.6 Typical Characteristics Unlessotherwisestated,V =3.6VandV =1.8V. IN OUT 20 0.1 )A P ( TN TA = 85(cid:176)C )A I DECSEIUQ 15 TA = 25(cid:176)C (PNWODTU 0.05 A TA = -40(cid:176)C H O S L I O N 10 0 2.5 3 3.5 4 4.5 5 5.5 -40 -20 0 20 40 60 80 VIN (V) TEMPERATURE ((cid:176)C) Figure1.IQ(Non-Switching)vsVIN Figure2.IQvsTemperature 1.83 1.9 IOUT = 10 mA VIN = 3.6V 1.88 1.82 PFM mode 1.86 1.84 1.81 PFM Mode )V )V 1.82 ( T 1.80 IOUT = 150 mA ( T 1.8 PWM Mode UO PWM mode UO V V 1.78 1.79 VIN = 5.5V 1.76 VIN = 2.5V 1.74 1.78 VIN = 3.6V 1.72 1.77 1.7 -40 -20 0 20 40 60 80 0 50 100 150 200 250 300 350 TEMPERATURE ((cid:176)C) ILOAD (mA) Figure3.VOUTvsVIN Figure4.VOUTvsIOUT 100 100 95 VIN = 2.7V 90 95 ILOAD = 150 mA 85 )% 80 )% 90 ( YCNE 7750 VIN = 5.0V ( YCNE 85 ILOAD = 1 mA IC 65 IC IF IF ILOAD = 300 mA FE 60 FE 80 55 VIN = 3.7V 50 75 45 40 70 10-2 10-1 100 101 102 103 2.5 3 3.5 4 4.5 5 5.5 6 ILOAD (mA) VIN (V) Figure5.EfficiencyvsI Figure6.EfficiencyvsV OUT IN Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LM3670

LM3670 SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 www.ti.com Typical Characteristics (continued) Unlessotherwisestated,V =3.6VandV =1.8V. IN OUT 1010 0.8 1000 ILOAD = 150 mA N FET P FET 990 0.7 )zH 999678000 VIN = 5.5V VIN = 3.6V :)( LE 0.6 TTAA == 8255(cid:176)(cid:176)CC k( YCNEUQERF 899999990123450000000 VIN = 2.5V NNAHC P ,N - no 000...453 TA = -40(cid:176)C 880 SD 870 R 0.2 860 850 840 0.1 -40 -20 0 10 2030 40 5060 70 80 2.5 3 3.5 4 4.5 5 5.5 -30 -10 TEMPERATURE ((cid:176)C) VIN (V) Figure7.FrequencyvsTemperature Figure8.R vs.V PandNChannels DSON IN IOUT=100mA VIN=3.6V VIN=4.6V VINrisetime=10ms VIN=2.6V VIN=3.6V T T N N E E SI SI N N A A R R ET VOUT=1.8V ET VOUT=1.8V N (20mV/Div) N (20mV/Div) LI LI TIME(200ms/DIV) TIME(100ms/DIV) VIN=2.6Vto3.6V ILOAD=100mA VIN=3.6Vto4.6V ILOAD=100mA Figure9.LineTransient Figure10.LineTransient )A )A VOUT (50 mV/Div) m m 0 0 8 7 2 - A VOUT (50 mV/Div) - Am m 3( P 0( PE Inductor Current = 200 mA/Div E T T S S D DA AO ILOAD = 280 mA OL L TN TNE ILOAD = 70 mA ER ILOAD = 3 mA RR ILOAD = 0 mA R U U C C TIME (100 Ps/DIV) TIME (100 Ps/DIV) I =3mAto280mA I =0mAto70mA LOAD LOAD Figure11.LoadTransient Figure12.LoadTransient 8 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3670

LM3670 www.ti.com SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 Typical Characteristics (continued) Unlessotherwisestated,V =3.6VandV =1.8V. IN OUT VSWITCH ILOAD = 150 mA VSWITCH (5V/Div) (5V/Div) VOUT (20 mV/Div) E E DO DO (20 VmOVU/TDiv) M M M Inductor Current M FP (100 mA/Div) WP In(d2u0c0to mr AC/uDrrive)nt TIME (2 Ps/DIV) TIME (1 Ps/DIV) Figure13.PFMModeV ,V ,I vsTime Figure14.PWMModeV ,V ,I vsTime SW OUT INDUCTOR SW OUT INDUCTOR )A m 0 VIN (2V/Div) 8 2 - A m 3( P VOUT (1V/Div) E T S DA Inductor O (2C0u0r rmeAnt/ L Div) T N E R R U C TIME (100 Ps/DIV) I =350mA LOAD Figure15.SoftStartV ,V ,I vsTime IN OUT INDUCTOR Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LM3670

LM3670 SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 www.ti.com 7 Detailed Description 7.1 Overview The LM3670, a high-efficiency step-down DC-DC switching buck converter, delivers a constant voltage from either a single Li-Ion or three-cell NiMH/NiCd battery to portable devices such as cell phones and PDAs. Using a voltagemodearchitecturewithsynchronousrectification,theLM3670candeliverupto350mAdependingonthe inputvoltageandoutputvoltage(voltageheadroom),andtheinductorchosen(maximumcurrentcapability). There are three modes of operation depending on the current required: pulse width modulation (PWM), pulse frequency modulation (PFM), and shutdown. PWM mode handles current loads of approximately 70 mA or higher. Lighter output current loads cause the device to automatically switch into PFM for reduced current consumption (I = 15 µA typical) and a longer battery life. Shutdown mode turns off the device, offering the Q lowestcurrentconsumption(I =0.1µAtypical). SHUTDOWN The LM3670 can operate up to a 100% duty cycle (PMOS switch always on) for low dropout control of the output voltage.Inthiswaytheoutputvoltageiscontrolleddowntothelowestpossibleinputvoltage. Additional features include soft-start, undervoltage lockout, current overload protection, and thermal overload protection.AsshowninFigure17,onlythreeexternalpowercomponentsarerequiredforimplementation. 7.2 Functional Block Diagram EN VIN SW Current Limit Comparator Undervoltage Ramp Soft + Lockout Generator Start - Ref1 PFM Current Comparator Thermal Bandgap 1 MHz + Shutdown Oscillator - Ref2 PWM Comparator Error Amp + - Control Logic Driver pfm_low VREF + 0.5V - pfm_hi Vcomp + 1.0V - + - Zero Crossing Comparator Frequency Compensation Adj Version Fixed Version FB GND 10 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3670

LM3670 www.ti.com SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 7.3 Feature Description 7.3.1 CircuitOperation The LM3670 operates as follows. During the first portion of each switching cycle, the control block in the LM3670 turns on the internal PFET switch. This allows current to flow from the input through the inductor to the output filtercapacitorandload.Theinductorlimitsthecurrenttoarampwithaslopeof: V -V IN OUT L (1) by storing energy in a magnetic field. During the second portion of each cycle, the controller turns the PFET switch off, blocking current flow from the input, and then turns the NFET synchronous rectifier on. The inductor draws current from ground through the NFET to the output filter capacitor and load, which ramps the inductor currentdownwithaslopeof: -V OUT L (2) Theoutputfilterstoreschargewhentheinductorcurrentishigh,andreleasesitwhenlow,smoothingthevoltage acrosstheload. 7.3.2 SoftStart The LM3670 has a soft-start circuit that limits in-rush current during start-up. Typical start-up times with a 10-µF outputcapacitorand350-mAloadis400µs: Table1.TypicalStart-UpTimesforSoftStart INRUSHCURRENT(mA) DURATION(µs) 0 32 70 224 140 256 280 256 620 untilsoftstartends 7.3.3 LDO-LowDropoutOperation The LM3670 can operate at 100% duty cycle (no switching, PMOS switch is completely on) for low dropout support of the output voltage. In this way the output voltage is controlled down to the lowest possible input voltage. Theminimuminputvoltageneededtosupporttheoutputvoltageis V =I ×(R +R )+V IN_MIN LOAD DSON,PFET INDUCTOR OUT where • I =loadcurrent LOAD • R =thedraintosourceresistanceofPFETswitchinthetrioderegion DSON,PFET • R =theinductorresistance (3) INDUCTOR Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LM3670

LM3670 SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 www.ti.com 7.4 Device Functional Modes 7.4.1 PWMOperation During PWM operation the converter operates as a voltage-mode controller with input voltage feed forward. This allows the converter to achieve excellent load and line regulation. The DC gain of the power stage is proportional to the input voltage. To eliminate this dependence, feed forward inversely proportional to the input voltage is introduced. 7.4.1.1 InternalSynchronousRectification While in PWM mode, the LM3670 uses an internal NFET as a synchronous rectifier to reduce rectifier forward voltage drop and associated power loss. Synchronous rectification provides a significant improvement in efficiency whenever the output voltage is relatively low compared to the voltage drop across an ordinary rectifier diode. 7.4.1.2 CurrentLimiting A current limit feature allows the LM3670 to protect itself and external components during overload conditions PWMmodeimplementscycle-by-cyclecurrentlimitingusinganinternalcomparatorthattripsat620mA(typical). 7.4.2 PFMOperation At very light load, the converter enters PFM mode and operates with reduced switching frequency and supply currenttomaintainhighefficiency. The part automatically transition into PFM mode when either of two conditions occurs for a duration of 32 or moreclockcycles: 1. Theinductorcurrentbecomesdiscontinuous 2. ThepeakPMOSswitchcurrentdropsbelowtheI level: MODE V IN I <26 mA + (typ) MODE 50: (4) During PFM operation, the converter positions the output voltage slightly higher than the nominal output voltage in PWM operation, allowing additional headroom for voltage drop during a load transient from light to heavy load. The PFM comparator senses the output voltage via the feedback pin and control the switching of the output FETs such that the output voltage ramps between 0.8% and 1.6% (typical) above the nominal PWM output voltage. If the output voltage is below the high PFM comparator threshold, the PMOS power switch is turned on. Itremainsonuntiltheoutputvoltageexceedsthe ‘high’ PFMthresholdorthepeakcurrentexceedstheI level PFM setforPFMmode.ThepeakcurrentinPFMmodeis: V IN I =117 mA + (typ) PFM Peak 64: (5) Once the PMOS power switch is turned off, the NMOS power switch is turned on until the inductor current ramps to zero. When the NMOS zero-current condition is detected, the NMOS power switch is turned off. If the output voltage is below the high PFM comparator threshold (see Figure 16), the PMOS switch is again turned on and the cycle is repeated until the output reaches the desired level. Once the output reaches the high PFM threshold, the NMOS switch is turned on briefly to ramp the inductor current to zero and then both output switches are turned off and the part enters an extremely low power mode. Quiescent supply current during this sleep mode is less than 30 µA, which allows the part to achieve high efficiencies under extremely light load conditions. When the output drops below the low PFM threshold, the cycle repeats to restore the output voltage to approximately 1.6%abovethenominalPWMoutputvoltage. If the load current increases during PFM mode (see Figure 16) causing the output voltage to fall below the ‘low2’ PFMthreshold,thepartautomaticallytransitionsintofixed-frequencyPWMmode. 12 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3670

LM3670 www.ti.com SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 Device Functional Modes (continued) PFM Mode at Light Load High PFM Threshold ~1.016 × VOUT Load current increases Low1 PFM Threshold ~1.008 × VOUT isAxZ- Current load increases, Nfet on High PFM Low PFM draws VOUT Pfet on drains Voltage Threshold, towards until inductor Threshold turn on Low2 PFM Ipfm limit current reached, PFET Threshold reached until go into Low2 PFM Threshold I inductor = 0 sleep mode V OUT Low2 PFM Threshold, six A - Z PWM Mode at switch back to PWM mode Moderateto-Heavy Loads Figure16. OperationinPFMModeandTransitiontoPWMMode 7.4.3 Shutdown Setting the EN input pin low (< 0.4 V) places the LM3670 in shutdown mode. During shutdown the PFET switch, NFET switch, reference, control and bias circuitry of the LM3671 are turned off. Setting EN high (> 1.3 V) enables normal operation. It is recommended to set EN pin low to turn off the LM3671 during system power up andundervoltageconditionswhenthesupplyislessthan2.5V.DonotleavetheENpinfloating. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LM3670

LM3670 SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 www.ti.com 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information The external control of this device is very easy. First make sure the correct voltage been applied at V pin, then IN simply apply the voltage at EN pin according to the Electrical Characteristics to enable or disable the output voltage. 8.2 Typical Application 8.2.1 TypicalApplication:FixedOutput 2.5 V VtoIN 5.5 V VIN 1 5 SW 10L 1µF VOUT 4.7 CµIFN LM3670 COUT GND 10 µF 2 EN 3 4 FB Figure17. LM3670TypicalApplication,FixedOutput 8.2.1.1 DesignRequirements FortypicalCMOSvoltageregulatorapplications,usetheparameterslistedinTable2. Table2.DesignParameters DESIGNPARAMETER EXAMPLEVALUE Minimuminputvoltage 2.5V Minimumoutputvoltage 1.2V Maximumloadcurrent 350mA 8.2.1.2 DetailedDesignProcedure 8.2.1.2.1 InductorSelection There are two main considerations when choosing an inductor: the inductor current must not saturate, and the inductorcurrentrippleissmallenoughtoachievethedesiredoutputvoltageripple. Therearetwomethodstochoosetheinductorcurrentrating. 8.2.1.2.1.1 Method1 Thetotalcurrentisthesumoftheloadandtheinductorripplecurrent.Thiscanbewrittenas I RIPPLE I = I + MAX LOAD 2 (6) V -V V 1 IN OUT OUT V = I + ( )( )( ) OUT LOAD 2 * L V f IN where • I =loadcurrent LOAD • V =inputvoltage IN 14 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3670

LM3670 www.ti.com SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 • L=inductor • ƒ=switchingfrequency • I =peak-to-peakcurrent (7) RIPPLE 8.2.1.2.1.2 Method2 Amoreconservativeapproachistochooseaninductorthatcanhandlethecurrentlimitof700mA. Givenapeak-to-peakcurrentripple(I )theinductorneedstobeatleast PP VIN - VOUT VOUT 1 L >= ( ) * ( ) * ( ) I V f PP IN (8) A 10-µH inductor with a saturation current rating of at least 800 mA is recommended for most applications. Resistance of the inductor resistance must be less than around 0.3 Ω for good efficiency. Table 3 lists suggested inductors and suppliers. For low-cost applications, an unshielded bobbin inductor is suggested. For noise critical applications, a toroidal or shielded-bobbin inductor must be used. A good practice is to lay out the board with overlapping footprints of both types for design flexibility. This allows substitution of a low-noise toroidal inductor, intheeventthatnoisefromlow-costbobbinmodelsisunacceptable. 8.2.1.2.2 InputCapacitorSelection A ceramic input capacitor of 4.7 µF is sufficient for most applications. A larger value may be used for improved input voltage filtering. The input filter capacitor supplies current to the PFET switch of the LM3670 in the first half of each cycle and reduces voltage ripple imposed on the input power source. The low equivalent series resistance (ESR) of a ceramic capacitor provides the best noise filtering of the input voltage spikes due to this rapidly changing current. Select an input filter capacitor with a surge current rating sufficient for the power-up surge from the input power source. The power-up surge current is approximately the value of the capacitor (µF) timesthevoltageriserate(V/µs).Theinputcurrentripplecanbecalculatedby: V V I = I * OUT * (1 - OUT) RMS OUTMAX V V IN IN The worst case IRMS is: IRMS IRMS = (duty cycle = 50%) 2 (9) Table3.SuggestedInductorsandTheirSuppliers MODEL VENDOR IDC2512NB100M Vishay DO1608C-103 Coilcraft ELL6RH100M Panasonic CDRH5D18-100 Sumida 8.2.1.2.3 OutputCapacitorSelection The output filter capacitor smooths out current flow from the inductor to the load, maintaining a steady output voltage during transient load changes and reduces output voltage ripple. These capacitors must be selected with sufficientcapacitanceandsufficientlylowESRtoperformthesefunctions. Theoutputripplecurrentcanbecalculatedas: I PP V = Voltagepeak-to-peakrippleduetocapacitance= PP-C f*8*C Voltagepeak-to-peakrippleduetoESR=VOUT =VPP-ESR = IPP * RESR V = V 2 + V 2 Voltagepeak-to-peakripple,rootmeansquared= PP-RMS PP-C PP-ESR Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LM3670

LM3670 SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 www.ti.com Note that the output ripple is dependent on the current ripple and the equivalent series resistance of the output capacitor(R ). ESR Because these two components are out-of-phase the RMS value is used. The R is frequency dependent (as ESR well as temperature dependent); make sure the frequency of the R given is the same order of magnitude as ESR theswitchingfrequency. Table4.SuggestedCapacitorsAndTheirSuppliers MODEL TYPE VENDOR 10µFforC OUT VJ1812V106MXJAT Ceramic Vishay LMK432BJ106MM Ceramic Taiyo-Yuden JMK325BJ106MM Ceramic Taiyo-Yuden 4.7µFforC IN VJ1812V475MXJAT Ceramic Vishay EMK325BJ475MN Ceramic Taiyo-Yuden C3216X5R0J475M Ceramic TDK 8.2.1.3 ApplicationCurves )A )A m m 0 0 8 5 2 3 - A VOUT (50 mV/Div) - A VOUT (50 mV/Div) m m 0 0 ( P ( P E E T T S S D D A A O O L TN ILOAD = 280 mA L TN ILOAD = 350 mA ER ILOAD = 0 mA ER ILOAD = 0 mA R R U U C C TIME (100 Ps/DIV) TIME (100 Ps/DIV) I =0mAto280mA I =0mAto350mA LOAD LOAD Figure18.LoadTransient Figure19.LoadTransient 16 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3670

LM3670 www.ti.com SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 8.2.2 TypicalApplication:AdjustableOutput 2.5 V VtoIN 5.5 V VIN 1 5 SW4.7 oLr 110 µH VOUT CIN LM3670 4.7 µF GND 2 COUT R1 10 µF EN FB 3 4 R2 Figure20. LM3670TypicalApplication:AdjustableOutput 8.2.2.1 DesignRequirements ForadjustableLM3670option,usethedesignparametersinTable5 Table5.DesignParameters DESIGNPARAMETER EXAMPLEVALUE Inputvoltagerange 2.5Vto5.5 Inputcapacitor 4.7µF Outputcapacitor 10µF Inductor 4.7µHor10µH ADJprogrammableoutputvoltage 0.7Vto2.5V 8.2.2.2 DetailedDesignProcedure 8.2.2.2.1 OutputVoltageSelectionforAdjustableLM3670 TheoutputvoltageoftheadjustablepartscanbeprogrammedthroughtheresistornetworkconnectedfromV OUT to V then to GND. V is adjusted to make V equal to 0.5 V. The resistor from V to GND (R ) must be at FB OUT FB FB 2 least 100 KΩ to keep the current sunk through this network well below the 15-µA quiescent current level (PFM mode with no switching) but large enough that it is not susceptible to noise. If R is 200 KΩ, and V is 0.5 V, 2 FB thenthecurrentthroughtheresistorfeedbacknetworkis2.5 µA(I =0.5V/R ).Theoutputvoltageformulais: FB 2 R 1 VOUT = VFB * ( + 1) R 2 where • V =outputvoltage(V) OUT • V =feedbackvoltage(0.5Vtypical) FB • R ResistorfromV toV (Ω) 1 OUT FB • R ResistorfromV toGND(Ω) (10) 2 OUT Foroutputvoltagegreaterthanorequalto0.7Vafrequencyzeromustbeaddedat10kHzforstability. 1 C = 1 2 * S * R1 * 10 kHz (11) Foranyoutputvoltagesequalto0.7Vor2.5V,apolemustalsobeplacedat10kHz(seeTable6). Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LM3670

LM3670 SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 www.ti.com Table6.AdjustableLM3670ConfigurationsforVariousV OUT VOUT(V) R1(KΩ) R2(KΩ) C1(pF) C2(pF) L(µH) C (µF) C (µF) IN OUT 0.7 80.6 200 200 150 4.7 4.7 10 0.8 120 200 130 none 4.7 4.7 10 0.9 160 200 100 none 4.7 4.7 10 1.0 200 200 82 none 4.7 4.7 10 1.1 240 200 68 none 4.7 4.7 10 1.2 280 200 56 none 4.7 4.7 10 1.24 221 150 75 120 4.7 4.7 10 1.5 402 200 39 none 10 4.7 10 1.6 442 200 39 none 10 4.7 10 1.7 487 200 33 none 10 4.7 10 1.875 549 200 30 none 10 4.7 14.7(1) 2.5 806 200 22 82 10 4.7 22 (1) (10||4.7) 8.2.2.3 ApplicationCurves )A A) m 05 VOUT (50 mV/Div) 00m VOUT(50mV/Div) 3 3 - A -A m m 0 0 InductorCurrent=200mA/Div 5 0 ( P (1 E P T E S T DAO ILOAD = 350 mA ADS ILOAD=300mA L O TNE ILOAD = 50 mA TLN ILOAD=100mA R E R R U R C U C TIME (100 Ps/DIV) TIME(100ms/DIV) ILOAD=50mAto350mA ILOAD=100mAto300mA Figure21.LoadTransient Figure22.LoadTransient 9 Power Supply Recommendations TheLM3670isdesignedtooperatefromastableinputsupplyrangeof2.5Vto5.5V. 18 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3670

LM3670 www.ti.com SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 10 Layout 10.1 Layout Guidelines PC board layout is an important part of DC-DC converter design. Poor board layout can disrupt the performance of a DC-DC converter and surrounding circuitry by contributing to EMI, ground bounce, and resistive voltage loss in the traces, which can send erroneous signals to the DC-DC converter device, resulting in poor regulation or instability. GoodlayoutfortheLM3670canbeimplementedbyfollowingafewsimpledesignrules,asshowninFigure23. • Place the LM3670, inductor and filter capacitors close together and make the traces short. The traces between these components carry relatively high switching currents and act as antennas. Following this rule reducesradiatednoise.Placethecapacitorsandinductorwithin0.2in.(5mm)oftheLM3670. • Arrange the components so that the switching current loops curl in the same direction. During the first half of each cycle, current flows from the input filter capacitor, through the LM3670 and inductor to the output filter capacitor and back through ground, forming a current loop. In the second half of each cycle, current is pulled up from ground, through the LM3670 by the inductor, to the output filter capacitor and then back through ground, forming a second current loop. Routing these loops so the current curls in the same direction preventsmagneticfieldreversalbetweenthetwohalf-cyclesandreducesradiatednoise. • ConnectthegroundpinsoftheLM3670,andfiltercapacitorstogetherusinggenerouscomponent-sidecopper fill as a pseudo-ground plane. Then, connect this to the ground-plane (if one is used) with several vias. This reduces ground-plane noise by preventing the switching currents from circulating through the ground plane. It alsoreducesgroundbounceattheLM3670bygivingitalow-impedancegroundconnection. • Use wide traces between the power components and for power connections to the DC-DC converter circuit. Thisreducesvoltageerrorscausedbyresistivelossesacrossthetraces. • Route noise sensitive traces, such as the voltage feedback path, away from noisy traces between the power components. The voltage feedback trace must remain close to the LM3670 circuit, and be direct but must be routed opposite to noisy components. This reduces EMI radiated onto the DC-DC converter’s own voltage feedbacktrace. • Place noise sensitive circuitry, such as radio IF blocks, away from the DC-DC converter, CMOS digital blocks and other noisy circuitry. Interference with noise-sensitive circuitry in the system can be reduced through distance. In mobile phones, for example, a common practice is to place the DC-DC converter on one corner of the board, arrange the CMOS digital circuitry around it (because this also generates noise), and then place sensitive pre- amplifiers and IF stages on the diagonally opposing corner. Often, the sensitive circuitry is shielded with a metal panand,byusinglow-dropoutlinearregulators,powertothecircuitispost-regulatedtoreduceconductednoise. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:LM3670

LM3670 SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 www.ti.com 10.2 Layout Example The light shaded area is the top surface ground. C , C , Feedback R OUT IN EN,GND,V ,FB,SW are and C grounds all come to this area which is as far away from the SW pin EN IN as possible to avoid the noise created at the SW pin. POST the pads for the SOT-23-5 PIN package Note that the top and bottom GND sides are kept away from the SW pin to avoid picking up noise from the SW pin which swings from GND to V . IN EN post pin is connected to EN with a bottom side trace to maintain unbroken ground plane on top of board V IN GND C IN As many through holes as possible here to connect the top and EN G bottom ground planes ND The V , SW, V traces, IN OUT C , C traces & pads IN OUT should be thick - they are high current paths SW node is switching R2_fb Bottom surface - the darker C2_fb between V and GND at IN shaded area is all GND EXCEPT 1 MHz - VERYNOISY! - for area around SW to avoid COUT FB SS keep all GNDs and GND picking up switch noise. WW planes away! R1_fb C1_fb V OUT If possible put the feedback Rs and Cs on the back side so the C OUT L1 GND can move closer to the IC GND Figure23. LM3670Layout 20 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3670

LM3670 www.ti.com SNVS250F–NOVEMBER2004–REVISEDFEBRUARY2016 11 Device and Documentation Support 11.1 Device Support 11.1.1 Third-PartyProductsDisclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONEORINCOMBINATIONWITHANYTIPRODUCTORSERVICE. 11.2 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 11.3 Trademarks E2EisatrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 11.4 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 11.5 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:LM3670

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LM3670MF-1.2/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SCZB & no Sb/Br) LM3670MF-1.5/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 S82B & no Sb/Br) LM3670MF-1.6/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SDBB & no Sb/Br) LM3670MF-1.8/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SDCB & no Sb/Br) LM3670MF-1.875/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SEFB & no Sb/Br) LM3670MF-3.3/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SDEB & no Sb/Br) LM3670MF-ADJ/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SDFB & no Sb/Br) LM3670MFX-1.2/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SCZB & no Sb/Br) LM3670MFX-1.8/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SDCB & no Sb/Br) LM3670MFX-ADJ/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SDFB & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 24-Aug-2017 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LM3670MF-1.2/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3670MF-1.5/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3670MF-1.6/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3670MF-1.8/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3670MF-1.875/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3670MF-3.3/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3670MF-ADJ/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3670MFX-1.2/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3670MFX-1.8/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3670MFX-ADJ/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 24-Aug-2017 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LM3670MF-1.2/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3670MF-1.5/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3670MF-1.6/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3670MF-1.8/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3670MF-1.875/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3670MF-3.3/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3670MF-ADJ/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3670MFX-1.2/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 LM3670MFX-1.8/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 LM3670MFX-ADJ/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 PackMaterials-Page2

PACKAGE OUTLINE DBV0005A SOT-23 - 1.45 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR C 3.0 2.6 0.1 C 1.75 1.45 1.45 B A 0.90 PIN 1 INDEX AREA 1 5 2X 0.95 3.05 2.75 1.9 1.9 2 4 3 0.5 5X 0.3 0.15 0.2 C A B (1.1) TYP 0.00 0.25 GAGE PLANE 0.22 TYP 0.08 8 TYP 0.6 0 0.3 TYP SEATING PLANE 4214839/E 09/2019 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Refernce JEDEC MO-178. 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. www.ti.com

EXAMPLE BOARD LAYOUT DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM (1.9) 2 2X (0.95) 3 4 (R0.05) TYP (2.6) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:15X SOLDER MASK SOLDER MASK METAL UNDER METAL OPENING OPENING SOLDER MASK EXPOSED METAL EXPOSED METAL 0.07 MAX 0.07 MIN ARROUND ARROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4214839/E 09/2019 NOTES: (continued) 5. Publication IPC-7351 may have alternate designs. 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM 2 (1.9) 2X(0.95) 3 4 (R0.05) TYP (2.6) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:15X 4214839/E 09/2019 NOTES: (continued) 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 8. Board assembly site may have different recommendations for stencil design. www.ti.com

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated