图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: ADM3054BRWZ
  • 制造商: Analog
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

ADM3054BRWZ产品简介:

ICGOO电子元器件商城为您提供ADM3054BRWZ由Analog设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 ADM3054BRWZ价格参考¥24.42-¥45.74。AnalogADM3054BRWZ封装/规格:数字隔离器, CAN 数字隔离器 5000Vrms 3 通道 1Mbps 25kV/µs CMTI 16-SOIC(0.295",7.50mm 宽)。您可以下载ADM3054BRWZ参考资料、Datasheet数据手册功能说明书,资料中有ADM3054BRWZ 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

隔离器

描述

DGTL ISOLATOR 5KV 3CH CAN 16SOICCAN 接口集成电路 5kV RMS Signal Iso HiSpd w/ Bus Protect

产品分类

数字隔离器

品牌

Analog Devices Inc

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

接口 IC,CAN 接口集成电路,Analog Devices ADM3054BRWZiCoupler®

数据手册

点击此处下载产品Datasheet点击此处下载产品Datasheet

产品型号

ADM3054BRWZ

PCN设计/规格

点击此处下载产品Datasheet

上升/下降时间(典型值)

-

产品种类

CAN 接口集成电路

传播延迟tpLH/tpHL(最大值)

-

供应商器件封装

16-SOIC

共模瞬态抗扰度(最小值)

25kV/µs

包装

管件

协议

CAN

双工

商标

Analog Devices

安装类型

表面贴装

安装风格

SMD/SMT

封装

Tube

封装/外壳

16-SOIC(0.295",7.50mm 宽)

封装/箱体

SOIC-16

工作温度

-40°C ~ 125°C

工作电源电压

5 V

工厂包装数量

47

技术

磁耦合

接收器滞后

150mV

数据速率

1Mbps

最大工作温度

+ 125 C

最小工作温度

- 40 C

标准包装

47

特色产品

http://www.digikey.com/product-highlights/cn/zh/analog-devices-iso-can-tranceiver/1402

电压-电源

3.3V,5V

电压-隔离

5000Vrms

电源电压-最大

5.25 V, 5.5 V

电源电压-最小

3 V, 4.75 V

电源电流

3 mA, 75 mA

类型

CAN

系列

ADM3054

脉宽失真(最大)

-

视频文件

http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2219593469001http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2219593470001http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2219614223001

输入-输入侧1/输入侧2

1/2

通道数

3

通道类型

单向

隔离式电源

驱动器/接收器数

1/1

ADM3054BRWZ 相关产品

SI8430AB-D-IS

品牌:Silicon Labs

价格:

ADUM5403CRWZ-RL

品牌:Analog Devices Inc.

价格:

ADUM1100BRZ

品牌:Analog Devices Inc.

价格:¥-¥78.50

ADUM1402WSRWZ

品牌:Analog Devices Inc.

价格:

SI8461AA-B-IS1

品牌:Silicon Labs

价格:

IL3522E

品牌:NVE Corp/Isolation Products

价格:

ADUM1301CRW

品牌:Analog Devices Inc.

价格:

ISO7420MDR

品牌:Texas Instruments

价格:

PDF Datasheet 数据手册内容提取

5 kV rms Signal Isolated High Speed CAN Transceiver with Bus Protection Data Sheet ADM3054 FEATURES GENERAL DESCRIPTION 5 kV rms signal isolated CAN transceiver The ADM3054 is a 5 kV rms signal isolated controller area 5 V or 3.3 V operation on VDD1 network (CAN) physical layer transceiver. The ADM3054 5 V operation on VDD2 complies with the ISO 11898 standard. V to detect loss of power on V DD2SENSE DD2 The device employs Analog Devices, Inc., iCoupler® technology Complies with ISO 11898 standard to combine a 3-channel isolator and a CAN transceiver into a High speed data rates of up to 1 Mbps single package. The logic side of the device is powered with a Short-circuit protection on CANH and CANL against shorts to single 3.3 V or 5 V supply on V and the bus side uses a single DD1 power/ground in 24 V systems 5 V supply on V only. Loss of power on the bus side (V ) DD2 DD2 Unpowered nodes do not disturb the bus can be detected by an integrated V signal. DD2SENSE Connect 110 or more nodes on the bus Thermal shutdown protection The ADM3054 creates an isolated interface between the CAN High common-mode transient immunity: >25 kV/μs protocol controller and the physical layer bus. It is capable of Safety and regulatory approvals running at data rates of up to 1 Mbps. UL recognition The device has integrated protection on the bus pins, CANH 5000 V rms for 1 minute per UL 1577 and CANL against shorts to power/ground in 24 V systems. VDE Certificates of Conformity The device has current-limiting and thermal shutdown features DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 to protect against output short circuits and situations where the V = 846 V peak IORM bus might be shorted to ground or power terminals. The part is Industrial operating temperature range: −40°C to +125°C fully specified over the industrial temperature range and is Wide-body, 16-lead SOIC package available in a 16-lead, wide-body SOIC package. Qualified for automotive applications APPLICATIONS CAN data buses Industrial field networks FUNCTIONAL BLOCK DIAGRAM VDD1 VDD2 ISOLATION ADM3054 BARRIER VDD2 VOLTAGE SENSE CAN TRANSCEIVER VDD2SENSE DECODE ENCODE THERMAL SHUTDOWN TxD ENCODE DECODE D CANH R CANL RxD DECODE ENCODE VOLTAGE DIGITAL ISOLATION REFERENCE iCoupler® VREF LOGIC SIDE BUS SIDE GND1 GND2 10274-001 Figure 1 Rev. D Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Tel: 781.329.4700 ©2011–2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. Technical Support www.analog.com

ADM3054 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Test Circuits and Switching Characteristics................................ 13 Applications ....................................................................................... 1 Theory of Operation ...................................................................... 15 General Description ......................................................................... 1 CAN Transceiver Operation ..................................................... 15 Functional Block Diagram .............................................................. 1 Thermal Shutdown .................................................................... 15 Revision History ............................................................................... 2 Truth Tables................................................................................. 15 Specifications ..................................................................................... 3 Electrical Isolation ...................................................................... 16 Timing Specifications .................................................................. 4 Magnetic Field Immunity ......................................................... 17 Regulatory Information ............................................................... 5 Applications Information .............................................................. 18 Insulation and Safety-Related Specifications ............................ 5 Typical Applications ................................................................... 18 VDE 0884 Insulation Characteristics ........................................ 6 Packaging and Ordering Information ......................................... 20 Absolute Maximum Ratings ....................................................... 7 Outline Dimensions ................................................................... 20 ESD Caution .................................................................................. 7 Ordering Guide .......................................................................... 20 Pin Configuration and Function Descriptions ............................. 8 Automotive Products ................................................................. 20 Typical Performance Characteristics ............................................. 9 REVISION HISTORY 3/2017—Rev. C to Rev. D 12/2012—Rev. 0 to Rev. A Change to Tracking Resistance (Comparative Tracking Index) Changes to Features Section ............................................................ 1 Parameter, Table 4 ............................................................................. 5 Changed Regulatory Information (Pending) Section to Change to ≤300 V rms Parameter, Table 5 and ≤400 V rms Regulatory Information Section ...................................................... 5 Parameter, Table 5 ............................................................................. 6 Changes to Table 3 Caption ............................................................. 5 Changed VDE 0884 Insulation Characteristics (Pending) 1/2017—Rev. B to Rev. C Section to VDE 0884 Insulation Characteristics Section ............. 6 Change to Isolation Group Parameter, Table 4 ............................. 5 Deleted Endnote 3, Ordering Guide; Renumbered Sequentially .. 20 10/2011—Revision 0: Initial Version 9/2013—Rev. A to Rev. B Changes to Features Section............................................................ 1 Changes to Ordering Guide .......................................................... 20 Added Automotive Products Section........................................... 20 Rev. D | Page 2 of 20

Data Sheet ADM3054 SPECIFICATIONS Each voltage is relative to its respective ground, 3.0 V ≤ V ≤ 5.5 V, T = −40°C to +125°C, 4.75 V ≤ V ≤ 5.25 V, unless otherwise noted. DD1 A DD2 Table 1. Parameter Symbol Min Typ Max Unit Test Conditions/Comments SUPPLY CURRENT Power Supply Current Logic Side TxD/RxD Data Rate 1 Mbps I 2.5 3.0 mA DD1 Power Supply Current Bus Side I DD2 Recessive State 10 mA R = 60 Ω, see Figure 28 L Dominant State 75 mA R = 60 Ω, see Figure 28 L TxD/RxD Data Rate 1 Mbps 55 mA R = 60 Ω, see Figure 28 L DRIVER Logic Inputs Input Voltage High V 0.7 V V TxD IH DD1 Input Voltage Low V 0.25 V V TxD IL DD1 CMOS Logic Input Currents I , I 500 µA TxD IH IL Differential Outputs Recessive Bus Voltage V , V 2.0 3.0 V V = high, R = ∞, see Figure 22 CANL CANH TxD L CANH Output Voltage V 2.75 4.5 V V = low, see Figure 22 CANH TxD CANL Output Voltage V 0.5 2.0 V V = low, see Figure 22 CANL TxD Differential Output Voltage V 1.5 3.0 V V = low, R = 45 Ω, see Figure 22 OD TxD L V −500 +50 mV V = high, R = ∞, see Figure 22 OD TxD L Short-Circuit Current, CANH I −200 mA V = −5 V SCCANH CANH I −100 mA V = −36 V SCCANH CANH Short-Circuit Current, CANL I 200 mA V = 36 V SCCANL CANL RECEIVER Differential Inputs Differential Input Voltage Recessive V −1.0 +0.5 V −2 V < V , V < 7 V, IDR CANL CANH see Figure 24, C = 15 pF L −1.0 +0.4 V −7 V < V , V < 12 V, CANL CANH see Figure 24, C = 15 pF L Differential Input Voltage Dominant V 0.9 5.0 V −2 V < V , V < 7 V, IDD CANL CANH see Figure 24, C = 15 pF L 1.0 5.0 V −7 V < V , V < 12 V, CANL CANH see Figure 24, C = 15 pF L Input Voltage Hysteresis V 150 mV See Figure 25 HYS CANH, CANL Input Resistance R 5 25 kΩ IN Differential Input Resistance R 20 100 kΩ DIFF Logic Outputs Output Voltage Low V 0.2 0.4 V I = 1.5 mA OL OUT Output Voltage High V V − 0.3 V − 0.2 V I = −1.5 mA OH DD1 DD1 OUT Short-Circuit Current I 7 85 mA V = GND or V OS OUT 1 DD1 VOLTAGE REFERENCE Reference Output Voltage V 2.025 3.025 V |I = 50 µA| REF REF V VOLTAGE SENSE DD2 V Output Voltage Low V 0.2 0.4 V I = 1.5 mA DD2SENSE OL OSENSE V Output Voltage High V V − 0.3 V − 0.2 V I = −1.5 mA DD2SENSE OH DD1 DD1 OSENSE Bus Voltage Sense Threshold Voltage V 2.0 2.5 V V TH(SENSE) DD2 COMMON-MODE TRANSIENT IMMUNITY1 25 kV/µs V = 1 kV, transient, CM magnitude = 800 V 1 CM is the maximum common-mode voltage slew rate that can be sustained while maintaining specification compliant operation. VCM is the common-mode potential difference between the logic and bus sides. The transient magnitude is the range over which the common mode is slewed. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. Rev. D | Page 3 of 20

ADM3054 Data Sheet TIMING SPECIFICATIONS Each voltage is relative to its respective ground, 3.0 V ≤ V ≤ 5.5 V. T = −40°C to +125°C, 4.75 V ≤ V ≤ 5.25 V, unless otherwise noted. DD1 A DD2 Table 2. Parameter Symbol Min Typ Max Unit Test Conditions/Comments DRIVER Maximum Data Rate 1 Mbps Propagation Delay TxD On to Bus Active t 90 ns R = 60 Ω, C = 100 pF, see Figure 23 onTxD L L and Figure 27 Propagation Delay TxD Off to Bus Inactive t 120 ns R = 60 Ω, C = 100 pF, see Figure 23 offTxD L L and Figure 27 RECEIVER Propagation Delay TxD On to Receiver Active t 200 ns R = 60 Ω, C = 100 pF, see Figure 23 onRxD L L and Figure 27 Propagation Delay TxD Off to Receiver Inactive t 250 ns R = 60 Ω, C = 100 pF, see Figure 23 offRxD L L and Figure 27 POWER-UP Enable Time, V High to V Low t 300 µs See Figure 26 DD2 DD2SENSE SE Disable Time, V Low to V High t 10 ms See Figure 26 DD2 DD2SENSE SD Rev. D | Page 4 of 20

Data Sheet ADM3054 REGULATORY INFORMATION Table 3. ADM3054 Approvals Organization Approval Type Notes UL Recognized under the component recognition In accordance with UL 1577, each ADM3054 is proof tested by program of Underwriters Laboratories, Inc. applying an insulation test voltage ≥ 6000 V rms for 1 second VDE Certified according to DIN V VDE V 0884-10 In accordance with DIN V VDE V 0884-10, each ADM3054 is proof (VDE V 0884-10): 2006-12 tested by applying an insulation test voltage ≥ 1590 V peak for 1 second (partial discharge detection limit = 5 pC) INSULATION AND SAFETY-RELATED SPECIFICATIONS Table 4. Parameter Symbol Value Unit Test Conditions/Comments Rated Dielectric Insulation Voltage 5000 V rms 1-minute duration Minimum External Air Gap (External Clearance) L(I01) 8.0 mm Measured from input terminals to output terminals, shortest distance through air Minimum External Tracking (Creepage) L(I02) 7.6 mm Measured from input terminals to output terminals, shortest distance along body Minimum Internal Gap (Internal Clearance) 0.017 min mm Insulation distance through insulation Tracking Resistance (Comparative Tracking Index) CTI >400 V DIN IEC 112/VDE 0303-1 Isolation Group II Material group (DIN VDE 0110) Rev. D | Page 5 of 20

ADM3054 Data Sheet VDE 0884 INSULATION CHARACTERISTICS This isolator is suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data must be ensured by means of protective circuits. Table 5. Description Test Conditions/Comments Symbol Characteristic Unit CLASSIFICATIONS Installation Classification per DIN VDE 0110 for Rated Mains Voltage ≤150 V rms I to IV ≤300 V rms I to IV ≤400 V rms I to III Climatic Classification 40/125/21 Pollution Degree DIN VDE 0110 2 VOLTAGE Maximum Working Insulation Voltage V 846 V peak IORM Input-to-Output Test Voltage, Method B1 V × 1.875 = V , 100% production tested, V 1590 V peak IORM PR PR t = 1 sec, partial discharge < 5 pC m Input-to-Output Test Voltage, Method A After Environmental Tests, Subgroup 1 V × 1.6 = V , t = 60 sec, partial discharge < 5 pC V 1357 V peak IORM PR m PR After Input and/or Safety Test, V × 1.2 = V , t = 60 sec, partial discharge < 5 pC V 1018 V peak IORM PR m PR Subgroup 2/Subgroup 3: Highest Allowable Overvoltage V 6000 V peak TR SAFETY LIMITING VALUES Case Temperature T 150 °C S Input Current I 265 mA S, INPUT Output Current I 335 mA S, OUTPUT Insulation Resistance at T R >109 Ω S S Rev. D | Page 6 of 20

Data Sheet ADM3054 ABSOLUTE MAXIMUM RATINGS T = 25°C, unless otherwise noted. Each voltage is relative to its Stresses at or above those listed under Absolute Maximum A respective ground. Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these Table 6. or any other conditions above those indicated in the operational Parameter Rating section of this specification is not implied. Operation beyond V , V −0.5 V to +6 V DD1 DD2 the maximum operating conditions for extended periods may Digital Input Voltage affect product reliability. TxD −0.5 V to V + 0.5 V DD1 Digital Output Voltage RxD −0.5 V to V + 0.5 V ESD CAUTION DD1 V −0.5 V to V + 0.5 V DD2SENSE DD1 CANH, CANL −36 V to +36 V V −0.5 V to +6 V REF Operating Temperature Range −40°C to +125°C Storage Temperature Range −55°C to +150°C ESD (Human Body Model) ±3.5 kV Lead Temperature Soldering (10 sec) 300°C Vapor Phase (60 sec) 215°C Infrared (15 sec) 220°C θ Thermal Impedance 53°C/W JA T Junction Temperature 150°C J Rev. D | Page 7 of 20

ADM3054 Data Sheet PIN CONFIGURATION AND FUNCTION DESCRIPTIONS NC 1 16 GND2 GND1 2 15 NC GND1 3 ADM3054 14 NC VDD2SENSE 4 TOP VIEW 13 VDD2 RxD 5 (Not to Scale) 12 CANH TxD 6 11 CANL VDD1 7 10 VREF GND1 8 9 GND2 N1.O NTCE S= NO CONNECT. 10274-009 Figure 2. Pin Configuration Table 7. Pin Function Descriptions Pin No. Mnemonic Description 1 NC No Connect. This pin remains unconnected. 2 GND Ground (Logic Side). 1 3 GND Ground (Logic Side). 1 4 V V Voltage Sense. A low level on V indicates that power is connected on V . A high level on V indicates a DD2SENSE DD2 DD2SENSE DD2 DD2SENSE loss of power on V . DD2 5 RxD Receiver Output Data. 6 TxD Driver Input Data. 7 V Power Supply (Logic Side); 3.3 V or 5 V. A decoupling capacitor to GND is required; a capacitor value between 0.01 µF DD1 1 and 0.1 µF is recommended. 8 GND Ground (Logic Side). 1 9 GND Ground (Bus Side). 2 10 V Reference Voltage Output. REF 11 CANL Low Level CAN Voltage Input/Output. 12 CANH High Level CAN Voltage Input/Output. 13 V Power Supply (Bus Side); 5 V. A decoupling capacitor to GND is required; a capacitor value of 0.1 µF is recommended. DD2 2 14 NC No Connect. This pin remains unconnected. 15 NC No Connect. This pin remains unconnected. 16 GND Ground (Bus Side). 2 Rev. D | Page 8 of 20

Data Sheet ADM3054 TYPICAL PERFORMANCE CHARACTERISTICS 170 205 VDD1 = 3.3V, VDD2 = 5V VDD1 = 3.3V, TA = 25°C VDD1 = 5V, VDD2 = 5V VDD1 = 5V, TA = 25°C PROPAGATION DELAY TxD ONTOtRECEIVERACTIVE, (ns)ONRxD111114556650505 PROPAGATION DELAY TxD OFFTOtRECEIVER INACTIVE, (ns)OFFRxD111289905050 140–50 –25 0 TEM2P5ERATUR5E0 (°C) 75 100 125 10274-010 1804.75 4.80 4.85 4S.9U0PP4LY.9 5VOL5T.0A0GE5, .V0D5D25 (.V1)0 5.15 5.20 5.25 10274-013 Figure 3. Propagation Delay from TxD On to Receiver Active vs. Temperature Figure 6. Propagation Delay from TxD Off to Receiver Inactive vs. Supply Voltage, VDD2 155 V) 156 154 VVDDDD11 == 35.V3,V T, AT A= =2 52°5C°C (HYS155 VVDDDD11 == 35.V3,V V, DVDD2D =2 =5 V5V V NTOns) 153 SIS, 154 ON DELAY TxD OtACTIVE, (ONRxD 111555012 LTAGE HYSTERE 111555123 AGATIEIVER 149 UT VO 114590 PC P PRORE 148 ER IN 148 147 EIV 147 C E 1464.75 4.80 4.85 4S.U90PPL4Y.9 V5OL5T.A00GE,5 .V0D5D2 5(V.1)0 5.15 5.20 5.25 10274-011 R 146–50 –25 0 TEM2P5ERATUR50E (°C) 75 100 125 10274-014 Figure 4. Propagation Delay from TxD On to Receiver Active vs. Figure 7. Receiver Input Hysteresis vs. Temperature Supply Voltage, VDD2 250 90 VDD1 = 3.3V, VDD2 = 5V VDD1 = 3.3V, VDD2 = 5V 240 VDD1 = 5V, VDD2 = 5V US VDD1 = 5V, VDD2 = 5V PROPAGATION DELAY TxD OFFTOtRECEIVER INACTIVE, (ns)OFFRxD112222890123000000 ROPAGATION DELAY TxD OFFTO BtINACTIVE, (ns)OFFTxD 6778850505 P 170–50 –25 0 TEM2P5ERATUR5E0 (°C) 75 100 125 10274-012 60–50 –25 0 TEM2P5ERATUR5E0 (°C) 75 100 125 10274-015 Figure 5. Propagation Delay from TxD Off to Receiver Inactive vs. Figure 8. Propagation Delay from TxD Off to Bus Inactive vs. Temperature Temperature Rev. D | Page 9 of 20

ADM3054 Data Sheet 78 42 VDD1 = 3.3V, TA = 25°C VDD1 = 3.3V, VDD2 = 5V O 77 VDD1 = 5V, TA = 25°C 41 VDD1 = 5V, VDD2 = 5V T AY TxD OFF (ns)OFFTxD7756 T, I (mA)DD2 3490 Lt N OPAGATION DEBUS INACTIVE, 7734 SUPPLY CURRE 333678 R P 72 35 714.75 4.80 4.85 4S.9U0PP4LY.9 5VOL5T.0A0GE5, .V0D5D25 (.V1)0 5.15 5.20 5.25 10274-016 34100 DATA RATE (kbps) 1000 10274-019 Figure 9. Propagation Delay from TxD Off to Bus Inactive vs. Figure 12. Supply Current (IDD2) vs. Data Rate Supply Voltage, VDD2 54 1.2 VDD1 = 3.3V, VDD2 = 5V VDD1 = 5V, VDD2 = 5V 52 O 1.0 NT A) DELAY TxD OtE, (ns)ONTxD4580 RENT, I (mDD1 00..68 OPAGATION BUSACTIV 4446 SUPPLY CUR 0.4 R P 0.2 42 VDD1 = 3.3V, VDD2 = 5V VDD1 = 5V, VDD2 = 5V 40–50 –25 0 TEM2P5ERATUR5E0 (°C) 75 100 125 10274-017 0100 DATA RATE(kbps) 1000 10274-020 Figure 10. Propagation Delay from TxD On to Bus Active vs. Temperature Figure 13. Supply Current (IDD1) vs. Data Rate 50 2.35 VDD1 = 3.3V, TA = 25°C VDD1 = 5V, TA = 25°C 49 O E T G 2.30 ONs) 48 LTA DELAY TxD tE, (nONTxD4467 OUTPUT VONT, V (V)OD 2.25 ATION ACTIV 45 NTIAL OMINA 2.20 GS ED OPABU 44 FER PR DIF 2.15 43 VDD1 = 5V, VDD2 = 5V, RL = 45Ω VDD1 = 5V, VDD2 = 5V, RL = 60Ω 424.75 4.80 4.85 4S.9U0PPL4Y.9 5VOL5.T0A0GE5,. 0V5DD25 (.V10) 5.15 5.20 5.25 10274-018 2.10–50 –25 0 TEM2P5ERATUR5E0 (°C) 75 100 125 10274-021 Figure 11. Propagation Delay from TxD On to Bus Active vs. Figure 14. Driver Differential Output Voltage Dominant vs. Temperature Supply Voltage, VDD2 Rev. D | Page 10 of 20

Data Sheet ADM3054 V) 140 NT, V (OD 22..56 VVDDDD11 == 55VV,, VVDDDD22 == 55VV,, RRLL == 4650ΩΩ (mV)OL130 VVDDDD11 == 35.V3,V V, DVDD2D =2 =5 V5V A V E DOMIN 2.4 GE LOW, 120 G A A 2.3 T T L L O 110 O V T V 2.2 UT U P TP UT 100 U O NTIAL O 22..01 CEIVER 90 RE RE E DIFF 1.94.75 4.80 4.85 4S.9U0PP4LY.9 5VOL5T.0A0GE5, .V0D5D25 (.V1)0 5.15 5.20 5.25 10274-022 80–50 –25 0 TEM2P5ERATUR5E0 (°C) 75 100 125 10274-024 Figure 15. Driver Differential Output Voltage Dominant vs. Figure 17. Receiver Output Low Voltage vs. Temperature Supply Voltage, VDD2 4.90 2.70 V) VDD1 = 5V, VDD2 = 5V ( GE HIGH, VOH44..8889 E, V (V)REF22..6605 TA AG2.55 L T VO4.87 OL UT E V2.50 P C T N U4.86 E CEIVER O4.85 REFER22..4405 RE VDD1 = 5V, VDD2 = 5V, IREF = +50μA VDD1 = 5V, VDD2 = 5V, IREF = –50μA 4.84–50 –25 0 TEM2P5ERATUR5E0 (°C) 75 100 125 10274-023 2.35–50 –25 0 TEM2P5ERATUR5E0 (°C) 75 100 125 10274-025 Figure 16. Receiver Output High Voltage vs. Temperature Figure 18. VREF vs. Temperature Rev. D | Page 11 of 20

ADM3054 Data Sheet 146 2.42 VDD1 = 5V, VDD2= 5V VDD1 = 5V, VDD2 = 5V 144 2.40 tV ENABLE TIME, (ns)DD2SENSESE111111333344246802 V THRESHOLD VOLTAGEDD2SENSEHIGHTO LOW, V (V)TH (SENSE)22222.....3333302468 130 2.28 128–50 –25 0 TEMP25ERATUR5E0 (°C) 75 100 125 10274-026 2.26–50 –25 0 TEM2P5ERATUR5E0 (°C) 75 100 125 10274-028 Figure 19. Enable Time, VDD2 High to VDD2SENSE Low vs. Temperature Figure 21. VDD2 Voltage Sense Threshold Voltage High to Low vs. Temperature 200 VDD1 = 5V, VDD2 = 5V 198 s) n (D196 S t E, 194 M TI E 192 L B A S 190 DI SE188 N E S D2186 D V 184 182–50 –25 0 TEM2P5ERATUR5E0 (°C) 75 100 125 10274-027 Figure 20. Disable Time, VDD2 Low to VDD2SENSE High vs. Temperature Rev. D | Page 12 of 20

Data Sheet ADM3054 TEST CIRCUITS AND SWITCHING CHARACTERISTICS RL TxD 2 VOD VCANH RL CANH 2 VOC VCANL 10274-006 CANL VID CL RxD 10274-002 Figure 22. Driver Voltage Measurement Figure 24. Receiver Voltage Measurements CANH TxD RL CL CANL RxD 15pF 10274-003 Figure 23. Switching Characteristics Measurements VRxD HIGH LOW VHYS 0.5 0.9 VID (V) 10274-004 Figure 25. Receiver Input Hysteresis 5V VDD2 VTH(SENSE) VTH(SENSE) 0V tSE tSD VDD1 VDD1 – 0.3 VDD2SENSE 0V 0.4V 10274-005 Figure 26. VDD2SENSE Enable/Disable Time Rev. D | Page 13 of 20

ADM3054 Data Sheet VDD1 0.7VDD1 VTxD 0.25VDD1 0V VOD VDIFF = VCANH – VCANL VDIFF 0.9V 0.5V VOR tONTxD tOFFTxD VDD1 VDD1 – 0.3V VRxD 0.4VCC 0V tONRxD tOFFRxD 10274-007 Figure 27. Driver and Receiver Propagation Delay VDD2 1µF VDD1 VDD2 ISOLATION ADM3054 BARRIER VDD2 VOLTAGE SENSE CAN TRANSCEIVER VDD2SENSE DECODE ENCODE THERMAL SHUTDOWN TxD ENCODE DECODE D CANH R RL RxD DECODE ENCODE CANL VOLTAGE DIGITAL ISOLATION REFERENCE iCoupler® VREF LOGIC SIDE BUS SIDE GND1 GND2 10274-008 Figure 28. Supply Current Measurement Test Circuit Rev. D | Page 14 of 20

Data Sheet ADM3054 THEORY OF OPERATION CAN TRANSCEIVER OPERATION TRUTH TABLES A CAN bus has two states: dominant and recessive. A dominant The truth tables in this section use the abbreviations listed state is present on the bus when the differential voltage between in Table 8. CANH and CANL is greater than 0.9 V. A recessive state is present Table 8. Truth Table Abbreviations on the bus when the differential voltage between CANH and Letter Description CANL is less than 0.5 V. During a dominant bus state, the CANH H High level pin is high and the CANL pin is low. During a recessive bus L Low level state, both the CANH and CANL pins are in the high imped- I Indeterminate ance state. X Don’t care The driver drives CANH high and CANL low (dominant state) Z High impedance (off) when a logic low is present on TxD. If a logic high is present on NC Disconnected TxD, the driver outputs are placed in a high impedance state (recessive state). The driver output states are presented in Table 9. Table 9. Transmitting Supply Status Input Outputs The receiver output is low when the bus is in the dominant state and high when the bus is in the recessive state. If the differential VDD1 VDD2 TxD State CANH CANL VDD2SENSE On On L Dominant H L L voltage between CANH and CANL is between 0.5 V and 0.9 V, On On H Recessive Z Z L the bus state is indeterminate and the receiver output can be On On Floating Recessive Z Z L either high or low. The receiver output states for given inputs Off On X Recessive Z Z I are listed in Table 10. On Off L I I I H THERMAL SHUTDOWN Table 10. Receiving The ADM3054 contains thermal shutdown circuitry that protects Supply Status Inputs Outputs the part from excessive power dissipation during fault conditions. VDD1 VDD2 VID = CANH − CANL Bus State RxD VDD2SENSE Shorting the driver outputs to a low impedance source can result On On ≥0.9 V Dominant L L in high driver currents. The thermal sensing circuitry detects On On ≤0.5 V Recessive H L the increase in die temperature under this condition and disables On On 0.5 V < VID < 0.9 V I I L the driver outputs. This circuitry is designed to disable the driver On On Inputs open Recessive H L Off On X X I I outputs when a junction temperature of 150°C is reached. As On Off X X H H the device cools, the drivers reenable at a temperature of 140°C. Rev. D | Page 15 of 20

ADM3054 Data Sheet ELECTRICAL ISOLATION iCoupler Technology In the ADM3054, electrical isolation is implemented on the The digital signals transmit across the isolation barrier using logic side of the interface. Therefore, the device has two main iCoupler technology. This technique uses chip scale transformer sections: a digital isolation section and a transceiver section windings to couple the digital signals magnetically from one (see Figure 29). The driver input signal, which is applied to the side of the barrier to the other. Digital inputs are encoded into TxD pin and referenced to the logic ground (GND), is coupled waveforms that are capable of exciting the primary transformer 1 across an isolation barrier to appear at the transceiver section winding. At the secondary winding, the induced waveforms are referenced to the isolated ground (GND). Similarly, the receiver decoded into the binary value that was originally transmitted. 2 input, which is referenced to the isolated ground in the tran- Positive and negative logic transitions at the input cause narrow sceiver section, is coupled across the isolation barrier to appear (~1 ns) pulses to be sent to the decoder via the transformer. The at the RxD pin referenced to the logic ground. decoder is bistable and is, therefore, set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions at the input for more than ~1 μs, a periodic set of refresh pulses, indicative of the correct input state, are sent to ensure dc correct- ness at the output. If the decoder receives no internal pulses for more than about 5 μs, the input side is assumed to be unpowered or nonfunctional, in which case the output is forced to a default state (see Table 9). VDD1 VDD2 ISOLATION ADM3054 BARRIER VDD2 VOLTAGE SENSE CAN TRANSCEIVER VDD2SENSE DECODE ENCODE THERMAL SHUTDOWN TxD ENCODE DECODE D CANH R CANL RxD DECODE ENCODE VOLTAGE DIGITAL ISOLATION REFERENCE iCoupler® VREF LOGIC SIDE BUS SIDE GND1 GND2 10274-029 Figure 29. Digital Isolation and Transceiver Sections Rev. D | Page 16 of 20

Data Sheet ADM3054 MAGNETIC FIELD IMMUNITY Given the geometry of the receiving coil and an imposed requirement that the induced voltage is, at most, 50% of the The limitation on the magnetic field immunity of the iCoupler 0.5 V margin at the decoder, a maximum allowable magnetic is set by the condition in which an induced voltage in the receiving field can be determined using Figure 30. coil of the transformer is large enough to either falsely set or reset the decoder. The following analysis defines the conditions For example, at a magnetic field frequency of 1 MHz, the under which this may occur. The 3 V operating condition of the maximum allowable magnetic field of 0.2 kgauss induces a ADM3054 is examined because it represents the most susceptible voltage of 0.25 V at the receiving coil. This is approximately mode of operation. 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event occurs during a transmitted The pulses at the transformer output have an amplitude greater pulse and is the worst-case polarity, it reduces the received pulse than 1 V. The decoder has a sensing threshold of about 0.5 V, from >1.0 V to 0.75 V, still well above the 0.5 V sensing threshold thus establishing a 0.5 V margin in which induced voltages can of the decoder. be tolerated. Figure 31 shows the magnetic flux density values in terms of The voltage induced across the receiving coil is given by more familiar quantities, such as maximum allowable current V =−dβ∑πr2; n = 1, 2, …, N flow at given distances away from the ADM3054 transformers.  dt  n 1000 where: A) DISTANCE = 1m β is the magnetic flux density (gauss). T (k 100 N N is the number of turns in the receiving coil. E R rn is the radius of the nth turn in the receiving coil (cm). E CUR 10 DISTANCE = 5mm L 100 B A W DISTANCE = 100mm LO 1 ETIC 10 M AL MAGNAUSS) AXIMU 0.1 E G 1 M Lk ABY ( ALLOWDENSIT 0.1 0.011k 10kMAGNETI1C0 F0kIELD FREQ1MUENCY (Hz1)0M 100M 10274-031 MUM FLUX FigVuarreio 3u1s. CMuarrxeimntu-tmo- AAlDloMw3a0b5l4e CSpuarrceinntg fso r AXI 0.01 M With combinations of strong magnetic field and high frequency, any loops formed by printed circuit board (PCB) traces can 0.0011k 10kMAGNETI1C0 F0kIELD FREQ1MUENCY (Hz1)0M 100M 10274-030 isnudccueceed einrrgo cri rvcoultiatrgye.s T lahregree feonroe,u cgahr eto is t rniegcgeesrs tahrey tihnr tehseh olalydos uotf of Figure 30. Maximum Allowable External Magnetic Flux Density such traces to avoid this possibility. Rev. D | Page 17 of 20

ADM3054 Data Sheet APPLICATIONS INFORMATION TYPICAL APPLICATIONS 3.3 OR 5V SUPPLY 5V ISOLATED SUPPLY CT 100nF 100nF 3.3 OR 5V SUPPLY VDD1 VDD2 RT/2 RT/2 100nF ISOLATION ADM3054 BARRIER VDD2 VOLTAGE SENSE CAN TRANSCEIVER VDD2SENSE DECODE ENCODE THERMAL SHUTDOWN TxD CAN ENCODE DECODE D BUS CONTROLLER CONNECTOR CANH R RxD DECODE ENCODE CANL VOLTAGE DIGITAL ISOLATION REFERENCE iCoupler® VREF LOGIC SIDE BUS SIDE GND1 GND2 RT/2 RT/2 N1.O RTTE iSS EQUALTO THE CHARACTERISTIC IMPEDANCE OF THE CABLE USED. CT 10274-032 Figure 32. Typical Isolated CAN Node Using the ADM3054 Rev. D | Page 18 of 20

Data Sheet ADM3054 RT/2 RT/2 CT CT RT/2 RT/2 CANH CANL CANH CANL CANH CANL ADM3054 ADM3054 ADM3054 R VDD2 R VDD2 R VDD2 D SENSE D SENSE D SENSE GALVANIC ISOLATION GALVANIC ISOLATION GALVANIC ISOLATION TxD RxD VDD2SENSE TxD RxD VDD2SENSE TxD RxD VDD2SENSE N12..O MRTTAE IXSSI MEUQMU ANLU TMOB ETRH EO CF HNAORDAECST: E1R10IS.TIC IMPEDANCE OF THE CABLE USED. 10274-033 Figure 33. Typical CAN Bus Using the ADM3054 Rev. D | Page 19 of 20

ADM3054 Data Sheet PACKAGING AND ORDERING INFORMATION OUTLINE DIMENSIONS 10.50(0.4134) 10.10(0.3976) 16 9 7.60(0.2992) 7.40(0.2913) 1 10.65(0.4193) 8 10.00(0.3937) 1.27(0.0500) 0.75(0.0295) BSC 2.65(0.1043) 0.25(0.0098) 45° 0.30(0.0118) 2.35(0.0925) 8° 0.10(0.0039) 0° COPLANARITY 0.10 0.51(0.0201) SPELAATNIENG 0.33(0.0130) 1.27(0.0500) 0.31(0.0122) 0.20(0.0079) 0.40(0.0157) C(RINOEFNPEATRRREOENNLCLTEIHNCEOGOSNDMELISPYM)LAEAIANNRNDSETIAORTRNOOESUJNANEORDDETEEDAICN-POSMPFTRIFALONLMPIDMIRLAELIRATIMTDEEESRTFSMEO;SRIRN-0ECU1QH3SU-EADIVAIINMAELDENENSSTIIOGSNNFS.OR 03-27-2007-B Figure 34. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-16) Dimensions shown in millimeters and (inches) ORDERING GUIDE Model1, 2 Temperature Range Package Description Package Option3 ADM3054BRWZ −40°C to +125°C 16-Lead Standard Small Outline Package [SOIC_W] RW-16 ADM3054BRWZ-RL7 −40°C to +125°C 16-Lead Standard Small Outline Package [SOIC_W] RW-16 ADM3054WBRWZ-RL7 −40°C to +125°C 16-Lead Standard Small Outline Package [SOIC_W] RW-16 EVAL-ADM3054EBZ Evaluation Board 1 Z = RoHS Compliant Part. 2 W = Qualified for Automotive Applications. 3 The ADM3054WBRWZ-RL7 package option is halide free. AUTOMOTIVE PRODUCTS The ADM3054W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models. ©2011–2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. www.analog.com/ADM3054 D10274-0-3/17(D) Rev. D | Page 20 of 20

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: A nalog Devices Inc.: EVAL-ADM3054EBZ ADM3054BRWZ-RL7 ADM3054BRWZ ADM3054WBRWZ-RL7