图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: TLV2711CDBVT
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

TLV2711CDBVT产品简介:

ICGOO电子元器件商城为您提供TLV2711CDBVT由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TLV2711CDBVT价格参考¥3.81-¥9.45。Texas InstrumentsTLV2711CDBVT封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 1 电路 满摆幅 SOT-23-5。您可以下载TLV2711CDBVT参考资料、Datasheet数据手册功能说明书,资料中有TLV2711CDBVT 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)半导体

描述

IC OPAMP GP 65KHZ RRO SOT23-5运算放大器 - 运放 Single LinCMOS R/R

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Texas Instruments

产品手册

http://www.ti.com/litv/slos196a

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,运算放大器 - 运放,Texas Instruments TLV2711CDBVTLinCMOS™

数据手册

点击此处下载产品Datasheet

产品型号

TLV2711CDBVT

产品种类

运算放大器 - 运放

供应商器件封装

SOT-23-5

共模抑制比—最小值

70 dB

关闭

No Shutdown

其它名称

296-32378-6

包装

Digi-Reel®

单位重量

13 mg

压摆率

0.025 V/µs

双重电源电压

+/- 3 V

商标

Texas Instruments

增益带宽生成

0.065 MHz

增益带宽积

65kHz

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

SC-74A,SOT-753

封装/箱体

SOT-23-5

工作温度

0°C ~ 70°C

工作电源电压

2.7 V to 10 V, +/- 1.35 V to +/- 5 V

工厂包装数量

250

技术

LinCMOS

放大器类型

通用

最大双重电源电压

+/- 5 V

最大工作温度

+ 70 C

最小双重电源电压

+/- 1.35 V

最小工作温度

0 C

标准包装

1

电压-电源,单/双 (±)

2.7 V ~ 10 V, ±1.35 V ~ 5 V

电压-输入失调

450µV

电流-电源

13µA

电流-输入偏置

1pA

电流-输出/通道

50mA

电源电流

0.025 mA

电路数

1

系列

TLV2711

转换速度

0.025 V/us

输入偏压电流—最大

60 pA

输入参考电压噪声

72 nV

输入补偿电压

3 mV

输出电流

50 mA

输出类型

满摆幅

通道数量

1 Channel

推荐商品

型号:AD8643ARZ-REEL7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:INA128U/2K5

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TLV2771CDBVTG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT1490IS8#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:ICL7642CCPD+

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:AD684SQ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:PGA204BP

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:INA101HPG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
TLV2711CDBVT 相关产品

LT1810IMS8#PBF

品牌:Linear Technology/Analog Devices

价格:

THS4130CDGKR

品牌:Texas Instruments

价格:

SM73307MM/NOPB

品牌:Texas Instruments

价格:

MAX4491AUA-T

品牌:Maxim Integrated

价格:

LT1492CS8

品牌:Linear Technology/Analog Devices

价格:

MAX495ESA+

品牌:Maxim Integrated

价格:

TLV2252AIPWR

品牌:Texas Instruments

价格:¥10.54-¥21.52

AD8607ARM-REEL

品牌:Analog Devices Inc.

价格:

PDF Datasheet 数据手册内容提取

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 (cid:0) Output Swing Includes Both Supply Rails DBV PACKAGE (cid:0) Low Noise...21 nV/√Hz Typ at f = 1 kHz (TOP VIEW) (cid:0) Low Input Bias Current...1 pA Typ OUT 1 5 VDD–/GND (cid:0) Very Low Power...11 µA Per Channel Typ (cid:0) Common-Mode Input Voltage Range VDD+ 2 Includes Negative Rail (cid:0) Wide Supply Voltage Range IN+ 3 4 IN– 2.7 V to 10 V (cid:0) Available in the SOT-23 Package (cid:0) EQUIVALENT INPUT NOISE VOLTAGE† Macromodel Included vs FREQUENCY description 80 The TLV2711 is a single low-voltage operational Hz VDD = 3 V amplifier available in the SOT-23 package. It 70 RS = 20 Ω consumes only 11 µA (typ) of supply current and nV/ TA = 25°C – is ideal for battery-power applications. Looking at e 60 g F21igunrVe/ √1H, zt hea tT L1V 2k7H1z1; hfaivse a t3im-Ve sn olioswe eler vethl aonf Volta 50 e competitive SOT-23 micropower solutions. The s oi device exhibits rail-to-rail output performance for N 40 increased dynamic range in single- or split-supply put n 30 applications. The TLV2711 is fully characterized nt I at 3 V and 5 V and is optimized for low-voltage e applications. val 20 ui q The TLV2711, exhibiting high input impedance – E 10 and low noise, is excellent for small-signal n V conditioning for high-impedance sources, such as 0 piezoelectric transducers. Because of the micro- 101 102 103 104 f – Frequency – Hz power dissipation levels combined with 3-V operation, these devices work well in hand-held †For all curves where VDD = 5 V, all loads are referenced to 2.5 V. monitoring and remote-sensing applications. In For all curves where VDD = 3 V, all loads are referenced to 1.5 V. addition, the rail-to-rail output feature with single Figure 1. Equivalent Input Noise Voltage or split supplies makes this family a great choice Versus Frequency when interfacing with analog-to-digital converters (ADCs). With a total area of 5.6mm2, the SOT-23 package only requires one-third the board space of the standard 8-pin SOIC package. This ultra-small package allows designers to place single amplifiers very close to the signal source, minimizing noise pick-up from long PCB traces. AVAILABLE OPTIONS TTAA VVIIOOmmaaxx AATT 2255°°CC PACSKOATG-2E3D ( DDBEVV)I†CES SSYYMMBBOOLL CCHHIIPP (FFYOO)RRMM‡ 0°C to 70°C 3 mV TLV2711CDBV VAJC TTLLVV22771111YY –40°C to 85°C 3 mV TLV2711IDBV VAJI †The DBV package available in tape and reel only. ‡Chip forms are tested at TA = 25°C only. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Advanced LinCMOS is a trademark of Texas Instruments. PRODUCTION DATA information is current as of publication date. Copyright  2001, Texas Instruments Incorporated Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 TLV2711Y chip information This chip, when properly assembled, displays characteristics similar to the TLV2711C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS (5) (1) VDD+ (2) (3) IN+ + (1) OUT (4) IN– – (5) VDD–/GND CHIP THICKNESS: 10 MILS TYPICAL 46 BONDING PADS: 4 × 4 MILS MINIMUM (2) TJmax = 150°C TOLERANCES ARE ±10%. ALL DIMENSIONS ARE IN MILS. PIN (2) IS INTERNALLY CONNECTED TO BACK SIDE OF CHIP. (4) (3) 31 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 equivalent schematic VDD+ Q3 Q6 Q9 Q12 Q14 Q16 R7 C2 IN+ R6 OUT C1 IN– R5 Q1 Q4 Q13 Q15 Q17 R2 D1 Q2 Q5 Q7 Q8 Q10 Q11 R3 R4 R1 D2 VDD–/GND COMPONENT COUNT† Transistors 23 Diodes 6 Resistors 11 Capacitors 2 †Includes both amplifiers and all ESD, bias, and trim circuitry POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 V DD Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±V ID DD Input voltage range, V (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V I DD Input current, I (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA I Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA O Total current into V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA DD+ Total current out of V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA DD– Duration of short-circuit current (at or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, T : TLV2711C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C A TLV2711I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 85°C Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C stg Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DBV package . . . . . . . . . . . . . . . . . . 260°C †Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to VDD–. 2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought below VDD– – 0.3 V. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PPAACCKKAAGGEE TTAA ≤ 2255°CC DDEERRAATTIINNGG FFAACCTTOORR TTAA == 7700°CC TTAA == 8855°CC POWER RATING ABOVE TA = 25°C POWER RATING POWER RATING DBV 150 mW 1.2 mW/°C 96 mW 78 mW recommended operating conditions TLV2711C TLV2711I UUNNIITT MIN MAX MIN MAX Supply voltage, VDD(cid:0)(cid:1)(cid:2)(cid:2)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:8) 2.7 10 2.7 10 V Input voltage range, VI VDD– VDD+ –1.3 VDD– VDD+ –1.3 V Common-mode input voltage, VIC VDD– VDD+ –1.3 VDD– VDD+ –1.3 V Operating free-air temperature, TA 0 70 –40 85 °C NOTE 1: All voltage values, except differential voltages, are with respect to VDD–. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 electrical characteristics at specified free-air temperature, V = 3 V (unless otherwise noted) DD TLV2711C TLV2711I PPAARRAAMMEETTEERR TTEESSTT CCOONNDDIITTIIOONNSS TTAA†† UUNNIITT MIN TYP MAX MIN TYP MAX VIO Input offset voltage 0.4 3 0.4 3 mV Temperature FFuullll rraannggee ααVVIIOO ccooeeffffiicciieenntt ooff iinnppuutt 11 11 µµVV//°°CC offset voltage Input offset voltage long-term drift VVVVDD± ==== ±1111....5555 VVVV,,,, VVVVIC ==== 0000,,,, 25°C 0.003 0.003 µV/mo (see Note 4) VO = 0, RS = 50 Ω 25°C 0.5 60 0.5 60 IIIIOO IInnppuutt ooffffsseett ccuurrrreenntt Full range 150 150 pppAAA 25°C 60 60 IIIIBB IInnppuutt bbiiaass ccuurrrreenntt Full range 1 150 1 150 00 ––00..33 00 ––00..33 222555°CCC ttoo 22 ttoo 22..22 ttoo 22 ttoo 22..22 CCCCoooommmmmmmmoooonnnn----mmmmooooddddeeee iiiinnnnppppuuuutttt VVVVIICCRR ||VVVVIIOO || ≤≤5555 mmmmVVVV,,,, RRRRSS ==== 55550000 ΩΩ VVVV vvoollttaaggee rraannggee 00 00 FFFuuullllll rrraaannngggeee ttoo 11..77 ttoo 11..77 IOH = –100 µA 25°C 2.94 2.94 HHiigghh--lleevveell oouuttppuutt VVOOHH 25°C 2.85 2.85 VV vvoollttaaggee IIOOHH == ––225500 µµAA Full range 2.6 2.6 VIC = 1.5 V, IOL = 50 µA 25°C 15 15 LLooww--lleevveell oouuttppuutt VVOOLL 25°C 150 150 mmVV vvoollttaaggee VVIICC == 11..55 VV,, IIOOLL == 550000 µµAA Full range 500 500 25°C 3 7 3 7 AAAVVDD LLdaaiffrreggreee--nsstiiiggannl aavllo ltage VVVVIIOOCC ==== 1111 ..VV55 ttVVoo,, 22 VV RRLL == 1100 kkΩΩ‡‡ Full range 1 1 VVV///mmmVVV aammpplliiffiiccaattiioonn RL = 1 MΩ‡ 25°C 600 600 Differential input ri(d) resistance 25°C 1012 1012 Ω Common-mode ri(c) input resistance 25°C 1012 1012 Ω Common-mode ci(c) input capacitance f = 10 kHz, 25°C 5 5 pF Closed-loop zo output impedance f = 7 kHz, AV = 1 25°C 200 200 Ω CCMMRRRR CCoommmmoonn--mmooddee VVIICC == 00 ttoo 11..77 VV,, VVOO == 11..55 VV,, 25°C 65 83 65 83 ddBB rejection ratio RS = 50Ω Full range 60 60 Supply voltage 25°C 80 95 80 95 kkSSVVRR rreejjeeccttiioonn rraattiioo VVDDDD == 22..77 VV ttoo 88 VV,, VVIICC == VVDDDD//22 ddBB No load , (∆VDD /∆VIO) Full range 80 80 25°C 11 25 11 25 IIDDDD SSuuppppllyy ccuurrrreenntt VVOO == 11..55 VV,, NNoo llooaadd µµAA Full range 30 30 †Full range for the TLV2711C is 0°C to 70°C. Full range for the TLV2711I is – 40°C to 85°C. ‡Referenced to 1.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 operating characteristics at specified free-air temperature, V = 3 V (unless otherwise noted) DD TLV2711C TLV2711I PPAARRAAMMEETTEERR TTEESSTT CCOONNDDIITTIIOONNSS TTAA†† UUNNIITT MIN TYP MAX MIN TYP MAX 2255°°CC 00..0011 00..002255 00..0011 00..002255 SSSRRR SSSllleeewww rrraaattteee aaattt uuunnniiitttyyy gggaaaiiinnn CVVVCOOLL ===== 1111100...11100 VVVppFF tttooo‡‡ 111...999 VVV,,, RRRLL === 111000 kkkΩΩ‡‡‡,,, FFuullll 00..000055 00..000055 VVV///µsss range EEqquuiivvaalleenntt iinnppuutt nnooiissee f = 10 Hz 25°C 80 80 VVnn nnVV//√√HHzz voltage f = 1 kHz 25°C 22 22 PPeeaakk--ttoo--ppeeaakk eeqquuiivvaalleenntt f = 0.1 Hz to 1 Hz 25°C 660 660 VVNN((PPPP)) nnVV input noise voltage f = 0.1 Hz to 10 Hz 25°C 880 880 Equivalent input noise In current 25°C 0.6 0.6 fA/√Hz GGaaiinn--bbaannddwwiiddtthh pprroodduucctt ff == 1100 kkHHzz,, RRLL == 1100 kkΩΩ‡,, 2255°°CC 5566 5566 kkHHzz CL = 100 pF‡‡ BBOOMM MMbaaanxxdiimmwuuidmmth oouuttppuutt--sswwiinngg VVROOL ((=PP 1PP0)) ==kΩ 11‡‡ VV,,, AACVVL === 111,,00 pF‡‡ 2255°°CC 77 77 kkHHzz Phase margin at φm unity gain RRLL == 1100 kkΩ‡,, CCLL == 110000 ppFF‡ 25°C 56° 56° Gain margin 25°C 20 20 dB †Full range is –40°C to 85°C. ‡Referenced to 1.5 V 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 electrical characteristics at specified free-air temperature, V = 5 V (unless otherwise noted) DD TLV2711C TLV2711I PPAARRAAMMEETTEERR TTEESSTT CCOONNDDIITTIIOONNSS TTAA†† UUNNIITT MIN TYP MAX MIN TYP MAX VIO Input offset voltage 0.45 3 0.45 3 mV Temperature FFuullll rraannggee ααVVIIOO ccooeeffffiicciieenntt ooff iinnppuutt 00..55 00..55 µµVV//°°CC offset voltage Input offset voltage long-term drift VVVVDD± ==== ±2222....5555 VVVV,,,, VVVVIC ==== 0000,,,, 25°C 0.003 0.003 µV/mo (see Note 4) VO = 0, RS = 50 Ω 25°C 0.5 60 0.5 60 IIIIOO IInnppuutt ooffffsseett ccuurrrreenntt ppAA Full range 150 150 25°C 1 60 1 60 IIIIBB IInnppuutt bbiiaass ccuurrrreenntt ppAA Full range 150 150 00 ––00..33 00 ––00..33 222555°CCC CCCCoooommmmmmmmoooonnnn----mmmmooooddddeeee iiiinnnnppppuuuutttt ttoo 44 ttoo 44..22 ttoo 44 ttoo 44..22 VVVVIICCRR vvvooollltttaaagggeee rrraaannngggeee ||VVVVIIOO || ≤≤5555 mmmmVVVV RRRRSS ==== 55550000 ΩΩ VVVV 00 00 FFFuuullllll rrraaannngggeee ttoo 33..55 ttoo 33..55 IOH = –100 µA 25°C 4.95 4.95 HHiigghh--lleevveell oouuttppuutt VVOOHH vvoollttaaggee IIOOHH == ––225500 µµAA 25°C 4.875 4.875 VV Full range 4.6 4.6 VIC = 2.5 V, IOL = 50 µA 25°C 12 12 LLooww--lleevveell oouuttppuutt VVOOLL vvoollttaaggee VVIICC == 22..55 VV,, IIOOLL == 550000 µµAA 25°C 120 120 mmVV Full range 500 500 25°C 6 12 6 12 AAVVDD LLdaaiffrreggreee--nsstiiiggannlaall VVIICC == 22..55 VV,, RRLL == 1100 kkΩΩ‡‡ Full range 3 3 VV//mmVV VVOO == 11 VV ttoo 44 VV vvoollttaaggee aammpplliiffiiccaattiioonn RL = 1 MΩ‡ 25°C 800 800 Differential input ri(d) resistance 25°C 1012 1012 Ω Common-mode ri(c) input resistance 25°C 1012 1012 Ω Common-mode ci(c) input capacitance f = 10 kHz, 25°C 5 5 pF Closed-loop zo output impedance f = 7 kHz, AV = 1 25°C 200 200 Ω CCoommmmoonn--mmooddee VVIICC == 00 ttoo 22..77 VV,, VVOO == 22..55 VV,, 25°C 70 83 70 83 CCMMRRRR rreejjeeccttiioonn rraattiioo RRS == 5500Ω Full range 70 70 ddBB Supply voltage 25°C 80 95 80 95 VVDDDD == 44..44 VV ttoo 88 VV,, VVIICC == VVDDDD//22,, kkSSVVRR rreejjeeccttiioonn rraattiioo NNoo llooaadd ddBB (∆VDD /∆VIO) Full range 80 80 25°C 13 25 13 25 IIDDDD SSuuppppllyy ccuurrrreenntt VVOO == 22..55 VV,, NNoo llooaadd µµAA Full range 30 30 †Full range for the TLV2711C is 0°C to 70°C. Full range for the TLV2711I is – 40°C to 85°C. ‡Referenced to 1.5 V NOTE 5: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 operating characteristics at specified free-air temperature, V = 5 V (unless otherwise noted) DD TLV2711C TLV2711I PPAARRAAMMEETTEERR TTEESSTT CCOONNDDIITTIIOONNSS TTAA†† UUNNIITT MIN TYP MAX MIN TYP MAX 2255°°CC 00..0011 00..002255 00..0011 00..002255 SSSRRR SSSllleeewww rrraaattteee aaattt uuunnniiitttyyy gggaaaiiinnn CVVVCOOLL ===== 1111100...55500 VVVppFF tttooo‡‡ 333...555 VVV,,, RRRLL === 111000 kkkΩΩ‡‡‡,,, FFuullll 00..000055 00..000055 VVV///µsss range EEqquuiivvaalleenntt iinnppuutt nnooiissee f = 10 Hz 25°C 72 72 VVnn nnVV//√√HHzz voltage f = 1 kHz 25°C 21 21 PPeeaakk--ttoo--ppeeaakk eeqquuiivvaalleenntt f = 0.1 Hz to 1 Hz 25°C 600 600 VVNN((PPPP)) nnVV input noise voltage f = 0.1 Hz to 10 Hz 25°C 800 800 Equivalent input noise In current 25°C 0.6 0.6 fA/√Hz GGaaiinn--bbaannddwwiiddtthh pprroodduucctt ff == 1100 kkHHzz,, RRLL == 1100 kkΩΩ‡,, 2255°°CC 6655 6655 kkHHzz CL = 100 pF‡‡ BBOOMM MMbaaanxxdiimmwuuidmmth oouuttppuutt--sswwiinngg VVROOL ((=PP 1PP0)) ==kΩ 22‡‡ VV,,, AACVVL === 111,,00 pF‡‡ 2255°°CC 77 77 kkHHzz Phase margin at φm unity gain RRLL == 1100 kkΩ‡,, CCLL == 110000 ppFF‡ 25°C 60° 60° Gain margin 25°C 22 22 dB †Full range is –40°C to 85°C. ‡Referenced to 1.5 V electrical characteristics at V = 3 V, T = 25°C (unless otherwise noted) DD A TLV2711Y PPAARRAAMMEETTEERR TTEESSTT CCOONNDDIITTIIOONNSS UUNNIITT MIN TYP MAX VIO Input offset voltage 0.47 mV IIO Input offset current VVRRDDSSD D==± 55 ==00 ΩΩ±±11..55 VV,, VVOO == 00,, VVIICC == 00,, 0.5 pA IIB Input bias current 1 pA ––00..33 VVVIICCRR CCCooommmmmmooonnn---mmmooodddeee iiinnnpppuuuttt vvvooollltttaaagggeee rrraaannngggeee || VVVIIOO || ≤≤555 mmmVVV,,, RRRSS === 555000 ΩΩ ttoo 22..22 VVV IOH = –100 µA 2.94 VVOOHH HHiigghh--lleevveell oouuttppuutt vvoollttaaggee VV IOH = –200 µA 2.85 VIC = 0, IOL = 50 µA 15 VVOOLL LLooww--lleevveell oouuttppuutt vvoollttaaggee mmVV VIC = 0, IOL = 500 µA 150 LLaarrggee--ssiiggnnaall ddiiffffeerreennttiiaall RL = 10 kΩ† 7 AAVVDD voltage amplification VVIICC == 11..55 VV,, VVOO == 11 VV ttoo 22 VV RL = 1 MΩ† 600 VV//mmVV ri(d) Differential input resistance 1012 Ω ri(c) Common-mode input resistance 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz 5 pF zo Closed-loop output impedance f = 7 kHz, AV = 1 200 Ω CMRR Common-mode rejection ratio VIC = 0 to 1.7 V, VO = 1.5 V, RS = 50 Ω 83 dB SSuuppppllyy vvoollttaaggee rreejjeeccttiioonn rraattiioo kkSSVVRR (∆VDD/∆VIO) VVDDDD == 22..77 VV ttoo 88 VV,, VVIICC == VVDDDD//22,, NNoo llooaadd 9955 ddBB IDD Supply current VO = 1.5 V, No load 11 µA †Referenced to 1.5 V 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 electrical characteristics at V = 5 V, T = 25°C (unless otherwise noted) DD A TLV2711Y PPAARRAAMMEETTEERR TTEESSTT CCOONNDDIITTIIOONNSS UUNNIITT MIN TYP MAX VIO Input offset voltage 0.45 mV IIO Input offset current VVRRDDSSD D==±± 55 ==00 ΩΩ±±22..55 VV,, VVIICC == 00,, VVOO == 00,, 0.5 pA IIB Input bias current 1 pA ––00..33 VVVIICCRR CCCooommmmmmooonnn---mmmooodddeee iiinnnpppuuuttt vvvooollltttaaagggeee rrraaannngggeee || VVVIIOO || ≤≤555 mmmVVV,,, RRRSS === 555000 ΩΩ ttoo 44..22 VVV IOH = –100 µA 4.95 VVOOHH HHiigghh--lleevveell oouuttppuutt vvoollttaaggee VV IOH = –250 µA 4.875 VIC = 2.5 V, IOL = 50 µA 12 VVOOLL LLooww--lleevveell oouuttppuutt vvoollttaaggee mmVV VIC = 2.5 V, IOL = 500 µA 120 LLaarrggee--ssiiggnnaall ddiiffffeerreennttiiaall RL = 10 kΩ† 12 AAVVDD voltage amplification VVIICC == 22..55 VV,, VVOO == 11 VV ttoo 44 VV RL = 1 MΩ† 800 VV//mmVV ri(d) Differential input resistance 1012 Ω ri(c) Common-mode input resistance 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz 5 pF zo Closed-loop output impedance f = 7 kHz, AV = 1 200 Ω CMRR Common-mode rejection ratio VIC = 0 to 2.7 V, VO = 2.5 V, RS = 50 Ω 83 dB SSuuppppllyy vvoollttaaggee rreejjeeccttiioonn rraattiioo kkSSVVRR (∆VDD/∆VIO) VVDDDD == 44..44 VV ttoo 88 VV,, VVIICC == VVDDDD//22,, NNoo llooaadd 9955 ddBB IDD Supply current VO = 2.5 V, No load 13 µA †Referenced to 1.5 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS Table of Graphs FIGURE Distribution 2, 3 VIO Input offset voltage vs Common-mode input voltage 4, 5 αVIO Input offset voltage temperature coefficient Distribution 6, 7 IIB/IIO Input bias and input offset currents vs Free-air temperature 8 vs Supply voltage 9 VI Input voltage vs Free-air temperature 10 VOH High-level output voltage vs High-level output current 11, 14 VOL Low-level output voltage vs Low-level output current 12, 13, 15 VO(PP) Maximum peak-to-peak output voltage vs Frequency 16 vs Supply voltage 17 IOS Short-circuit output current vs Free-air temperature 18 VO Output voltage vs Differential input voltage 19, 20 vs Load resistance 21 Large-signal differential voltage amplification AVD vs Frequency 22, 23 and phase margin vs Free-air temperature 24, 25 zo Output impedance vs Frequency 26, 27 vs Frequency 28 CMRR Common-mode rejection ratio vs Free-air temperature 29 vs Frequency 30, 31 kSVR Supply-voltage rejection ratio vs Free-air temperature 32 IDD Supply current vs Supply voltage 33 vs Load capacitance 34 SR Slew rate vs Free-air temperature 35 Large-signal pulse response 36, 37, 38, 39 VVOO Inverting small-signal pulse response vvss TTiimmee 40, 41 Small-signal pulse response 42, 43 Vn Equivalent input noise voltage vs Frequency 44, 45 Noise voltage (referred to input) Over a 10-second period 46 THD + N Total harmonic distortion plus noise vs Frequency 47 vs Free-air temperature 48 Gain-bandwidth product vs Supply voltage 49 vs Frequency 23, 24 φm Phase margin vs Load capacitance 50 Gain margin vs Load capacitance 51 B1 Unity-gain bandwidth vs Load capacitance 52 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2711 DISTRIBUTION OF TLV2711 INPUT OFFSET VOLTAGE INPUT OFFSET VOLTAGE 25 25 546 Amplifiers From 1 Wafer Lot 376 Amplifiers From 1 Wafer Lot 20 VTAD D= =25 ±°C1.5 V 20 VTAD D= =25 ±°C2.5 V % % – – s s r r e e plifi 15 plifi 15 m m A A of of ge 10 ge 10 a a nt nt e e c c e e r r P 5 P 5 0 0 –1.3 –0.9 –0.5 –0.1 0.3 0.7 1.1 1.5 –1.3 –0.9 –0.5 –0.1 0.3 0.7 1.1 1.3 VIO – Input Offset Voltage – mV VIO – Input Offset Voltage – mV Figure 2 Figure 3 INPUT OFFSET VOLTAGE† INPUT OFFSET VOLTAGE† vs vs COMMON-MODE INPUT VOLTAGE COMMON-MODE INPUT VOLTAGE 1 1 VDD = 3 V VDD = 5 V 0.8 RS = 50 Ω 0.8 RS = 50 Ω TA = 25°C TA = 25°C V 0.6 0.6 m V m ge – 0.4 e – 0.4 a g Volt 0.2 olta 0.2 set 0 et V 0 put Off –0.2 ut Offs –0.2 Á– InOÁ–0.4 Á– InpÁ–0.4 ÁVIÁ–0.6 ÁVIOÁ–0.6 ÁÁ –0.8 –0.8 –1 –1 –1 0 1 2 3 –1 0 1 2 3 4 5 VIC – Common-Mode Input Voltage – V VIC – Common-Mode Input Voltage – V Figure 4 Figure 5 †For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2711 INPUT OFFSET DISTRIBUTION OF TLV2711 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT VOLTAGE TEMPERATURE COEFFICIENT 50 50 32 Amplifiers From 1 Wafer Lot 32 Amplifiers From 1 Wafer Lot VDD = ±1.5 V VDD = ±2.5 V P Package P Package % 40 TA = 25°C % 40 TA = 25°C – – s s r r e e plifi 30 plifi 30 m m A A of of ge 20 ge 20 a a nt nt e e c c r r e e P 10 P 10 0 0 –3 –2 –1 0 1 2 3 –3 –2 –1 0 1 2 3 αVIO – Temperature Coefficient – µV/°C αVIO – Temperature Coefficient – µV/°C Figure 6 Figure 7 INPUT BIAS AND INPUT OFFSET CURRENTS† INPUT VOLTAGE vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE A p 100 5 s – VDD± = ±2.5 V RS = 50 Ω ent 90 VIC = 0 4 TA = 25°C Curr 80 RVOS == 500 Ω 3 et Offs 70 – V 2 ut 60 e 1 p g n a ut Bias and I 354000 ÁÁ– Input Volt ––120 | VIO | ≤5 mV np IIB ÁÁVI – I 20 –3 O O IIO d IIII 10 –4 n a B B 0 –5 IIII 25 45 65 85 105 125 1 1.5 2 2.5 3 3.5 4 TA – Free-Air Temperature – °C | VDD± | – Supply Voltage – V Figure 8 Figure 9 †Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS INPUT VOLTAGE†‡ HIGH-LEVEL OUTPUT VOLTAGE†‡ vs vs FREE-AIR TEMPERATURE HIGH-LEVEL OUTPUT CURRENT 5 3 VDD = 5 V VDD = 3 V 4 2.5 V e – TA = –40°C V 3 ag 2 e – Volt TA = 25°C put Voltag 2 | VIO | ≤5 mV el Output 1.5 TA = 85°C n v – I 1 Le 1 ÁVIÁ gh- TA = 125°C ÁHiÁ 0 – 0.5 ÁHÁ O V ÁÁ –1 0 –55 –35 –15 5 25 45 65 85 105 125 0 200 400 600 800 TA – Free-Air Temperature – °C | IOH | – High-Level Output Current – µA Figure 10 Figure 11 LOW-LEVEL OUTPUT VOLTAGE‡ LOW-LEVEL OUTPUT VOLTAGE†‡ vs vs LOW-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT CURRENT 1.2 1.4 VTAD D= =25 3° CV VVDICD = = 1 3.5 V V 1.2 1 V e – V VIC = 0 VIC = 0.75 V ge – TA = 125°C g a 1 olta 0.8 Volt TA = 85°C ut V put 0.8 utp 0.6 Out TA = 25°C el O VIC = 1.5 V vel 0.6 v e ow-Le 0.4 ÁLow-LÁ0.4 Á– LLÁ0.2 Á– OLÁ TA = –40°C O V 0.2 ÁVÁ ÁÁ 0 0 0 1 2 3 4 5 0 1 2 3 4 5 IOL – Low-Level Output Current – mA IOL – Low-Level Output Current – mA Figure 12 Figure 13 †Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS HIGH-LEVEL OUTPUT VOLTAGE†‡ LOW-LEVEL OUTPUT VOLTAGE†‡ vs vs HIGH-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT CURRENT 5 1.4 TA = 125°C VDD = 5 V VIC = 2.5 V 1.2 V utput Voltage – 34 TATTAA = ==– 428055°°°CCC put Voltage – V 0.18 TA =TA T2A 5= ° =C1 2855°°CC O ut evel 2 el O 0.6 L v h- Le Hig ow- 0.4 TA = –40°C – L ÁÁH 1 ÁÁ– Á ÁÁVO VDD = 5 V ÁÁOLÁ0.2 VIC = 2.5 V V 0 0 0 200 400 600 800 1000 0 1 2 3 4 5 6 | IOH | – High-Level Output Current – µA IOL – Low-Level Output Current – mA Figure 14 Figure 15 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE‡ SHORT-CIRCUIT OUTPUT CURRENT vs vs FREQUENCY SUPPLY VOLTAGE V 5 16 age – VDD = 5 V A 14 VVOIC == VVDDDD//22 Volt 4 – m TA = 25°C VID = –100 mV ut nt 12 p e ut rr O u 10 ak-to-Peak 3 VDD = 3 V uit Output C 68 e 2 c P r m Ci 4 mu ort- Maxi 1 – Sh 2 Á– PP)Á RTAI == 1205 °kCΩ IOS 0 VID = 100 mV ÁO(Á0 –2 V ÁÁ 102 103 104 2 3 4 5 6 7 8 f – Frequency – Hz VDD – Supply Voltage – V Figure 16 Figure 17 †Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT†‡ OUTPUT VOLTAGE‡ vs vs FREE-AIR TEMPERATURE DIFFERENTIAL INPUT VOLTAGE 14 3 VDD = 5 V VDD = 3 V – mA 12 VVOIC == 22..55 VV 2.5 RVIIC = =1 01 .k5Ω V rent 10 VID = –100 mV V TA = 25°C ut Cur 8 age – 2 utp Volt cuit O 6 utput 1.5 rt-Cir 4 – OO 1 ho 2 V S – OS 0 VID = 100 mV 0.5 I –2 0 –75 –50 –25 0 25 50 75 100 125 –1000 –750 –500 –250 0 250 500 750 1000 TA – Free-Air Temperature – °C VID – Differential Input Voltage – µV Figure 18 Figure 19 OUTPUT VOLTAGE‡ DIFFERENTIAL VOLTAGE AMPLIFICATION‡ vs vs DIFFERENTIAL INPUT VOLTAGE LOAD RESISTANCE 5 103 VVDICD = = 2 5.5 V V V/mV VTAO (=P 2P5) °=C 2 V RL = 10 kΩ – 4 TA = 25°C on age – V 3 mplificati 102 VDD = 5 V Volt e A utput 2 Voltag – OO ntial 101 VDD = 3 V V re e 1 Diff – ÁDÁ V ÁAÁ 0 1 –1000 –750 –500 –250 0 250 500 750 1000 0.1 1 101 102 103 VID – Differential Input Voltage – µV RL – Load Resistance – kΩ Figure 20 Figure 21 †Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN† vs FREQUENCY 40 90° VDD = 3 V RL = 10 kΩ 30 CL= 100 pF al TA = 25°C nti dB 20 45° al Differe cation – 10 Phase Margin Margin e-Sign Amplifi 0 0° Phase rg e –10 Gain – La ag m m ÁÁD – DVolt –20 –45°φo ÁÁAVAV –30 –40 –90° 103 104 105 106 f – Frequency – Hz Figure 22 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN† vs FREQUENCY 40 90° VDD = 5 V RL= 10 kΩ 30 CL= 100 pF al TA = 25°C nti dB 20 45° al Differe cation – 10 Phase Margin Margin e-Sign Amplifi 0 Gain 0° Phase Larg age –10 m – m ÁÁD – DVolt –20 –45° φo VV ÁÁAA –30 –40 –90° 103 104 105 106 f – Frequency – Hz Figure 23 †For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION†‡ VOLTAGE AMPLIFICATION†‡ vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 103 104 VDD = 5 V RL = 1 MΩ VIC = 2.5 V Voltage Voltage 103 VO = 1 V to 4 V Differential n – V/mV102 Differential n – V/mV 102 RL = 1 MΩ – Large-Signal Amplificatio101 VDD = 3 V RL = 10 kΩ – Large-Signal Amplificatio 101 RL = 10 kΩ VD VIC = 1.5 V VD A VO = 0.5 V to 2.5 V A 1 1 –75 –50 –25 0 25 50 75 100 125 –75 –50 –25 0 25 50 75 100 125 TA – Free-Air Temperature – °C TA – Free-Air Temperature – °C Figure 24 Figure 25 OUTPUT IMPEDANCE‡ OUTPUT IMPEDANCE‡ vs vs FREQUENCY FREQUENCY 103 103 VDD = 3 V VDD = 5 V TA = 25°C TA = 25°C Ωnce – 102 AV = 100 Ωnce – 102 AV = 100 da da pe pe m m Output I 101 AV = 10 Output I 101 AV = 10 – – o o z z AV = 1 AV = 1 1 1 101 102 103 104 101 102 103 104 f– Frequency – Hz f– Frequency – Hz Figure 26 Figure 27 †Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS COMMON-MODE REJECTION RATIO† COMMON-MODE REJECTION RATIO†‡ vs vs FREQUENCY FREE-AIR TEMPERATURE 100 88 B TA = 25°C B o – d VVDOD = =2 .55 VV o – d ati 80 ati 86 R R n n o o cti cti VDD = 5 V eje 60 VDD = 3 V eje 84 R VO = 1.5 V R e e od od VDD = 3 V M M n- 40 n- 82 o o m m m m o o C C – 20 – 80 R R R M M M C C 0 78 101 102 103 104 105 – 75 – 50 – 25 0 25 50 75 100 125 f – Frequency – Hz TA – Free-Air Temperature – °C Figure 28 Figure 29 SUPPLY-VOLTAGE REJECTION RATIO† SUPPLY-VOLTAGE REJECTION RATIO† vs vs FREQUENCY FREQUENCY 100 100 dB VTAD D= =25 3° CV dB kSVR+ VTAD D= =25 5° CV o – 80 o – 80 Rati kSVR+ Rati ge Rejection 6400 ge Rejection 6400 kSVR– Volta kSVR– Volta ply- 20 ply- 20 p p u u S S Á– 0 ÁÁ– 0 R R ÁSV ÁÁSV k k –20 ÁÁ –20 101 102 103 104 105 106 101 102 103 104 105 106 f – Frequency – Hz f – Frequency – Hz Figure 30 Figure 31 †For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. ‡Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS SUPPLY-VOLTAGE REJECTION RATIO† SUPPLY CURRENT† vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 100 30 B VDD = 2.7 V to 8 V VO = VDD/2 – d VIC = VO = VDD /2 VIC = VDD/2 o 25 No Load ati 98 R A ection 96 µent – 20 TA = –40°C Rej urr TA = 25°C ge y C 15 upply-Volta 94 ÁÁ– SupplDDÁÁ10 TA = 85°C Á– SÁ92 ÁIÁ R 5 ÁVÁ S k ÁÁ 90 0 –75 –50 –25 0 25 50 75 100 125 0 2 4 6 8 10 TA – Free-Air Temperature – °C VDD – Supply Voltage – V Figure 32 Figure 33 SLEW RATE‡ SLEW RATE†‡ vs vs LOAD CAPACITANCE FREE-AIR TEMPERATURE 0.040 0.050 VDD = 5 V VDD = 5 V AV = –1 RL = 10 kΩ 0.035 TA = 25°C SR– CL = 100 pF 0.040 AV = 1 0.030 s s µ µ SR– V/ V/ ate – 0.025 SR+ ate – 0.030 R 0.020 R w w SR+ e e Sl Sl 0.020 – 0.015 – R R S S 0.010 0.010 0.005 0 0 101 102 103 104 105 –75 –50 –25 0 25 50 75 100 125 CL – Load Capacitance – pF TA – Free-Air Temperature – °C Figure 34 Figure 35 †Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS INVERTING LARGE-SIGNAL PULSE INVERTING LARGE-SIGNAL PULSE RESPONSE† RESPONSE† 3 5 VDD = 3 V VDD = 5 V RL = 10 kΩ RL = 10 kΩ 2.5 CL = 100 pF CL = 100 pF AV = –1 4 AV = –1 TA = 25°C TA = 25°C V V – 2 – e e g g 3 a a Volt 1.5 Volt ut ut utp utp 2 O 1 O – – O O V V 1 0.5 0 0 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 t – Time – µs t – Time – µs Figure 36 Figure 37 VOLTAGE-FOLLOWER LARGE-SIGNAL VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE† PULSE RESPONSE† 5 5 VRDL D= =1 05 kVΩ VCDL D= =1 050 V pF – V 4 CATAVL === 21150°0C pF V 4 ATAV == 215°C TRiLe d= t1o0 20. 5k ΩV e – utput Voltag 3 put Voltage 3 O 2 ut 2 – O O – V O V 1 RL = 10 kΩ RL = 10 kΩ 1 Tied to 2.5 V Tied to 0 V 0 0 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 t – Time – µs t – Time – µs Figure 38 Figure 39 †For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS INVERTING SMALL-SIGNAL INVERTING SMALL-SIGNAL PULSE RESPONSE† PULSE RESPONSE† 0.76 2.58 VDD = 3 V VDD = 5 V RL = 10 kΩ RL = 10 kΩ 074 CL = 100 pF 2.56 CL = 100 pF AV = –1 AV = –1 – V TA = 25°C V 2.54 TA = 25°C e 0.72 – Output Voltag 0.7 utput Voltage 22.5.52 – O V O 0.68 O – O 2.48 VV 0.66 2.46 0.64 2.44 0 10 20 30 40 50 0 10 20 30 40 50 t – Time – µs t – Time – µs Figure 40 Figure 41 VOLTAGE-FOLLOWER SMALL-SIGNAL VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE† PULSE RESPONSE† 0.76 2.58 VDD = 3 V VDD = 5 V RL = 10 kΩ RL = 10 kΩ 0.74 CL = 100 pF 2.56 CL = 100 pF AV = 1 AV = 1 V TA = 25°C V 2.54 TA = 25°C – 0.72 – e e g g a a olt olt 2.52 ut V 0.7 ut V p p 2.5 ut ut O O – 0.68 – O O O O 2.48 VV VV 0.66 2.46 0.64 2.44 0 10 20 30 40 50 0 10 20 30 40 50 t – Time – µs t – Time – µs Figure 42 Figure 43 †For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE† EQUIVALENT INPUT NOISE VOLTAGE† vs vs FREQUENCY FREQUENCY 80 80 nV/Hz 70 TVRADS D == =225 03° CΩV nV/Hz 70 TVRADS D == =225 05° CΩV – – e 60 e 60 g g a a Volt 50 Volt 50 e e s s Noi 40 Noi 40 ut ut p p nt In 30 nt In 30 e e val 20 val 20 ui ui q q E E – 10 – 10 n n V V 0 0 101 102 103 104 101 102 103 104 f – Frequency – Hz f – Frequency – Hz Figure 44 Figure 45 TOTAL HARMONIC DISTORTION PLUS NOISE† INPUT NOISE VOLTAGE OVER vs A 10-SECOND PERIOD† FREQUENCY 1000 % 10 VDD = 5 V e – VDD = 10 V 750 fT A= 0=. 12 5H°zC to 10 Hz Nois RVILC = = 1 20. 5k ΩV us TA = 25°C 500 Pl n V o AV = 100 – n 250 orti 1 e st ag Di Volt 0 nic e mo AV = 10 ois –250 ar N H al 0.1 –500 ot T – N AV = 1 –750 + D –1000 TH 0.01 0 2 4 6 8 10 101 102 103 104 t – Time – s f – Frequency – Hz Figure 46 Figure 47 †For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS GAIN-BANDWIDTH PRODUCT†‡ GAIN-BANDWIDTH PRODUCT vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 80 80 VDD = 5 V RL = 10 kΩ f = 10 kHz CL = 100 pF 75 RL = 10 kΩ 75 TA 25°C Hz CL = 100 pF Hz Product – k 70 Product – k 70 width 65 width 65 Band 60 Band 60 Gain- Gain- 55 55 50 50 –75 –50 –25 0 25 50 75 100 125 0 1 2 3 4 5 6 7 8 TA – Free-Air Temperature – °C VDD – Supply Voltage – V Figure 48 Figure 49 PHASE MARGIN GAIN MARGIN vs vs LOAD CAPACITANCE LOAD CAPACITANCE 75° 25 TA = 25°C Rnull = 1000 Ω 60° 20 Rnull = 500 Ω gin Rnull = 1000 Ω B se Mar 45° gin – d 15 Pha Mar mm – 30° Gain 10 φo 10 kΩ Rnull = 500 Ω 15° VDD+ 5 10 kΩ Rnull VI – Rnull = 0 + CL Rnull = 0 TA = 25°C VDD– 0 0 101 102 103 104 105 101 102 103 104 105 CL – Load Capacitance – pF CL – Load Capacitance – pF Figure 50 Figure 51 †Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS UNITY-GAIN BANDWIDTH vs LOAD CAPACITANCE 80 TA = 25°C 70 z H – k 60 h dt wi 50 d n a B 40 n ai G y- 30 nit U Á– Á 20 1 ÁBÁ 10 0 101 102 103 104 105 106 CL – Load Capacitance – pF Figure 52 APPLICATION INFORMATION driving large capacitive loads The TLV2711 is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 50 and Figure 51 illustrate its ability to drive loads up to 600 pF while maintaining good gain and phase margins (R = 0). null A smaller series resistor (R ) at the output of the device (see Figure 53) improves the gain and phase margins null when driving large capacitive loads. Figure 50 and Figure 51 show the effects of adding series resistances of 500 Ω and 1000 Ω. The addition of this series resistor has two effects: the first is that it adds a zero to the transfer function and the second is that it reduces the frequency of the pole associated with the output load in the transfer function. The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To calculate the improvement in phase margin, equation 1 can be used. ∆φm1(cid:0)tan–1 (cid:1)2 × π × UGBW × Rnull × CL(cid:2) (1) Where: ∆φm1(cid:0)Improvement in phase margin UGBW (cid:0) Unity-gain bandwidth frequency Rnull (cid:0) Output series resistance CL (cid:0) :Load capacitance 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 APPLICATION INFORMATION driving large capacitive loads (continued) The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 52). To use equation 1, UGBW must be approximated from Figure 52. 10 kΩ VDD+ VI 10 kΩ – Rnull + CL VDD–/GND Figure 53. Series-Resistance Circuit driving heavy dc loads The TLV2711 is designed to provide better sinking and sourcing output currents than earlier CMOS rail-to-rail output devices. This device is specified to sink 500 µA and source 250 µA at V = 3 V and V = 5 V at a DD DD maximum quiescent I of 25 µA. This provides a greater than 90% power efficiency. DD When driving heavy dc loads, such as 10 kΩ, the positive edge under slewing conditions can experience some distortion. This condition can be seen in Figure 38. This condition is affected by three factors. (cid:0) Where the load is referenced. When the load is referenced to either rail, this condition does not occur. The distortion occurs only when the output signal swings through the point where the load is referenced. Figure 39 illustrates two 10-kΩ load conditions. The first load condition shows the distortion seen for a 10-kΩ load tied to 2.5 V. The third load condition shows no distortion for a 10-kΩ load tied to 0 V. (cid:0) Load resistance. As the load resistance increases, the distortion seen on the output decreases. Figure 39 illustrates the difference seen on the output for a 10-kΩ load and a 100-kΩ load with both tied to 2.5 V. (cid:0) Input signal edge rate. Faster input edge rates for a step input result in more distortion than with slower input edge rates. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196A – AUGUST 1997 – REVISED MARCH 2001 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using MicrosimParts, the model generation software used with Microsim PSpice. The Boyle macromodel (see Note 6) and subcircuit in Figure 54 are generated using the TLV2711 typical electrical and operating characteristics at T = 25°C. Using this information, output A simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): (cid:0) (cid:0) Maximum positive output voltage swing Unity-gain frequency (cid:0) (cid:0) Maximum negative output voltage swing Common-mode rejection ratio (cid:0) (cid:0) Slew rate Phase margin (cid:0) (cid:0) Quiescent power dissipation DC output resistance (cid:0) (cid:0) Input bias current AC output resistance (cid:0) (cid:0) Open-loop voltage amplification Short-circuit output current limit NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 DLN 3 EGND + VDD+ 92 9 FB RSS ISS + – 90 91 VB RO2 + DLP + – RP + – HLIM VLP VLN IN– 2 10 VC R2 – – + DP J1 J2 – 6 C2 7 IN+ 53 + 1 VLIM 11 12 DC GCM GA – 8 C1 RD1 RD2 60 RO1 VAD + DE – 54 5 VDD– 4 – + VE OUT .SUBCKT TLV2711 1 2 3 4 5 RD1 60 11 106.1E3 C1 11 12 8.86E–12 RD2 60 12 106.1E3 C2 6 7 50.00E–12 R01 8 5 50 DC 5 53 DX R02 7 99 150 DE 54 5 DX RP 3 4 419.2E3 DLP 90 91 DX RSS 10 99 160.0E6 DLN 92 90 DX VAD 60 4 –.5 DP 4 3 DX VB 9 0 DC 0 EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 VC 3 53 DC .55 FB 7 99 POLY (5) VB VC VE VLP VE 54 4 DC .55 + VLN 0 4.29E6 –6E6 6E6 6E6 –6E6 VLIM 7 8 DC 0 GA 6 0 11 12 9.425E–6 VLP 91 0 DC 0.1 GCM 0 6 10 99 1320.2E–12 VLN 0 92 DC 2.6 ISS 3 10 DC 1.250E–6 .MODEL DX D (IS=800.0E–18) HLIM 90 0 VLIM 1K .MODEL JX PJF (IS=500.0E–15 BETA=166E–6 J1 11 2 10 JX + VTO=–.004) J2 12 1 10 JX .ENDS R2 6 9 100.0E3 Figure 54. Boyle Macromodel and Subcircuit PSpice and Parts are trademark of MicroSim Corporation. Macromodels, simulation models, or other models provided by TI, directly or indirectly, are not warranted by TI as fully representing all of the specification and operating characteristics of the semiconductor product to which the model relates. 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TLV2711CDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-1-260C-UNLIM 0 to 70 VAJC & no Sb/Br) TLV2711CDBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-1-260C-UNLIM 0 to 70 VAJC & no Sb/Br) TLV2711CDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS NIPDAU Level-1-260C-UNLIM VAJC & no Sb/Br) TLV2711IDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 VAJI & no Sb/Br) TLV2711IDBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 VAJI & no Sb/Br) TLV2711IDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS NIPDAU Level-1-260C-UNLIM VAJI & no Sb/Br) TLV2711IDBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS NIPDAU Level-1-260C-UNLIM VAJI & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 24-Apr-2020 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TLV2711CDBVR SOT-23 DBV 5 3000 178.0 9.0 3.3 3.2 1.4 4.0 8.0 Q3 TLV2711CDBVT SOT-23 DBV 5 250 178.0 9.0 3.3 3.2 1.4 4.0 8.0 Q3 TLV2711IDBVR SOT-23 DBV 5 3000 178.0 9.0 3.3 3.2 1.4 4.0 8.0 Q3 TLV2711IDBVT SOT-23 DBV 5 250 178.0 9.0 3.3 3.2 1.4 4.0 8.0 Q3 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 24-Apr-2020 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TLV2711CDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TLV2711CDBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TLV2711IDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TLV2711IDBVT SOT-23 DBV 5 250 180.0 180.0 18.0 PackMaterials-Page2

PACKAGE OUTLINE DBV0005A SOT-23 - 1.45 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR C 3.0 2.6 0.1 C 1.75 1.45 1.45 B A 0.90 PIN 1 INDEX AREA 1 5 2X 0.95 3.05 2.75 1.9 1.9 2 4 3 0.5 5X 0.3 0.15 0.2 C A B (1.1) TYP 0.00 0.25 GAGE PLANE 0.22 TYP 0.08 8 TYP 0.6 0 0.3 TYP SEATING PLANE 4214839/E 09/2019 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Refernce JEDEC MO-178. 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. www.ti.com

EXAMPLE BOARD LAYOUT DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM (1.9) 2 2X (0.95) 3 4 (R0.05) TYP (2.6) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:15X SOLDER MASK SOLDER MASK METAL UNDER METAL OPENING OPENING SOLDER MASK EXPOSED METAL EXPOSED METAL 0.07 MAX 0.07 MIN ARROUND ARROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4214839/E 09/2019 NOTES: (continued) 5. Publication IPC-7351 may have alternate designs. 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM 2 (1.9) 2X(0.95) 3 4 (R0.05) TYP (2.6) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:15X 4214839/E 09/2019 NOTES: (continued) 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 8. Board assembly site may have different recommendations for stencil design. www.ti.com

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated