图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: OPA211AIDR
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

OPA211AIDR产品简介:

ICGOO电子元器件商城为您提供OPA211AIDR由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 OPA211AIDR价格参考¥45.88-¥66.16。Texas InstrumentsOPA211AIDR封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 1 电路 满摆幅 8-SOIC。您可以下载OPA211AIDR参考资料、Datasheet数据手册功能说明书,资料中有OPA211AIDR 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)半导体

描述

IC OPAMP GP 80MHZ RRO 8SOIC运算放大器 - 运放 1.1nV/rtHz Noise Lo Pwr Prec Op Amp

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Texas Instruments

产品手册

http://www.ti.com/litv/sbos377g

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,运算放大器 - 运放,Texas Instruments OPA211AIDR-

数据手册

点击此处下载产品Datasheet

产品型号

OPA211AIDR

PCN设计/规格

点击此处下载产品Datasheet

产品目录页面

点击此处下载产品Datasheet

产品种类

运算放大器 - 运放

供应商器件封装

8-SOIC

共模抑制比—最小值

113 dB

关闭

Shutdown

其它名称

296-22634-2

包装

带卷 (TR)

单位重量

76 mg

压摆率

27 V/µs

双重电源电压

+/- 3 V, +/- 5 V, +/- 9 V

商标

Texas Instruments

增益带宽生成

80 MHz

增益带宽积

80MHz

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

8-SOIC(0.154",3.90mm 宽)

封装/箱体

SOIC-8

工作温度

-40°C ~ 125°C

工作电源电压

4.5 V to 36 V, +/- 2.25 V to +/- 18 V

工厂包装数量

2500

技术

SiGe Bipolar

放大器类型

通用

最大双重电源电压

+/- 18 V

最大工作温度

+ 125 C

最小双重电源电压

+/- 2.25 V

最小工作温度

- 40 C

标准包装

2,500

电压-电源,单/双 (±)

4.5 V ~ 36 V, ±2.25 V ~ 18 V

电压-输入失调

30µV

电流-电源

3.6mA

电流-输入偏置

60nA

电流-输出/通道

30mA

电源电流

6 mA

电路数

1

系列

OPA211

设计资源

http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176

转换速度

27 V/us

输入偏压电流—最大

250 nA

输入参考电压噪声

2 nV

输入补偿电压

260 uV

输出电流

30 mA

输出类型

满摆幅

通道数量

1 Channel

配用

/product-detail/zh/DEM-OPA-SO-1A/296-19589-ND/1014164/product-detail/zh/DEM-OPA-SO-1B/296-19716-ND/1045079

推荐商品

型号:NJM4560D

品牌:NJR Corporation/NJRC

产品名称:集成电路(IC)

获取报价

型号:TL081CP

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:AS358MMTR-G1

品牌:Diodes Incorporated

产品名称:集成电路(IC)

获取报价

型号:TL054CDE4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LTC2057HMS8#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:NCS2372DWR2G

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:AD8665ARJZ-REEL7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:MC34071D

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
OPA211AIDR 相关产品

AD8208WBRMZ-RL

品牌:Analog Devices Inc.

价格:

INA132U/2K5

品牌:Texas Instruments

价格:

5962-8771901EA

品牌:Analog Devices Inc.

价格:

LMH6655MM/NOPB

品牌:Texas Instruments

价格:

OPA1654AIPWR

品牌:Texas Instruments

价格:

AD625ADZ

品牌:Analog Devices Inc.

价格:¥243.89-¥282.28

TLC2254ID

品牌:Texas Instruments

价格:¥7.91-¥17.88

LM7322MAX/NOPB

品牌:Texas Instruments

价格:

PDF Datasheet 数据手册内容提取

Product Order Technical Tools & Support & Folder Now Documents Software Community OPA211,OPA2211 SBOS377L–OCTOBER2006–REVISEDJANUARY2020 OPAx211 1.1-nv/√Hz Noise, Low Power, Precision Operational Amplifiers 1 Features 3 Description • Lowvoltagenoise:1.1nV/√Hzat1kHz The OPAx211 series of precision operational 1 amplifiersachievesverylow 1.1-nV/√Hz noise density • Inputvoltagenoise:80nV (0.1to10Hz) PP with a supply current of only 3.6 mA. This series also • THD+N:–136dB(G=1, ƒ =1kHz) offers rail-to-rail output swing, which maximizes • Offsetvoltage:125μV(maximum) dynamicrange. • Offsetvoltagedrift:0.35 μV/°C(typical) The extremely low voltage and low current noise, • Lowsupplycurrent:3.6mA/Ch(typical) high-speed, and wide output swing of the OPAx211 series make these devices an excellent choice as a • Unity-gainstable loopfilteramplifierinPLLapplications. • Gainbandwidthproduct: In precision data acquisition applications, the – 80MHz(G=100) OPAx211 series of operational amplifiers provides – 45MHz(G=1) 700-ns settling time to 16-bit accuracy throughout 10- • Slewrate:27V/μs V output swings. This ac performance, combined with only 125 μV of offset and 0.35 μV/°C of drift over • 16-Bitsettling:700ns temperature, makes the OPAx211 series a great • Widesupplyrange: choice for driving high-precision 16-bit analog-to- – ±2.25to ±18V,4.5Vto36V digital converters (ADCs) or buffering the output of high-resolutiondigital-to-analogconverters(DACs). • Rail-to-railoutput • Outputcurrent:30mA The OPAx211 series is specified over a wide dual- power supply range of ±2.25 to ±18 V, or for single- • SON-8(3mm ×3mm),VSSOP-8,andSOIC-8 supplyoperationfrom4.5to36V. 2 Applications The OPA211 is available in the small SON-8 (3 mm × 3 mm), VSSOP-8, and SOIC-8 packages. The dual • Ultrasoundscanner version OPA2211 is available in a SON-8 (3 mm × 3 • Semiconductortest mm) or an SO-8 PowerPAD™ package. This series • X-raysystems of operational amplifiers is specified from T = –40°C A to+125°C. • Labandfieldinstrumentation • Dataacquisition(DAQ) DeviceInformation(1) • Radar PARTNUMBER PACKAGE BODYSIZE(NOM) • Wirelesscommunicationstest SOIC(8) 4.90mm×3.90mm • Seismicdataacquisition OPA211 SON(8) 3.00mm×3.00mm • DCpowersupply,acsource,electronicload VSSOP(8) 3.00mm×3.00mm • Poweranalyzer SON(8) 3.00mm×3.00mm OPA2211 • Sourcemeasurementunit(SMU) SOPowerPAD(8) 4.90mm×3.90mm (1) Forallavailablepackages,seethepackageoptionaddendum attheendofthedatasheet. InputVoltageNoiseDensityvsFrequency 100 )Hz √ V/ Density (n 10 Noise Voltage 1 0.1 1 10 100 1k 10k 100k Frequency (Hz) 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

OPA211,OPA2211 SBOS377L–OCTOBER2006–REVISEDJANUARY2020 www.ti.com Table of Contents 1 Features.................................................................. 1 7.4 DeviceFunctionalModes........................................21 2 Applications........................................................... 1 8 ApplicationandImplementation........................ 22 3 Description............................................................. 1 8.1 ApplicationInformation............................................22 4 RevisionHistory..................................................... 2 8.2 TypicalApplication .................................................27 5 PinConfigurationandFunctions......................... 4 9 PowerSupplyRecommendations...................... 28 6 Specifications......................................................... 6 10 Layout................................................................... 28 6.1 AbsoluteMaximumRatings......................................6 10.1 LayoutGuidelines.................................................28 6.2 ESDRatings..............................................................6 10.2 LayoutExample....................................................29 6.3 RecommendedOperatingConditions.......................6 11 DeviceandDocumentationSupport................. 30 6.4 ThermalInformation:OPA211andOPA211A..........7 11.1 DeviceSupport......................................................30 6.5 ThermalInformation:OPA2211andOPA2211A......7 11.2 DocumentationSupport........................................30 6.6 ElectricalCharacteristics:StandardGrade 11.3 RelatedLinks........................................................31 OPAx211A.................................................................8 11.4 ReceivingNotificationofDocumentationUpdates31 6.7 ElectricalCharacteristics:High-GradeOPAx211....10 11.5 SupportResources...............................................31 6.8 TypicalCharacteristics............................................12 11.6 Trademarks...........................................................31 7 DetailedDescription............................................ 19 11.7 ElectrostaticDischargeCaution............................31 7.1 Overview.................................................................19 11.8 Glossary................................................................31 7.2 FunctionalBlockDiagram.......................................19 12 Mechanical,Packaging,andOrderable 7.3 FeatureDescription.................................................19 Information........................................................... 31 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionK(September2018)toRevisionL Page • DeletedNOMvaluefromsupplyvoltageintheRecommendedOperatingConditionstable................................................ 6 • ChangedoperatingtemperaturetospecifiedtemperatureinRecommendedOperatingConditonstable,and changedMINandMAXfrom–55°Cand+150°Cto–40°Cand+125°C,respectively.......................................................... 6 • Changedelectricalcharacteristicstabletitlestoclarifydifferencebetweenstandardandhigh-gradedevices.....................8 ChangesfromRevisionJ(February2018)toRevisionK Page • ChangedformatofGPNfrom"OPA2x11"to"OPAx211"...................................................................................................... 1 • Correctedsystem-generatederrors:"Time"unitsfrom"ms/div"backto"µs/div"andunitforresistorsfrom"W"back to"Ω"inTypicalCharacteristics .......................................................................................................................................... 12 • Correctedsystem-generatederrorinunitforresistorsfrom"W"backto"Ω"inFigure43 ................................................. 21 • RevertedFigure51backtothatofrev.I ............................................................................................................................. 29 ChangesfromRevisionI(June2016)toRevisionJ Page • Changedproductstatusfrommixedproductstatustoproductiondata ................................................................................ 1 • DeletedDeviceComparisontable ......................................................................................................................................... 4 • ChangedformattingofdocumentreferenceinEMIRejectionsection................................................................................. 24 • ChangedformattingofdocumentreferencesinSONLayoutGuidelinessection................................................................ 29 • ChangedformattingofdocumentreferencesinRelatedDocumentationsection................................................................ 30 ChangesfromRevisionH(November2015)toRevisionI Page • ChangedtheSONpinnumberforV+from4to7inthePinFunctions:OPA211table ....................................................... 4 • ChangedtheSONpinnumberforV-From:7To:4inthePinFunctions:OPA211table .................................................... 4 2 SubmitDocumentationFeedback Copyright©2006–2020,TexasInstrumentsIncorporated ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 www.ti.com SBOS377L–OCTOBER2006–REVISEDJANUARY2020 ChangesfromRevisionG(May2009)toRevisionH Page • AddedESDRatingstable,FeatureDescriptionsection,DeviceFunctionalModes,ApplicationandImplementation section,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentationSupportsection,and Mechanical,Packaging,andOrderableInformationsection ................................................................................................. 1 Copyright©2006–2020,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 SBOS377L–OCTOBER2006–REVISEDJANUARY2020 www.ti.com 5 Pin Configuration and Functions OPA211DPackage OPA211DGKPackage 8-PinSOIC 8-PinVSSOP TopView TopView NC 1 8 NC NC 1 8 Shutdown –IN 2 7 V+ –IN 2 7 V+ +IN 3 6 OUT +IN 3 6 OUT V– 4 5 NC V– 4 5 NC OPA211DRGPackage 8-PinSONWithExposedThermalPad TopView NC 1 8 Shutdown –IN 2 7 V+ +IN 3 6 OUT V– 4 5 NC PinFunctions:OPA211 PIN I/O DESCRIPTION NAME NO. +IN 3 I Noninvertinginput –IN 2 I Invertinginput Nointernalconnection.Thispincanbeleftfloatingorconnectedtoanyvoltagebetween NC 1,5 — (V–)and(V+). OUT 6 O Output Shutdown,activehigh Theshutdownfunctionisasfollows: Shutdown 8 I Deviceenabled:(V–)≤V ≤(V+)–3V SHUTDOWN Devicedisabled:V ≥(V+)–0.35V SHUTDOWN V+ 7 I Positivepowersupply V– 4 I Negativepowersupply Exposedthermaldiepadonunderside;connectthermaldiepadtoV–.Solderingthe Thermalpad — — thermalpadtotheprintedcircuitboardisrequiredandimprovesheatdissipationand providesspecifiedperformance. 4 SubmitDocumentationFeedback Copyright©2006–2020,TexasInstrumentsIncorporated ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 www.ti.com SBOS377L–OCTOBER2006–REVISEDJANUARY2020 OPA2211DRGPackage OPA2211DDAPackage 8-PinSONWithExposedThermalPad 8-PinSOPowerPADWithExposedThermalPad TopView TopView OUTA 1 8 V+ OUTA 1 8 V+ –INA 2 7 OUTB –INA 2 A 7 OUTB A +INA 3 6 –IN B +INA 3 B 6 –IN B B V– 4 5 +IN B V– 4 5 +IN B PinFunctions:OPA2211 PIN I/O DESCRIPTION NAME NO. +INA 3 I NoninvertinginputchannelA –INA 2 I InvertinginputchannelA +INB 5 I NoninvertinginputchannelB –INB 6 I InvertinginputchannelB OUTA 1 O OutputchannelA OUTB 7 O OutputchannelB V+ 8 I Positivepowersupply V– 4 I Negativepowersupply Exposedthermaldiepadonunderside;connectthermaldiepadtoV–.Solderingthethermal Thermalpad — — padimprovesheatdissipationandprovidesspecifiedperformance. Copyright©2006–2020,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 SBOS377L–OCTOBER2006–REVISEDJANUARY2020 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings overoperatingfree-airtemperature(unlessotherwisenoted)(1) MIN MAX UNIT V Supplyvoltage,V =(V+)–(V–) 40 V S S Inputvoltage (V–)–0.5 (V+)+0.5 V Inputcurrent(anypinexceptpower-supplypins) ±10 mA Outputshort-circuit(2) Continuous T Operatingtemperature –55 150 °C A T Junctiontemperature 200 °C J T Storagetemperature –65 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) Short-circuittoV /2(groundinsymmetricaldual-supplysetups),oneamplifierperpackage. S 6.2 ESD Ratings VALUE UNIT Electrostatic Humanbodymodel(HBM),perANSI/ESDA/JEDECJS-001,allpins(1) 3000 V V (ESD) discharge Charged-devicemodel(CDM),perJEDECspecificationJESD22-C101,allpins(2) 1000 V (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 6.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN NOM MAX UNIT V Supplyvoltage,V =(V+)–(V–) 4.5(±2.25) 36(±18) V S S T Specifiedtemperature –40 25 125 °C A 6 SubmitDocumentationFeedback Copyright©2006–2020,TexasInstrumentsIncorporated ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 www.ti.com SBOS377L–OCTOBER2006–REVISEDJANUARY2020 6.4 Thermal Information: OPA211 and OPA211A OPA211,OPA211A THERMALMETRIC(1) D(SOIC) DRG(SON) DGK UNIT (VSSOP) 8PINS 8PINS 8PINS R Junction-to-ambientthermalresistance,high-Kboard 122.2 125 184.9 °C/W θJA R Junction-to-case(top)thermalresistance 62.5 N/A 71.2 °C/W θJC(top) R Junction-to-boardthermalresistance 64.3 28.8 104.9 °C/W θJB ψ Junction-to-topcharacterizationparameter 14.2 3 11.5 °C/W JT ψ Junction-to-boardcharacterizationparameter 63.6 25 103.4 °C/W JB R Junction-to-case(bottom)thermalresistance N/A 19.1 N/A °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report. 6.5 Thermal Information: OPA2211 and OPA2211A OPA2211,OPA2211A THERMALMETRIC(1) DDA DRG(SON) UNIT (SO-PowerPAD) 8PINS 8PINS R Junction-to-ambientthermalresistance,high-Kboard 50.4 125 °C/W θJA R Junction-to-case(top)thermalresistance N/A N/A °C/W θJC(top) R Junction-to-boardthermalresistance 13 28.8 °C/W θJB ψ Junction-to-topcharacterizationparameter 5.2 3 °C/W JT ψ Junction-to-boardcharacterizationparameter 11.7 25 °C/W JB R Junction-to-case(bottom)thermalresistance 1.1 19.1 °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report. Copyright©2006–2020,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 SBOS377L–OCTOBER2006–REVISEDJANUARY2020 www.ti.com 6.6 Electrical Characteristics: Standard Grade OPAx211A atT =25°C,V =±2.25to±18V,R =10kΩconnectedtomidsupply,andV =V =midsupply(unlessotherwisenoted) A S L CM OUT PARAMETER TESTCONDITIONS MIN TYP MAX UNIT OFFSETVOLTAGE OPA211A ±30 ±125 V Inputoffsetvoltage V =±15V μV OS S OPA2211A ±50 ±150 V =±15V, dV /dT Inputoffsetdrift S ±0.35 ±1.5 μV/°C OS T =–40°Cto+125°C A Inputoffsetvoltagevspower TA=25°C 0.1 1 PSRR μV/V supply T =–40°Cto+125°C 3 A INPUTBIASCURRENT V =0V ±60 ±175 CM IB Inputbiascurrent VCM=0V, OPA211A ±200 nA TA=–40°Cto+125°C OPA2211A ±250 V =0V ±25 ±100 CM IOS Inputoffsetcurrent VCM=0V, ±150 nA T =–40°Cto+125°C A NOISE e Inputvoltagenoise ƒ=0.1to10Hz 80 nV n PP ƒ=10Hz 2 Inputvoltagenoisedensity ƒ=100Hz 1.4 nV/√Hz ƒ=1kHz 1.1 ƒ=10Hz 3.2 I Inputcurrentnoisedensity pA/√Hz n ƒ=1kHz 1.7 INPUTVOLTAGE V ≥±5V (V–)+1.8 (V+)–1.4 S V Common-modevoltagerange V CM V <±5V (V–)+2 (V+)–1.4 S V ≥±5V, S (V–)+2V≤V ≤(V+)–2V, 114 120 CM T =–40°Cto+125°C A CMRR Common-moderejectionratio dB V <±5V, S (V–)+2V≤V ≤(V+)–2V, 110 120 CM T =–40°Cto+125°C A INPUTIMPEDANCE Differential 20||8 kΩ||pF Common-mode 10||2 GΩ||pF OPEN-LOOPGAIN (V–)+0.2V≤V ≤(V+)–0.2V, O R =10kΩ, 114 130 L T =–40°Cto+125°C A (V–)+0.6V≤V ≤(V+)–0.6V, O 110 114 R =600Ω L OPA211A: (V–)+0.6V≤V ≤(V+)–0.6V, O 110 I ≤15mA, O A Open-loopvoltagegain T =–40°Cto+125°C dB OL A OPA211A: (V–)+0.6V≤V ≤(V+)–0.6V, O 103 15mA<I ≤30mA, O T =–40°Cto+125°C A OPA2211A: (V–)+0.6V≤V ≤(V+)–0.6V, O 100 I ≤15mA, O T =–40°Cto+125°C A 8 SubmitDocumentationFeedback Copyright©2006–2020,TexasInstrumentsIncorporated ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 www.ti.com SBOS377L–OCTOBER2006–REVISEDJANUARY2020 Electrical Characteristics: Standard Grade OPAx211A (continued) atT =25°C,V =±2.25to±18V,R =10kΩconnectedtomidsupply,andV =V =midsupply(unlessotherwisenoted) A S L CM OUT PARAMETER TESTCONDITIONS MIN TYP MAX UNIT FREQUENCYRESPONSE G=100 80 GBW Gain-bandwidthproduct MHz G=1 45 SR Slewrate 27 V/μs V =±15V, 0.01% 400 S G=–1, tS Settlingtime 10-Vstep, 0.0015% 700 ns C =100pF (16-bit) L Overloadrecoverytime G=–10 500 ns G=1, 0.000015% ƒ=1kHz, THD+N Totalharmonicdistortion+noise VO=3VRMS, –136 dB R =600Ω L OUTPUT R =10kΩ, L A ≥114dB, (V–)+0.2 (V+)–0.2 OL T =–40°Cto+125°C A R =600Ω, V Voltageoutput L (V–)+0.6 (V+)–0.6 V OUT A ≥110dB OL I <15mA, O A ≥110dB, (V–)+0.6 (V+)–0.6 OL T =–40°Cto+125°C A I Short-circuitcurrent +30/–45 mA SC C Capacitiveloaddrive SeeTypicalCharacteristics pF LOAD Z Open-loopoutputimpedance ƒ=1MHz 5 Ω O SHUTDOWN V Devicedisabled(shutdown) (V+)–0.35 Shutdown Shutdownpininputvoltage(1) V Deviceenabled (V+)–3 Shutdownpinleakagecurrent 1 μA Turn-ontime(2) 2 μs Turn-offtime(2) 3 µs Shutdowncurrent Shutdown(disabled) 1 20 µA POWERSUPPLY I =0A 3.6 4.5 OUT IQ Quiescentcurrent(perchannel) IOUT=0A, 6 mA T =–40°Cto+125°C A (1) Whendisabled,theoutputassumesahigh-impedancestate. (2) SeeTypicalCharacteristicscurves(Figure39throughFigure41). Copyright©2006–2020,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 SBOS377L–OCTOBER2006–REVISEDJANUARY2020 www.ti.com 6.7 Electrical Characteristics: High-Grade OPAx211 atT =25°C,V =±2.25to±18V,R =10kΩconnectedtomidsupply,andV =V =midsupply(unlessotherwisenoted) A S L CM OUT PARAMETER TESTCONDITIONS MIN TYP MAX UNIT OFFSETVOLTAGE V Inputoffsetvoltage V =±15V ±20 ±50 μV OS S V =±15V, dV /dT Inputoffsetdrift S ±0.15 ±0.85 μV/°C OS T =–40°Cto+125°C A Inputoffsetvoltagevspower TA=25°C 0.1 0.5 PSRR μV/V supply T =–40°Cto+125°C 3 A INPUTBIASCURRENT V =0V ±50 ±125 CM IB Inputbiascurrent VCM=0V, ±200 nA T =–40°Cto+125°C A V =0V ±20 ±75 CM I Inputoffsetcurrent nA OS T =–40°Cto+125°C ±150 A NOISE e Inputvoltagenoise ƒ=0.1to10Hz 80 nV n PP ƒ=10Hz 2 nV/√Hz Inputvoltagenoisedensity ƒ=100Hz 1.4 ƒ=1kHz 1.1 ƒ=10Hz 3.2 pA/√Hz I Inputcurrentnoisedensity n ƒ=1kHz 1.7 INPUTVOLTAGE V ≥±5V (V–)+1.8 (V+)–1.4 S V Common-modevoltagerange V CM V <±5V (V–)+2 (V+)–1.4 S V ≥±5V, S (V–)+2V≤V ≤(V+)–2V, 114 120 CM T =–40°Cto+125°C A CMRR Common-moderejectionratio dB V <±5V, S (V–)+2V≤V ≤(V+)–2V, 110 120 CM T =–40°Cto+125°C A INPUTIMPEDANCE Differential 20||8 kΩ||pF Common-mode 10||2 GΩ||pF OPEN-LOOPGAIN (V–)+0.2V≤V ≤(V+)–0.2V, O R =10kΩ, 114 130 L T =–40°Cto+125°C, A (V–)+0.6V≤V ≤(V+)–0.6V, O 110 114 R =600Ω L OPA211: AOL Open-loopvoltagegain (V–)+0.6V≤VO≤(V+)–0.6V, 110 dB I ≤15mA, O T =–40°Cto+125°C A OPA211: (V–)+0.6V≤V ≤(V+)–0.6V, O 103 15mA<I ≤30mA, O T =–40°Cto+125°C A 10 SubmitDocumentationFeedback Copyright©2006–2020,TexasInstrumentsIncorporated ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 www.ti.com SBOS377L–OCTOBER2006–REVISEDJANUARY2020 Electrical Characteristics: High-Grade OPAx211 (continued) atT =25°C,V =±2.25to±18V,R =10kΩconnectedtomidsupply,andV =V =midsupply(unlessotherwisenoted) A S L CM OUT PARAMETER TESTCONDITIONS MIN TYP MAX UNIT FREQUENCYRESPONSE G=100 80 GBW Gain-bandwidthproduct MHz G=1 45 SR Slewrate 27 V/μs V =±15V, 0.01% 400 ns S G=–1, tS Settlingtime 10-Vstep, 0.0015% 700 ns C =100pF (16-bit) L Overloadrecoverytime G=–10 500 ns G=1, 0.000015% ƒ=1kHz, THD+N Totalharmonicdistortion+noise VO=3VRMS, –136 dB R =600Ω L OUTPUT R =10kΩ, L A ≥114dB, (V–)+0.2 (V+)–0.2 OL T =–40°Cto+125°C A R =600Ω, V Voltageoutput L (V–)+0.6 (V+)–0.6 V OUT A ≥110dB OL I <15mA, O A ≥110dB, (V–)+0.6 (V+)–0.6 OL T =–40°Cto+125°C A I Short-circuitcurrent +30/–45 mA SC C Capacitiveloaddrive SeeTypicalCharacteristics pF LOAD Z Open-loopoutputimpedance ƒ=1MHz 5 Ω O SHUTDOWN Devicedisabled(shutdown) (V+)–0.35 V Shutdownpininputvoltage(1) V Shutdown Deviceenabled (V+)–3 Shutdownpinleakagecurrent 1 μA Turn-ontime(2) 2 μs Turn-offtime(2) 3 μs Shutdowncurrent Shutdown(disabled) 1 20 μA POWERSUPPLY I =0A 3.6 4.5 OUT Quiescentcurrent IQ (perchannel) IOUT=0A, 6 mA T =–40°Cto+125°C A (1) Whendisabled,theoutputassumesahigh-impedancestate. (2) SeeTypicalCharacteristicscurves(Figure39throughFigure41). Copyright©2006–2020,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 SBOS377L–OCTOBER2006–REVISEDJANUARY2020 www.ti.com 6.8 Typical Characteristics atT =25°C,V =±18V,andR =10kΩ,unlessotherwisenoted. A S L 100 100 )z )z H H Ö Ö V/ A/ n p nsity ( nsity ( De 10 De 10 Noise Noise Voltage Current 1 1 0.1 1 10 100 1k 10k 100k 0.1 1 10 100 1k 10k 100k Frequency (Hz) Frequency (Hz) Figure1.InputVoltageNoiseDensityvsFrequency Figure2.InputCurrentNoiseDensityvsFrequency 0.001 -100 0.1 -60 Noise (%) VRSL== 6±0105 ΩV Total Harm Noise (%) 0.01 -80 Total Harm monic Distortion + 0.0001 VOUTG= = 3 - V1RMS VOUTG= = 3 1 VVROMUGST == 31 1VRMS -120 onic Distortion + N monic Distortion + 0.00.000011 G = 1G = 11 --112000 onic Distortion + N Total Har 0.00001 -140 oise (dB) Total Har 0.00.0000000011 VR1 SLkH== z6± 01S05ig ΩVnal G = -1 --116400 oise (dB) 10 100 1k 10k 20k 0.01 0.1 1 10 100 Frequency (Hz) Output VoltageAmplitude (VRMS) Figure3.THD+NRatiovsFrequency Figure4.THD+NRatiovsOutputVoltageAmplitude 160 140 120 0nV/div SRR (dB) 10800 +PSRR-PSRR 2 P 60 40 20 0 1 10 100 1k 10k 100k 1M 10M 100M Time (1s/div) Frequency (Hz) Figure5.0.1-to10-HzNoise Figure6.Power-SupplyRejectionRatiovsFrequency (ReferredtoInput) 12 SubmitDocumentationFeedback Copyright©2006–2020,TexasInstrumentsIncorporated ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 www.ti.com SBOS377L–OCTOBER2006–REVISEDJANUARY2020 Typical Characteristics (continued) atT =25°C,V =±18V,andR =10kΩ,unlessotherwisenoted. A S L 140 10k 120 1k 100 B) 100 R (d 80 W() R O M 60 Z C 10 40 1 20 0 0.1 10k 100k 1M 10M 100M 10 100 1k 10k 100k 1M 10M 100M Frequency (Hz) Frequency (Hz) Figure7.Common-ModeRejectionRatiovsFrequency Figure8.Open-LoopOutputImpedancevsFrequency 140 180 5 R = 10 kΩ L 120 4 100 135 V) 3 Phase V/ 2 m 300 mV Swing From Rails Gain (dB) 864000 Gain 90 Phase (°) en-Loop Gain ( --1012 200 mV Swing From Rails 20 45 p O -3 0 -4 -20 0 -5 100 1k 10k 100k 1M 10M 100M -75 -50 -25 0 25 50 75 100 125 150 175 200 Frequency (Hz) Temperature (°C) Figure9.GainandPhasevsFrequency Figure10.Open-LoopGainvsTemperature n n o o ati ati ul ul p p o o P P 5.0 2.5 0.0 7.5 5.0 2.5 0.0 7.5 5.0 2.5 0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 2 1 0 8 7 6 5 3 2 1 1 2 3 5 6 7 8 0 1 2 -1 -1 -1 - - - - - - - 1 1 1 Offset Voltage Drift (mV/°C) Offset Voltage (mV) Figure12.OffsetVoltageDriftProductionDistribution Figure11.OffsetVoltageProductionDistribution Copyright©2006–2020,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 SBOS377L–OCTOBER2006–REVISEDJANUARY2020 www.ti.com Typical Characteristics (continued) atT =25°C,V =±18V,andR =10kΩ,unlessotherwisenoted. A S L 200 2000 150 1500 A) ent (n 100 +IB 1000 Curr 50 IOS V) 500 Bias 0 (mOS 0 OS -50 V -500 and I -100 -IB -1000 B I -150 -1500 -200 -2000 -50 -25 0 25 50 75 100 125 150 (V-)+1.0 (V-)+1.5 (V-)+2.0 (V+)-1.5 (V+)-1.0 (V+)-0.5 AmbientTemperature (°C) VCM(V) Figure13.I andI CurrentvsTemperature Figure14.OffsetVoltagevsCommon-ModeVoltage B OS 12 100 20 Typical Units Shown 5Typical Units Shown 10 80 8 60 6 40 V) 4 mhift ( 20 (nA) 200 S S OS -2 IO -20 V -4 -40 -6 -60 -8 -10 -80 -12 -100 0 10 20 30 40 50 60 2.25 4 6 8 10 12 14 16 18 Time (s) V (±V) S Figure15.V Warm-Up Figure16.InputOffsetCurrentvsSupplyVoltage OS 100 150 VS= 36 V 3Typical Units Shown 75 3Typical Units Shown 100 Unit 1 Unit 2 50 50 25 I(nA)OS -250 I(nA)B 0 Unit 3 Common-Mode Range -50 -50 -100 -I -75 B +I B -100 -150 1 5 10 15 20 25 30 35 2.25 4 6 8 10 12 14 16 18 V (V) V (±V) CM S Figure17.InputOffsetCurrentvsCommon-ModeVoltage Figure18.InputBiasCurrentvsSupplyVoltage 14 SubmitDocumentationFeedback Copyright©2006–2020,TexasInstrumentsIncorporated ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 www.ti.com SBOS377L–OCTOBER2006–REVISEDJANUARY2020 Typical Characteristics (continued) atT =25°C,V =±18V,andR =10kΩ,unlessotherwisenoted. A S L 150 6 VS= 36 V -IB 100 3Typical Units Shown +IB 5 50 4 Unit 1 Unit 2 (nA) 0 (mA) 3 B Q I I -50 2 Unit 3 -100 1 Common-Mode Range -150 0 1 5 10 15 20 25 30 35 -75 -50 -25 0 25 50 75 100 125 150 175 200 V (V) Temperature (°C) CM Figure19.InputBiasCurrentvsCommon-ModeVoltage Figure20.QuiescentCurrentvsTemperature 4.0 0.05 3.5 0 3.0 -0.05 2.5 A) I(mA)Q 2.0 Shift (m --00..1150 1.5 Q I -0.20 1.0 0.5 -0.25 Average of 10 Typical Units 0 -0.30 0 4 8 12 16 20 24 28 32 36 0 60 120 180 240 300 360 420 480 540 600 V (V) Time (s) S Figure21.QuiescentCurrentvsSupplyVoltage Figure22.NormalizedQuiescentCurrentvsTime 60 G = -1 50 R = 600Ω 40 L 30 CL= 10 pF Sourcing 20 CF mA) 10 div 5.6 pF (SC -100 mV/ 60R4IΩ 60R4FΩ I 0 -20 2 +18 V -30 -40 OPA211 Sinking -50 CL RL -18 V -60 -75 -50 -25 0 25 50 75 100 125 150 175 200 Temperature (°C) Time (0.1 µs/div) Figure23.Short-CircuitCurrentvsTemperature Figure24.Small-SignalStepResponse(100mV) Copyright©2006–2020,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 SBOS377L–OCTOBER2006–REVISEDJANUARY2020 www.ti.com Typical Characteristics (continued) atT =25°C,V =±18V,andR =10kΩ,unlessotherwisenoted. A S L G = -1 G = +1 R = 600Ω R = 600Ω L L C = 100 pF C = 10 pF L L CF 5.6 pF v v di di mV/ 60R4IΩ 60R4FΩ mV/ +18 V 0 0 2 +18 V 2 OPA211 OPA211 -18 V RL CL CL RL -18 V Time (0.1 µs/div) Time (0.1 µs/div) (100mV) (100mV) Figure25.Small-SignalStepResponse Figure26.Small-SignalStepResponse 60 G = +1 G = +1 R = 600Ω L 50 C = 100 pF L mV/div +18 V hoot (%) 4300 G = -1 20 OPA211 ers G = 10 v O 20 -18 V RL CL 10 0 Time (0.1 µs/div) 0 200 400 600 800 1000 1200 1400 (100mV) Capacitive Load (pF) (100-mVoutputstep) Figure27.Small-SignalStepResponse Figure28.Small-SignalOvershootvsCapacitiveLoad G = -1 G = +1 CL= 100 pF CL= 100 pF RL= 600Ω RF= 0Ω RL= 600Ω div div RF= 100Ω V/ V/ 2 2 Note: See the Applications Information section, Input Protection. Time (0.5 µs/div) Time (0.5 µs/div) Figure29.Large-SignalStepResponse Figure30.Large-SignalStepResponse 16 SubmitDocumentationFeedback Copyright©2006–2020,TexasInstrumentsIncorporated ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 www.ti.com SBOS377L–OCTOBER2006–REVISEDJANUARY2020 Typical Characteristics (continued) atT =25°C,V =±18V,andR =10kΩ,unlessotherwisenoted. A S L 1.0 0.010 1.0 0.010 0.8 0.008 0.8 0.008 V) 0.6 0.006 V) 0.6 0.006 e (m 0.4 16-Bit Settling 0.004 e (m 0.4 16-Bit Settling 0.004 Valu 0.2 0.002 Valu 0.2 0.002 al 0 0 al 0 0 n n m Fi -0.2 (±1/2 LSB = ±0.00075%) -0.002 m Fi -0.2 (±1/2 LSB = ±0.00075%) -0.002 Fro -0.4 -0.004 Fro -0.4 -0.004 D -0.6 -0.006 D -0.6 -0.006 -0.8 -0.008 -0.8 -0.008 -1.0 -0.010 -1.0 -0.010 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 Time (ns) Time (ns) 10VPP CL=100pF 10VPP CL=10pF Figure31.Large-SignalPositiveSettlingTime Figure32.Large-SignalPositiveSettlingTime 1.0 0.010 1.0 0.010 0.8 0.008 0.8 0.008 V) 0.6 0.006 V) 0.6 0.006 m m e ( 0.4 16-Bit Settling 0.004 e ( 0.4 16-Bit Settling 0.004 alu 0.2 0.002 alu 0.2 0.002 V V al 0 0 al 0 0 n n Fi -0.2 -0.002 Fi -0.2 -0.002 m (±1/2 LSB = ±0.00075%) m (±1/2 LSB = ±0.00075%) Fro -0.4 -0.004 Fro -0.4 -0.004 D -0.6 -0.006 D -0.6 -0.006 -0.8 -0.008 -0.8 -0.008 -1.0 -0.010 -1.0 -0.010 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 Time (ns) Time (ns) 10V C =100pF 10V C =10pF PP L PP L Figure33.Large-SignalNegativeSettlingTime Figure34.Large-SignalNegativeSettlingTime V G = -10 G = -10 IN 10 kΩ V 1 kΩ OUT 0 V OPA211 VOUT v 10 kΩ v VIN di di V/ 1 kΩ V/ 5 OPA211 VOUT 5 VIN 0 V V OUT V IN Time (0.5 µs/div) Time (0.5 µs/div) Figure35.NegativeOverloadRecovery Figure36.PositiveOverloadRecovery Copyright©2006–2020,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 SBOS377L–OCTOBER2006–REVISEDJANUARY2020 www.ti.com Typical Characteristics (continued) atT =25°C,V =±18V,andR =10kΩ,unlessotherwisenoted. A S L 20 0 °C 15 +125 °C +85 °C Output 10 5 (V)T 0 +125 °C V/div VOU -55 °C +150 °C 0 °C 5 -5 +18 V -10 Output OPA211 +85 °C -15 (±1387. 5VVPP) -18 V -20 0 10 20 30 40 50 60 70 0.5 ms/div I (mA) OUT Figure38.NoPhaseReversal Figure37.OutputVoltagevsOutputCurrent 20 20 15 15 Shutdown Signal 10 10 Output Signal 5 5 v v V/di 0 V/di 0 5 5 Output Signal -5 -5 -10 -10 Shutdown Signal -15 -15 V = ±15 V V = ±15 V S S -20 -20 Time (2 µs/div) Time (2 µs/div) Figure39.TurnoffTransient Figure40.TurnonTransient 20 1.6 Shutdown Signal 15 1.2 V) e ( 10 0.8 O wn Pin Voltag -505 Output 00-0.4.4 utput Voltage hutdo -10 -0.8 (V) S -15 -1.2 V = ±15 V S -20 -1.6 Time (100 µs/div) Figure41.TurnonandTurnoffTransient 18 SubmitDocumentationFeedback Copyright©2006–2020,TexasInstrumentsIncorporated ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 www.ti.com SBOS377L–OCTOBER2006–REVISEDJANUARY2020 7 Detailed Description 7.1 Overview The OPAx211 family of operational amplifiers are available in single-channel versions (OPA211) and dual- channel versions (OPA2211). Single-channel versions are available with and without shutdown. The OPAx211 family of operational amplifiers features ultra-low noise of 1.1-nV/√Hz, low total harmonic distortion + noise of 0.000015% and wide, rail-to-rail output swing. These unique features makes the OPAx211 family a great choice for wide dynamic range applications and driving high-speed analog-to-digital converters. The OPAx211 family is protected against excessive differentially applied input voltages and is fully characterized for electromagnetic interference rejection ratio (EMIRR). The OPAx211 operates with as little as 4.5-V (±2.25-V) power supply voltage and with power supply voltages up to 36 V (±18 V). The OPAx211 family is specified to operate from –40°Cto+125°Cwithlittlechangeinparametricbehavioroverthefulltemperaturerange. 7.2 Functional Block Diagram V+ Pre-Output Driver OUT IN- IN+ V- Copyright © 2017,Texas Instruments Incorporated 7.3 Feature Description 7.3.1 TotalHarmonicDistortionMeasurements OPA211 series operational amplifiers have excellent distortion characteristics. THD + noise is below 0.0001% (G =1,V =3V )throughouttheaudiofrequencyrange,20Hzto20kHz,witha600-Ωload. O RMS The distortion produced by OPAx211 series operational amplifiers is below the measurement limit of many commercially available distortion analyzers. However, a special test circuit shown in Figure 43 can extend the measurementcapabilities. Operational amplifier distortion can be considered an internal error source that can be referred to the input. Figure 43 shows a circuit that causes the operational amplifier distortion to be 101 times greater than that normally produced by the operational amplifier. The addition of R to the otherwise standard noninverting 3 amplifier configuration alters the feedback factor or noise gain of the circuit. The closed-loop gain is unchanged, butthefeedbackavailableforerrorcorrectionisreducedbyafactorof101,thusextendingtheresolutionby101. Copyright©2006–2020,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 SBOS377L–OCTOBER2006–REVISEDJANUARY2020 www.ti.com Feature Description (continued) NOTE The input signal and load applied to the operational amplifier are the same as with conventional feedback without R . The value of R should be kept small to minimize its 3 3 effectonthedistortionmeasurements. Validity of this technique can be verified by duplicating measurements at high gain and/or high frequency where the distortion is within the measurement capability of the test equipment. Measurements for this data sheet were made with an Audio Precision System Two distortion/noise analyzer, which greatly simplifies such repetitive measurements. The measurement technique can, however, be performed with manual distortion measurement instruments. Noise in Noninverting Gain Configuration R Noise at the output: 2 2 2 R R R E 2= 1 + 2 e2+ e2+ e2+ (iR)2+ e 2+ (iR )2 1 + 2 1 O R n 1 2 n 2 S n S R 1 1 E O R Where e =Ö4kTR ´ 1 + 2 = thermal noise of R S S R S 1 R S R e =Ö4kTR ´ 2 = thermal noise of R 1 1 R 1 V 1 S e =Ö4kTR = thermal noise of R 2 2 2 Noise in Inverting Gain Configuration Noise at the output: R 2 2 R R E 2= 1 + 2 e2+ e2+ e2+ (iR)2+ e 2 1 O R + R n 1 2 n 2 S 1 S E RS O Where e =Ö4kTR ´ R2 = thermal noise of R S S R + R S 1 S V S R e =Ö4kTR ´ 2 = thermal noise of R 1 1 R + R 1 1 S e =Ö4kTR = thermal noise of R 2 2 2 For the OPA211 series op amps at 1kHz, e = 1.1nV/ÖHz and i = 1.7pA/ÖHz. n n Figure42. NoiseCalculationinGainConfigurations 20 SubmitDocumentationFeedback Copyright©2006–2020,TexasInstrumentsIncorporated ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 www.ti.com SBOS377L–OCTOBER2006–REVISEDJANUARY2020 Figure43. DistortionTestCircuit 7.4 Device Functional Modes The OPAx211 is operational when the power-supply voltage is greater than 4.5 V (±2.25 V). The maximum powersupplyvoltagefortheOPAx211seriesis36V(±18V). 7.4.1 Shutdown The shutdown (enable) function of the OPA211 is referenced to the positive supply voltage of the operational amplifier. A valid high disables the operational amplifier. A valid high is defined as (V+) – 0.35 V of the positive supply applied to the shutdown pin. A valid low is defined as (V+) – 3 V below the positive supply pin. For example, with V at ±15 V, the device is enabled at or below 12 V. The device is disabled at or above 14.65 V. CC If dual or split power supplies are used, make sure the valid high or valid low input signals are properly referred to the positive supply voltage. This pin must be connected to a valid high or low voltage or driven, and not left open-circuit. The enable and disable times are provided in the Typical Characteristics section (see Figure 39 throughFigure41).Whendisabled,theoutputassumesahigh-impedancestate. Copyright©2006–2020,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 SBOS377L–OCTOBER2006–REVISEDJANUARY2020 www.ti.com 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information The OPA211 and OPA2211 are unity-gain stable, precision operational amplifiers with very-low noise. Applications with noisy or high-impedance power supplies require decoupling capacitors close to the device pins. Inmostcases,0.1-μFcapacitorsareadequate. 8.1.1 OperatingVoltage OPA211 series operational amplifiers operate from ±2.25- to ±18-V supplies while maintaining excellent performance. The OPA211 series can operate with as little as 4.5 V between the supplies and with up to 36 V between the supplies. However, some applications do not require equal positive and negative output voltage swing.WiththeOPA211series,power-supplyvoltagesdonotneedtobeequal. For example, the positive supply couldbesetto25Vwiththenegativesupplyat –5Vorvice-versa. The common-mode voltage must be maintained within the specified range. In addition, key parameters are assured over the specified temperature range, T = –40°C to +125°C. Parameters that vary significantly with A operatingvoltageortemperatureareshownintheTypicalCharacteristics. 8.1.2 InputProtection The input terminals of the OPA211 are protected from excessive differential voltage with back-to-back diodes, as shown in Figure 44. In most circuit applications, the input protection circuitry has no consequence. However, in low-gain or G = 1 circuits, fast ramping input signals can forward bias these diodes because the output of the amplifier cannot respond rapidly enough to the input ramp. This effect is shown in Figure 30 of the Typical Characteristics. If the input signal is fast enough to create this forward bias condition, the input signal current must be limited to 10 mA or less. If the input signal current is not inherently limited, an input series resistor can be used to limit the signal input current. This input series resistor degrades the low-noise performance of the OPA211, and is discussed in the Noise Performance section of this data sheet. Figure 44 shows an example implementingacurrent-limitingfeedbackresistor. R F - OPA211 Output R I + Input Copyright © 2017,Texas Instruments Incorporated Figure44. PulsedOperation 22 SubmitDocumentationFeedback Copyright©2006–2020,TexasInstrumentsIncorporated ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 www.ti.com SBOS377L–OCTOBER2006–REVISEDJANUARY2020 Application Information (continued) 8.1.3 NoisePerformance Figure 45 shows total circuit noise for varying source impedances with the operational amplifier in a unity-gain configuration (no feedback resistor network, and therefore no additional noise contributions). Two different operational amplifiers are shown with total circuit noise calculated. The OPAx211 has very low voltage noise, making the family a viable option for low source impedances (less than 2 kΩ). A similar precision operational amplifier, the OPA227, has somewhat higher voltage noise but lower current noise. It provides excellent noise performance at moderate source impedance (10 to 100 kΩ). Above 100 kΩ, a FET-input operational amplifier such as the OPA132 (very low current noise) may provide improved performance. The equation in Figure 45 is shownforthecalculationofthetotalcircuitnoise. NOTE e = voltage noise, I = current noise, R = source impedance, k = Boltzmann’s constant = n n S 1.38× 10–23J/K,andTistemperatureinK. 10k O E Density, 1k RS EO OPA227 ctral OPA211 e 100 p S e s oi N Resistor Noise e 10 g a otl V E 2= e2+ (i R )2+ 4kTR O n n S S 1 100 1k 10k 100k 1M Source Resistance, R (Ω) S Figure45. NoisePerformanceoftheOPA211andOPA227inUnity-GainBufferConfiguration 8.1.4 BasicNoiseCalculations Design of low-noise operational amplifier circuits requires careful consideration of a variety of possible noise contributors: noise from the signal source, noise generated in the operational amplifier, and noise from the feedback network resistors. The total noise of the circuit is the root-sum-square combination of all noise components. The resistive portion of the source impedance produces thermal noise proportional to the square root of the resistance. This function is plotted in Figure 45. The source impedance is usually fixed; consequently, select the operationalamplifierandthefeedbackresistorstominimizetherespectivecontributionstothetotalnoise. Figure 45 depicts total noise for varying source impedances with the operational amplifier in a unity-gain configuration (no feedback resistor network, and therefore no additional noise contributions). The operational amplifier itself contributes both a voltage noise component and a current noise component. The voltage noise is commonly modeled as a time-varying component of the offset voltage. The current noise is modeled as the time- varying component of the input bias current and reacts with the source resistance to create a voltage component of noise. Therefore, the lowest noise operational amplifier for a given application depends on the source impedance. For low source impedance, current noise is negligible and voltage noise generally dominates. For highsourceimpedance,currentnoisemaydominate. Figure 42 shows both inverting and noninverting operational amplifier circuit configurations with gain. In circuit configurations with gain, the feedback network resistors also contribute noise. The current noise of the operational amplifier reacts with the feedback resistors to create additional noise components. The feedback resistorvaluescangenerallybechosentomakethesenoisesourcesnegligible.The equations for total noise are shownforbothconfigurations. Copyright©2006–2020,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 SBOS377L–OCTOBER2006–REVISEDJANUARY2020 www.ti.com Application Information (continued) 8.1.5 EMIRejection The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational amplifiers.An adverse effect that is common to many operational amplifiers is a change in the offset voltage as a result of RF signal rectification. An operational amplifier that is more efficient at rejecting this change in offset as a result of EMI has a higher EMIRR and is quantified by a decibel value. Measuring EMIRR can be performed in many ways, but this section provides the EMIRR IN+, which specifically describes the EMIRR performance when the RF signal is applied to the noninverting input pin of the operational amplifier. In general, only the noninverting inputistestedforEMIRRforthefollowingthreereasons: 1. Operational amplifier input pins are known to be the most sensitive to EMI, and typically rectify RF signals betterthanthesupplyoroutputpins. 2. The noninverting and inverting operational amplifier inputs have symmetrical physical layouts and exhibit nearlymatchingEMIRRperformance. 3. EMIRR is easier to measure on noninverting pins than on other pins because the noninverting input terminal can be isolated on a printed-circuit-board (PCB). This isolation allows the RF signal to be applied directly to the noninverting input terminal with no complex interactions from other components or connecting PCB traces.Figure46 The EMIRR IN+ of the OPA211 is plotted versus frequency as shown in Figure 46. If available, any dual and quad operational amplifier device versions have nearly similar EMIRR IN+ performance. The OPA211 unity-gain bandwidth is 45 MHz. EMIRR performance below this frequency denotes interfering signals that fall within the operationalamplifierbandwidth. Detailed information can also be found in the EMI Rejection Ratio of Operational Amplifiers application report, availablefordownloadfromwww.ti.com. 140 PRF = -10 dbm 120 VS = r12 V VCM = 0 V 100 b) d + ( 80 N R I R 60 MI E 40 20 0 10M 100M 1G 10G Frequency (Hz) Figure46. OPA211EMIRR Table 1 shows the EMIRR IN+ values for the OPA211 at particular frequencies commonly encountered in real- world applications. Applications listed in Table 1 may be centered on or operated near the particular frequency shown. This information may be of special interest to designers working with these types of applications, or working in other fields likely to encounter RF interference from broad sources, such as the industrial, scientific, andmedical(ISM)radioband. 24 SubmitDocumentationFeedback Copyright©2006–2020,TexasInstrumentsIncorporated ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 www.ti.com SBOS377L–OCTOBER2006–REVISEDJANUARY2020 Application Information (continued) Table1.OPA211EMIRRIN+forFrequenciesofInterest FREQUENCY APPLICATIONORALLOCATION EMIRRIN+ Mobileradio,mobilesatellite,spaceoperation,weather,radar,ultra-highfrequency(UHF) 400MHz 48.4dB applications Globalsystemformobilecommunications(GSM)applications,radiocommunication,navigation, 900MHz 34.6dB GPS(to1.6GHz),GSM,aeronauticalmobile,UHFapplications 1.8GHz GSMapplications,mobilepersonalcommunications,broadband,satellite,L-band(1GHzto2GHz) 46dB 802.11b,802.11g,802.11n,Bluetooth®,mobilepersonalcommunications,industrial,scientificand 2.4GHz 56.9dB medical(ISM)radioband,amateurradioandsatellite,S-band(2GHzto4GHz) 3.6GHz Radiolocation,aerocommunicationandnavigation,satellite,mobile,S-band 61.5dB 802.11a,802.11n,aerocommunicationandnavigation,mobilecommunication,spaceandsatellite 5GHz 76.7dB operation,C-band(4GHzto8GHz) 8.1.6 EMIRR+INTestConfiguration Figure47showsthecircuit configuration for testing the EMIRR IN+. An RF source is connected to the operational amplifier noninverting input terminal using a transmission line. The operational amplifier is configured in a unity- gainbuffertopologywiththeoutputconnectedtoalow-passfilter(LPF)andadigitalmultimeter(DMM). NOTE A large impedance mismatch at the operational amplifier input causes a voltage reflection; however, this effect is characterized and accounted for when determining the EMIRR IN+. TheresultingDCoffsetvoltageissampledandmeasuredbythemultimeter. TheLPFisolatesthemultimeterfromresidualRFsignalsthatmayinterferewithmultimeteraccuracy. Ambient temperature: 25(cid:219)& +VS – 50 (cid:13)(cid:3) Low-Pass Filter + RF source DC Bias: 0 V -VS Sample / Modulation: None (CW) Digital Multimeter Frequency Sweep: 201 pt. Log Not shown: 0.1 µF and 10 µF Averaging supply decoupling Figure47. EMIRR+INTestConfiguration 8.1.7 ElectricalOverstress Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress. These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidentalESDeventsbothbeforeandduringproductassembly. It is helpful to have a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event. Figure 48 shows the ESD circuits contained in the OPA211 (indicated by the dashed line area). The ESD protection circuitry involves several current-steering diodes connected from the input and output pins and routed back to the internal power-supply lines, where they meet at an absorption device internal to the operational amplifier.Thisprotectioncircuitryisintendedtoremaininactiveduringnormalcircuitoperation. Copyright©2006–2020,TexasInstrumentsIncorporated SubmitDocumentationFeedback 25 ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 SBOS377L–OCTOBER2006–REVISEDJANUARY2020 www.ti.com An ESD event produces a short duration, high-voltage pulse that is transformed into a short duration, high- current pulse as it discharges through a semiconductor device. The ESD protection circuits are designed to provide a current path around the operational amplifier core to prevent it from damage. The energy absorbed by theprotectioncircuitryisthendissipatedasheat. When an ESD voltage develops across two or more of the amplifier device pins, current flows through one or more of the steering diodes. Depending on the path that the current takes, the absorption device may activate. The absorption device has a trigger, or threshold voltage, that is above the normal operating voltage of the OPA211 but below the device breakdown voltage level. Once this threshold is exceeded, the absorption device quicklyactivatesandclampsthevoltageacrossthesupplyrailstoasafelevel. When the operational amplifier connects into a circuit such as that shown in Figure 48, the ESD protection components are intended to remain inactive and not become involved in the application circuit operation. However, circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin. Should this condition occur, there is a risk that some of the internal ESD protection circuits may be biased on, and conduct current. Any such current flow occurs through steering diode paths and rarely involves the absorptiondevice. R F +V S +V OPA211 R I -IN ESD Current- Steering Diodes Op-Amp OUT +IN Core Edge-Triggered ESD I Absorption Circuit RL D V (1) IN -V -V S Copyright © 2017,Texas Instruments Incorporated (1) V =+V +500mV. IN S Figure48. EquivalentInternalESDCircuitryandtheRelationtoaTypicalCircuitApplication Figure 48 depicts a specific example where the input voltage, V , exceeds the positive supply voltage (+V ) by IN S 500 mV or more. Much of what happens in the circuit depends on the supply characteristics. If +V can sink the S current, one of the upper input steering diodes conducts and directs current to +V . Excessively high current S levelscanflowwithincreasinglyhigherV .Asaresult,thedatasheetspecificationsrecommendthat applications IN limittheinputcurrentto10mA. Ifthesupplyisnotcapableofsinkingthecurrent,V maybeginsourcingcurrenttothe operational amplifier, and IN then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to levels that exceed the operational amplifier absolute maximum ratings. In extreme but rare cases, the absorption device triggers on while +V and –V are applied. If this event happens, a direct current path is established S S between the +V and –V supplies. The power dissipation of the absorption device is quickly exceeded, and the S S extremeinternalheatingdestroystheoperationalamplifier. Another common question involves what happens to the amplifier if an input signal is applied to the input while the power supplies +V and/or –V are at 0 V. Again, it depends on the supply characteristic while at 0 V, or at a S S level below the input signal amplitude. If the supplies appear as high impedance, then the operational amplifier supply current may be supplied by the input source through the current steering diodes. This state is not a normal bias condition; the amplifier most likely will not operate normally. If the supplies are low impedance, then the current through the steering diodes can become quite high. The current level depends on the ability of the inputsourcetodelivercurrent,andanyresistanceintheinputpath. 26 SubmitDocumentationFeedback Copyright©2006–2020,TexasInstrumentsIncorporated ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 www.ti.com SBOS377L–OCTOBER2006–REVISEDJANUARY2020 8.2 Typical Application R4 C5 2.94 k(cid:13)(cid:3) 1 nF – R1 R3 Output 590 (cid:13)(cid:3) 499 (cid:13)(cid:3) + Input OPAx211 C2 39 nF Copyright © 2017, Texas Instruments Incorporated Figure49. OPAx211SimplifiedSchematic 8.2.1 DesignRequirements Low-pass filters are commonly employed in signal processing applications to reduce noise and prevent aliasing. The OPAx211 devices are designed to construct high-speed, high-precision active filters. Figure 49 shows a second-orderlow-passfiltercommonlyencounteredinsignalprocessingapplications. Usethefollowingparametersforthisdesignexample: • Gain=5V/V(invertinggain) • Low-passcutofffrequency=25kHz • Second-orderChebyshevfilterresponsewith3-dBgainpeakinginthepassband 8.2.2 DetailedDesignProcedure The infinite-gain multiple-feedback circuit for a low-pass network function is shown in Figure 50 . Use Equation 1 tocalculatethevoltagetransferfunction. Output (cid:16)1RR C C (cid:11)s(cid:12) 1 3 2 5 Input s2(cid:14)(cid:11)s C (cid:12)(cid:11)1R (cid:14)1R (cid:14)1R (cid:12)(cid:14)1R R C C 2 1 3 4 3 4 2 5 (1) This circuit produces a signal inversion. For this circuit, the gain at DC and the low-pass cutoff frequency are calculatedbyEquation2: R Gain 4 R 1 1 f (cid:11)1R R C C (cid:12) C 2S 3 4 2 5 (2) Software tools are readily available to simplify filter design.WEBENCH® Filter Designer is a simple, powerful, and easy-to-use active filter design program. The WEBENCH Filter Designer allows the user to create optimized filterdesignsusingaselectionofTIoperationalamplifiersandpassivecomponentsfromTI'svendorpartners. Available as a web based tool from the WEBENCH Design Center, WEBENCH® Filter Designer allows the user todesign,optimize,andsimulatecompletemultistageactivefiltersolutionswithinminutes. Copyright©2006–2020,TexasInstrumentsIncorporated SubmitDocumentationFeedback 27 ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 SBOS377L–OCTOBER2006–REVISEDJANUARY2020 www.ti.com Typical Application (continued) 8.2.3 ApplicationCurve 20 0 b) d n ( -20 ai G -40 -60 100 1k 10k 100k 1M Frequency (Hz) Figure50. OPAx2112nd-Order25-kHz,Chebyshev,Low-PassFilter 9 Power Supply Recommendations The OPAx211 are specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or temperaturearepresentedintheTypicalCharacteristics. 10 Layout 10.1 Layout Guidelines Forbestoperationalperformanceofthedevice,usegoodPCBlayoutpractices,including: • Noise can propagate into analog circuitry through the power pins of the circuit as a whole and operational amplifier itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sourceslocaltotheanalogcircuitry. – Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single- supplyapplications. • Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pick-up. Make sure to physically separate digital and analog grounds paying attention to the flow of the ground current. For more detailed information, see CircuitBoardLayoutTechniques. • In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposedtoinparallelwiththenoisytrace. • Place the external components as close to the device as possible. As shown in Figure 51, keeping RF and RGclosetotheinvertinginputminimizesparasiticcapacitance. • Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitivepartofthecircuit. • Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakagecurrentsfromnearbytracesthatareatdifferentpotentials. • CleaningthePCBfollowingboardassemblyisrecommendedforbestperformance. • Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended to remove moisture introduced into the device packaging during the cleaning process. A low temperature, post cleaningbakeat85°Cfor30minutesissufficientformostcircumstances. 28 SubmitDocumentationFeedback Copyright©2006–2020,TexasInstrumentsIncorporated ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 www.ti.com SBOS377L–OCTOBER2006–REVISEDJANUARY2020 Layout Guidelines (continued) 10.1.1 SONLayoutGuidelines The OPA211 is offered in an SON-8 package (also known as SON). The SON package is a QFN package with leadcontactsononlytwosidesofthebottomofthepackage.Thisleadlesspackagemaximizes board space and enhancesthermalandelectricalcharacteristicsthroughanexposedpad. SON packages are physically small, and have a smaller routing area, improved thermal performance, and improvedelectricalparasitics.Additionally,theabsenceofexternalleadseliminatesbent-leadissues. The SON package can be easily mounted using standard printed circuit board (PCB) assembly techniques. See the QFN/SON PCB Attachment application note and the Quad Flatpack No-Lead Logic Packages application report,bothavailablefordownloadatwww.ti.com. NOTE The exposed leadframe die pad on the bottom of the package must be connected to V–. Soldering the thermal pad improves heat dissipation and enables specified device performance. The exposed leadframe die pad on the SON package should be soldered to a thermal pad on the PCB. A mechanical drawing showing an example layout is attached at the end of this data sheet. Refinements to this layout may be necessary based on assembly process requirements. Mechanical drawings located at the end of this data sheet list the physical dimensions for the package and pad. The five holes in the landing pattern are optional, and are intended for use with thermal vias that connect the leadframe die pad to the heat sink area on thePCB. Soldering the exposed pad significantly improves board-level reliability during temperature cycling, key push, package shear, and similar board-level tests. Even with applications that have low-power dissipation, the exposedpadmustbesolderedtothePCBtoprovidestructuralintegrityandlong-termreliability. 10.2 Layout Example Place components close Run the input traces to device and to each as far away from other to reduce parasitic the supply lines errors VS+ as possible RF N/C N/C RG GND –IN V+ GND VIN +IN OUTPUT V– N/C Use low-ESR, ceramic bypass capacitor Use low-ESR, GND VS– VOUT ceramic bypass Ground (GND) plane on another layer capacitor Copyright © 2017, Texas Instruments Incorporated Figure51. LayoutExample Copyright©2006–2020,TexasInstrumentsIncorporated SubmitDocumentationFeedback 29 ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 SBOS377L–OCTOBER2006–REVISEDJANUARY2020 www.ti.com 11 Device and Documentation Support 11.1 Device Support 11.1.1 DevelopmentSupport 11.1.1.1 TINA-TI™(FreeSoftwareDownload) TINA™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI™ is a free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range of both passive and active models. TINA-TI provides all the conventional DC, transient, and frequency domainanalysisofSPICE,aswellasadditionaldesigncapabilities. Available as a free download from the WEBENCH® Design Center, TINA-TI offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select inputwaveformsandprobecircuitnodes,voltages,andwaveforms,creatingadynamicquick-starttool. NOTE These files require that either the TINA software (from DesignSoft™) or TINA-TI software beinstalled.DownloadthefreeTINA-TIsoftwarefromtheTINA-TIfolder. 11.1.1.2 TIPrecisionDesigns TheOPAx211isfeaturedinseveralTIPrecisionDesigns,availableonlineat http://www.ti.com/ww/en/analog/precision-designs/. TI Precision Designs are analog solutions created by TI’s precision analog applications experts and offer the theory of operation, component selection, simulation, completePCBschematicandlayout,billofmaterials,andmeasuredperformanceofmanyusefulcircuits. 11.1.1.3 WEBENCH® FilterDesigner WEBENCH® Filter Designer is a simple, powerful, and easy-to-use active filter design program. The WEBENCH Filter Designer the user to create optimized filter designs using a selection of TI operational amplifiers and passivecomponentsfromTI'svendorpartners. Available as a web based tool from the WEBENCH® Design Center, WEBENCH® Filter Designer allows the usertodesign,optimize,andsimulatecompletemultistageactivefiltersolutionswithinminutes. 11.2 Documentation Support 11.2.1 RelatedDocumentation Forrelateddocumentationsee: • TexasInstruments,CircuitBoardLayoutTechniques • TexasInstruments,OpAmpsforEveryone • TexasInstruments,OPA211,OPA211A,OP2211,OPA2211AEMIImmunityPerformance(Rev.A) • TexasInstruments,Operationalamplifiergainstability,Part3:ACgain-erroranalysis • TexasInstruments,Operationalamplifiergainstability,Part2:DCgain-erroranalysis • TexasInstruments,Usinginfinite-gain,MFBfiltertopologyinfullydifferentialactivefilters • TexasInstruments,OpAmpPerformanceAnalysis • TexasInstruments,Single-SupplyOperationofOperationalAmplifiers • TexasInstruments,TuninginAmplifiers • TexasInstruments,Shelf-LifeEvaluationofLead-FreeComponentFinishes 30 SubmitDocumentationFeedback Copyright©2006–2020,TexasInstrumentsIncorporated ProductFolderLinks:OPA211 OPA2211

OPA211,OPA2211 www.ti.com SBOS377L–OCTOBER2006–REVISEDJANUARY2020 11.3 Related Links Table 2 lists quick access links. Categories include technical documents, support and community resources, toolsandsoftware,andquickaccesstosampleorbuy. Table2.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER ORDERNOW DOCUMENTS SOFTWARE COMMUNITY OPA211 Clickhere Clickhere Clickhere Clickhere Clickhere OPA2211 Clickhere Clickhere Clickhere Clickhere Clickhere 11.4 Receiving Notification of Documentation Updates To receive notification of documentation updates — go to the product folder for your device on ti.com. In the upper right-hand corner, click the Alert me button to register and receive a weekly digest of product information thathaschanged(ifany).Forchangedetails,checktherevisionhistoryofanyreviseddocument. 11.5 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight fromtheexperts.Searchexistinganswersoraskyourownquestiontogetthequickdesignhelpyouneed. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do notnecessarilyreflectTI'sviews;seeTI'sTermsofUse. 11.6 Trademarks PowerPAD,TINA-TI,E2EaretrademarksofTexasInstruments. WEBENCHisaregisteredtrademarkofTexasInstruments. BluetoothisaregisteredtrademarkofBluetoothSIG,Inc. TINA,DesignSoftaretrademarksofDesignSoft,Inc. Allothertrademarksarethepropertyoftheirrespectiveowners. 11.7 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriateprecautions.Failuretoobserveproperhandlingandinstallationprocedurescancausedamage. ESDdamagecanrangefromsubtleperformancedegradationtocompletedevicefailure.Precisionintegratedcircuitsmaybemore susceptibletodamagebecauseverysmallparametricchangescouldcausethedevicenottomeetitspublishedspecifications. 11.8 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. Copyright©2006–2020,TexasInstrumentsIncorporated SubmitDocumentationFeedback 31 ProductFolderLinks:OPA211 OPA2211

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) OPA211AID ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA & no Sb/Br) 211 A OPA211AIDG4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA & no Sb/Br) 211 A OPA211AIDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS Call TI | NIPDAU Level-2-260C-1 YEAR -40 to 125 OBCQ & no Sb/Br) OPA211AIDGKT ACTIVE VSSOP DGK 8 250 Green (RoHS Call TI | NIPDAU Level-2-260C-1 YEAR -40 to 125 OBCQ & no Sb/Br) OPA211AIDGKTG4 ACTIVE VSSOP DGK 8 250 Green (RoHS Call TI Level-2-260C-1 YEAR -40 to 125 OBCQ & no Sb/Br) OPA211AIDR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA & no Sb/Br) 211 A OPA211AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA & no Sb/Br) 211 A OPA211AIDRGR ACTIVE SON DRG 8 3000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OBDQ & no Sb/Br) OPA211AIDRGT ACTIVE SON DRG 8 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OBDQ & no Sb/Br) OPA211AIDRGTG4 ACTIVE SON DRG 8 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OBDQ & no Sb/Br) OPA211ID ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA & no Sb/Br) 211 OPA211IDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS Call TI | NIPDAU Level-2-260C-1 YEAR -40 to 125 OBCQ & no Sb/Br) OPA211IDGKT ACTIVE VSSOP DGK 8 250 Green (RoHS Call TI | NIPDAU Level-2-260C-1 YEAR -40 to 125 OBCQ & no Sb/Br) OPA211IDR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA & no Sb/Br) 211 OPA211IDRGR ACTIVE SON DRG 8 3000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OBDQ & no Sb/Br) Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) OPA211IDRGT ACTIVE SON DRG 8 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OBDQ & no Sb/Br) OPA2211AIDDA ACTIVE SO PowerPAD DDA 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 125 OPA & no Sb/Br) 2211 A OPA2211AIDDAR ACTIVE SO PowerPAD DDA 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 125 OPA & no Sb/Br) 2211 A OPA2211AIDRGR ACTIVE SON DRG 8 3000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OBHQ & no Sb/Br) OPA2211AIDRGT ACTIVE SON DRG 8 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OBHQ & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Addendum-Page 2

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF OPA211 : •Enhanced Product: OPA211-EP NOTE: Qualified Version Definitions: •Enhanced Product - Supports Defense, Aerospace and Medical Applications Addendum-Page 3

PACKAGE MATERIALS INFORMATION www.ti.com 27-Jan-2020 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) OPA211AIDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 OPA211AIDGKT VSSOP DGK 8 250 180.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 OPA211AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 OPA211AIDRGR SON DRG 8 3000 330.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 OPA211AIDRGT SON DRG 8 250 180.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 OPA211IDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 OPA211IDGKT VSSOP DGK 8 250 180.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 OPA211IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 OPA211IDRGR SON DRG 8 3000 330.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 OPA211IDRGT SON DRG 8 250 180.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 OPA2211AIDDAR SO DDA 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 Power PAD OPA2211AIDRGR SON DRG 8 3000 330.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 OPA2211AIDRGT SON DRG 8 250 180.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 27-Jan-2020 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) OPA211AIDGKR VSSOP DGK 8 2500 367.0 367.0 35.0 OPA211AIDGKT VSSOP DGK 8 250 210.0 185.0 35.0 OPA211AIDR SOIC D 8 2500 367.0 367.0 35.0 OPA211AIDRGR SON DRG 8 3000 367.0 367.0 35.0 OPA211AIDRGT SON DRG 8 250 210.0 185.0 35.0 OPA211IDGKR VSSOP DGK 8 2500 367.0 367.0 35.0 OPA211IDGKT VSSOP DGK 8 250 210.0 185.0 35.0 OPA211IDR SOIC D 8 2500 367.0 367.0 35.0 OPA211IDRGR SON DRG 8 3000 367.0 367.0 35.0 OPA211IDRGT SON DRG 8 250 210.0 185.0 35.0 OPA2211AIDDAR SOPowerPAD DDA 8 2500 367.0 367.0 35.0 OPA2211AIDRGR SON DRG 8 3000 367.0 367.0 35.0 OPA2211AIDRGT SON DRG 8 250 210.0 185.0 35.0 PackMaterials-Page2

GENERIC PACKAGE VIEW DDA 8 PowerPAD TM SOIC - 1.7 mm max height PLASTIC SMALL OUTLINE Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4202561/G

PACKAGE OUTLINE DDA0008J PowerPAD T M SOIC - 1.7 mm max height SCALE 2.400 PLASTIC SMALL OUTLINE C 6.2 TYP 5.8 SEATING PLANE A PIN 1 ID 0.1 C AREA 6X 1.27 8 1 5.0 2X 4.8 3.81 NOTE 3 4 5 0.51 8X 0.31 B 4.0 1.7 MAX 3.8 0.1 C A B NOTE 4 0.25 TYP 0.10 SEE DETAIL A 4 5 EXPOSED THERMAL PAD 0.25 3.1 2.5 GAGE PLANE 0.15 0 - 8 1.27 0.00 1 8 0.40 DETAIL A 2.6 TYPICAL 2.0 4221637/B 03/2016 PowerPAD is a trademark of Texas Instruments. NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. 5. Reference JEDEC registration MS-012, variation BA. www.ti.com

EXAMPLE BOARD LAYOUT DDA0008J PowerPAD T M SOIC - 1.7 mm max height PLASTIC SMALL OUTLINE (2.95) NOTE 9 SOLDER MASK (2.6) DEFINED PAD SOLDER MASK OPENING SEE DETAILS 8X (1.55) 1 8 8X (0.6) (3.1) SYMM SOLDER MASK (1.3) OPENING TYP (4.9) NOTE 9 6X (1.27) 5 4 ( 0.2) TYP VIA SYMM METAL COVERED BY SOLDER MASK (1.3) TYP (5.4) LAND PATTERN EXAMPLE SCALE:10X 0.07 MAX 0.07 MIN ALL AROUND ALL AROUND SOLDER MASK METAL SOLDER MASK METAL UNDER OPENING OPENING SOLDER MASK NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4221637/B 03/2016 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004). 9. Size of metal pad may vary due to creepage requirement. www.ti.com

EXAMPLE STENCIL DESIGN DDA0008J PowerPAD T M SOIC - 1.7 mm max height PLASTIC SMALL OUTLINE (2.6) BASED ON 0.125 THICK STENCIL 8X (1.55) 1 8 8X (0.6) (3.1) SYMM BASED ON 0.127 THICK STENCIL 6X (1.27) 5 4 METAL COVERED SEE TABLE FOR BY SOLDER MASK SYMM DIFFERENT OPENINGS FOR OTHER STENCIL THICKNESSES (5.4) SOLDER PASTE EXAMPLE EXPOSED PAD 100% PRINTED SOLDER COVERAGE BY AREA SCALE:10X STENCIL SOLDER STENCIL THICKNESS OPENING 0.1 2.91 X 3.47 0.125 2.6 X 3.1 (SHOWN) 0.150 2.37 X 2.83 0.175 2.20 X 2.62 4221637/B 03/2016 NOTES: (continued) 10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 11. Board assembly site may have different recommendations for stencil design. www.ti.com

PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com

EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

None

None

None

PACKAGE OUTLINE DRG0008B WSON - 0.8 mm max height SCALE 4.000 PLASTIC SMALL OUTLINE - NO LEAD 3.1 B A 2.9 3.1 PIN 1 INDEX AREA 2.9 0.8 0.7 C SEATING PLANE DIMENSION A 0.05 OPTION 01 (0.1) 0.00 0.05 C OPTION 02 (0.2) (DIM A) TYP EXPOSED 1.45 0.1 OPT 01 SHOWN THERMAL PAD 4 5 2X 1.5 2.4 0.1 8 1 6X 0.5 0.3 8X 0.2 PIN 1 ID 0.6 8X 0.1 C A B (OPTIONAL) 0.4 0.08 C 4218886/A 01/2020 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. www.ti.com

EXAMPLE BOARD LAYOUT DRG0008B WSON - 0.8 mm max height PLASTIC SMALL OUTLINE - NO LEAD (1.45) 8X (0.7) SYMM 1 8 8X (0.25) (2.4) 6X (0.5) (0.95) 4 5 (R0.05) TYP (0.475) ( 0.2) VIA (2.7) TYP LAND PATTERN EXAMPLE SCALE:20X 0.07 MAX 0.07 MIN ALL AROUND ALL AROUND SOLDER MASK METAL METAL UNDER SOLDER MASK OPENING SOLDER MASK OPENING NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4218886/A 01/2020 NOTES: (continued) 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. www.ti.com

EXAMPLE STENCIL DESIGN DRG0008B WSON - 0.8 mm max height PLASTIC SMALL OUTLINE - NO LEAD SYMM 8X (0.7) METAL TYP 8X (0.25) 1 8 (0.635) SYMM 6X (0.5) 4 (1.07) 5 (R0.05) TYP (1.47) (2.7) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL EXPOSED PAD 82% PRINTED SOLDER COVERAGE BY AREA SCALE:25X 4218886/A 01/2020 NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. www.ti.com

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated