图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: OP113ES
  • 制造商: Analog
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

OP113ES产品简介:

ICGOO电子元器件商城为您提供OP113ES由Analog设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 OP113ES价格参考。AnalogOP113ES封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 1 电路 8-SOIC。您可以下载OP113ES参考资料、Datasheet数据手册功能说明书,资料中有OP113ES 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)半导体

描述

IC OPAMP GP 3.4MHZ 8SOIC仪表放大器 Low Noise Low Drift SGL-Supply

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Analog Devices

产品手册

点击此处下载产品Datasheet

产品图片

rohs

否不符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,仪表放大器,Analog Devices OP113ES-

数据手册

点击此处下载产品Datasheet

产品型号

OP113ES

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30008http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26202

产品种类

仪表放大器

供应商器件封装

8-SOIC

共模抑制比—最小值

93 dB

包装

管件

单电源电压

4 V to 36 V

压摆率

1.2 V/µs

双重电源电压

+/- 2 V to +/- 18 V

商标

Analog Devices

增益带宽生成

3.5 MHz

增益带宽积

3.4MHz

安装类型

表面贴装

安装风格

SMD/SMT

封装

Tube

封装/外壳

8-SOIC(0.154",3.90mm 宽)

封装/箱体

SOIC N

工作温度

-40°C ~ 85°C

工作电源电压

+/- 2 V to +/- 18 V, 4 V to 36 V

工厂包装数量

98

放大器类型

General Purpose Amplifier

最大工作温度

+ 85 C

最小工作温度

- 40 C

标准包装

98

电压-电源,单/双 (±)

4 V ~ 36 V, ±2 V ~ 18 V

电压-输入失调

75µV

电压增益dB

126.02 dB

电流-电源

3mA

电流-输入偏置

240nA

电流-输出/通道

40mA

电源电流

2.7 mA

电路数

1

系列

OP113

视频文件

http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2245193153001http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2245193159001

输入补偿电压

0.125 mV

输出类型

-

通道数量

1 Channel

推荐商品

型号:LMV614MA/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:ADA4075-2ARZ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:MC33178DR2

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:5962-9151901MPA

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:TLC272CPWRG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:OPA3684IDBQT

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LMC6062AIM

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TLC2254ID

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
OP113ES 相关产品

LF351N

品牌:ON Semiconductor

价格:

HCPL-7510-360

品牌:Broadcom Limited

价格:

LF444CN

品牌:Texas Instruments

价格:

SA5532ADG4

品牌:Texas Instruments

价格:

LT6023IMS8#PBF

品牌:Linear Technology/Analog Devices

价格:

LMH6644MT

品牌:Texas Instruments

价格:¥询价-¥询价

HCPL-788J-000E

品牌:Broadcom Limited

价格:¥53.60-¥117.42

MAX4246AKA+T

品牌:Maxim Integrated

价格:

PDF Datasheet 数据手册内容提取

Low Noise, Low Drift Single-Supply Operational Amplifiers OP113/OP213/OP413 FEATURES PIN CONFIGURATIONS Single- or dual-supply operation Low noise: 4.7 nV/√Hz @ 1 kHz NULL 1 8 NC OUT A 1 8 V+ Wide bandwidth: 3.4 MHz –IN A 2 OP113 7 V+ –IN A 2 OP213 7 OUT B TOP VIEW TOP VIEW LVUoenwriyt yo l ofgfwasei ndt rsvitfoatl:bt 0ale.g2 e μ: V10/°0C μ V +INV A– 34NC( =N oNtO to C SOcNaNleE)CT65 ONUULTL A 00286-001 +INV A– 34 (Not to Scale) 65 –+IINN BB 00286-002 No phase reversal Figure 1. 8-Lead Narrow-Body Figure 2. 8-Lead Narrow-Body SOIC_N SOIC_N APPLICATIONS Digital scales OUT A 1 16 OUT D Multimedia –IN A 2 15 –IN D Strain gages OUT A 1 OP213 8 V+ +IN A 3 OP413 14 +IN D Battery-powered instrumentation V+ 4 TOP VIEW 13 V– –IN A 2 7 OUT B (Not to Scale) Temperature transducer amplifier +IN B 5 12 +IN C GENERAL DESCRIPTION +INV A– 34 65 –+IINN BB 00286-003 O–UINT BB 67 1110 –OIUNT C C Tfehateu OrePsx b1o3t hfa lmowily n oofi ssein agnlde- dsuripfpt.l yIt ohpaesr baetieonn dale asimgnpelidfi eforsr NC 8NC = NO CONNECT9 NC 00286-004 systems with internal calibration. Often these processor-based Figure 3. 8-Lead PDIP Figure 4. 16-Lead Wide-Body systems are capable of calibrating corrections for offset and SOIC_W gain, but they cannot correct for temperature drifts and noise. Digital scales and other strain gage applications benefit from Optimized for these parameters, the OPx13 family can be used the very low noise and low drift of the OPx13 family. Other to take advantage of superior analog performance combined applications include use as a buffer or amplifier for both analog- with digital correction. Many systems using internal calibration to-digital (ADC) and digital-to-analog (DAC) sigma-delta operate from unipolar supplies, usually either 5 V or 12 V. The converters. Often these converters have high resolutions OPx13 family is designed to operate from single supplies from requiring the lowest noise amplifier to utilize their full 4 V to 36 V and to maintain its low noise and precision potential. Many of these converters operate in either single- performance. supply or low-supply voltage systems, and attaining the greater The OPx13 family is unity gain stable and has a typical gain signal swing possible increases system performance. bandwidth product of 3.4 MHz. Slew rate is in excess of 1 V/μs. The OPx13 family is specified for single 5 V and dual ±15 V Noise density is a very low 4.7 nV/√Hz, and noise in the 0.1 Hz operation over the XIND—extended industrial temperature to 10 Hz band is 120 nV p-p. Input offset voltage is guaranteed range (–40°C to +85°C). They are available in PDIP and SOIC and offset drift is guaranteed to be less than 0.8 μV/°C. Input surface-mount packages. common-mode range includes the negative supply and to within 1 V of the positive supply over the full supply range. Phase reversal protection is designed into the OPx13 family for cases where input voltage range is exceeded. Output voltage swings also include the negative supply and go to within 1 V of the positive rail. The output is capable of sinking and sourcing current throughout its range and is specified with 600 Ω loads. Rev. F Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Tel: 781.329.4700 www.analog.com Trademarks and registered trademarks are the property of their respective owners. Fax: 781.461.3113 ©1993–2007 Analog Devices, Inc. All rights reserved.

OP113/OP213/OP413 TABLE OF CONTENTS Features..............................................................................................1 A Low Voltage, Single Supply Strain Gage Amplifier............14 Applications.......................................................................................1 A High Accuracy Linearized RTD Thermometer General Description.........................................................................1 Amplifier.....................................................................................14 Pin Configurations...........................................................................1 A High Accuracy Thermocouple Amplifier...........................15 Revision History...............................................................................2 An Ultralow Noise, Single Supply Instrumentation Amplifier.....................................................................................15 Specifications.....................................................................................3 Supply Splitter Circuit................................................................15 Electrical Characteristics.............................................................3 Low Noise Voltage Reference....................................................16 Absolute Maximum Ratings............................................................6 5 V Only Stereo DAC for Multimedia.....................................16 Thermal Resistance......................................................................6 Low Voltage Headphone Amplifiers........................................17 ESD Caution..................................................................................6 Low Noise Microphone Amplifier for Multimedia...............17 Typical Performance Characteristics.............................................7 Precision Voltage Comparator..................................................17 Applications.....................................................................................13 Outline Dimensions.......................................................................19 Phase Reversal.............................................................................13 Ordering Guide..........................................................................20 OP113 Offset Adjust..................................................................13 Application Circuits.......................................................................14 A High Precision Industrial Load-Cell Scale Amplifier........14 REVISION HISTORY 3/07—Rev. E to Rev. F Updated Format..................................................................Universal Changes to Pin Configurations.......................................................1 Changes to Absolute Maximum Ratings Section.........................6 Deleted Spice Model.......................................................................15 Updated Outline Dimensions.......................................................19 Changes to Ordering Guide..........................................................20 8/02—Rev. D to Rev. E Edits to Figure 6..............................................................................13 Edits to Figure 7..............................................................................13 Edits to OUTLINE DIMENSIONS..............................................16 9/01—Rev. C to Rev. E Edits to ORDERING GUIDE..........................................................4 Rev. F | Page 2 of 24

OP113/OP213/OP413 SPECIFICATIONS ELECTRICAL CHARACTERISTICS @ V = ±15.0 V, T = 25°C, unless otherwise noted. S A Table 1. E Grade F Grade Parameter Symbol Conditions Min Typ Max Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage V OP113 75 150 μV OS −40°C ≤ T ≤ +85°C 125 225 μV A OP213 100 250 μV −40°C ≤ T ≤ +85°C 150 325 μV A OP413 125 275 μV −40°C ≤ T ≤ +85°C 175 350 μV A Input Bias Current I V = 0 V 240 600 600 nA B CM −40°C ≤ T ≤ +85°C 700 700 nA A Input Offset Current I V = 0 V OS CM −40°C ≤ T ≤ +85°C 50 50 nA A Input Voltage Range V −15 +14 −15 +14 V CM Common-Mode Rejection CMR −15 V ≤ V ≤ +14 V 100 116 96 dB CM −15 V ≤ V ≤ +14 V, CM −40°C ≤ T ≤ +85°C 97 116 94 dB A Large-Signal Voltage Gain A OP113, OP213, VO R = 600 Ω, L −40°C ≤ T ≤ +85°C 1 2.4 1 V/μV A OP413, R = 1 kΩ, L −40°C ≤ T ≤ +85°C 1 2.4 1 V/μV A R = 2 kΩ, L −40°C ≤ T ≤ +85°C 2 8 2 V/μV A Long-Term Offset Voltage1 V 150 300 μV OS Offset Voltage Drift2 ΔV /ΔT 0.2 0.8 1.5 μV/°C OS OUTPUT CHARACTERISTICS Output Voltage Swing High V R = 2 kΩ 14 14 V OH L R = 2 kΩ, L −40°C ≤ T ≤ +85°C 13.9 13.9 V A Output Voltage Swing Low V R = 2 kΩ −14.5 −14.5 V OL L R = 2 kΩ, L −40°C ≤ T ≤ +85°C −14.5 −14.5 V A Short-Circuit Limit I ±40 ±40 mA SC POWER SUPPLY Power Supply Rejection Ratio PSRR V = ±2 V to ±18 V 103 120 100 dB S V = ±2 V to ±18 V S −40°C ≤ T ≤ +85°C 100 120 97 dB A Supply Current/Amplifier I V = 0 V, R = ∞, SY OUT L V = ±18 V 3 3 mA S −40°C ≤ T ≤ +85°C 3.8 3.8 mA A Supply Voltage Range V 4 ±18 4 ±18 V S Rev. F | Page 3 of 24

OP113/OP213/OP413 E Grade F Grade Parameter Symbol Conditions Min Typ Max Min Typ Max Unit AUDIO PERFORMANCE THD + Noise V = 3 V rms, R = 2 kΩ, IN L f = 1 kHz 0.0009 0.0009 % Voltage Noise Density e f = 10 Hz 9 9 nV/√Hz n f = 1 kHz 4.7 4.7 nV/√Hz Current Noise Density i f = 1 kHz 0.4 0.4 pA/√Hz n Voltage Noise e p-p 0.1 Hz to 10 Hz 120 120 nV p-p n DYNAMIC PERFORMANCE Slew Rate SR R = 2 kΩ 0.8 1.2 0.8 1.2 V/μs L Gain Bandwidth Product GBP 3.4 3.4 MHz Channel Separation V = 10 V p-p OUT R = 2 kΩ, f = 1 kHz 105 105 dB L Settling Time t to 0.01%, 0 V to 10 V step 9 9 μs S 1 Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at 125°C, with an LTPD of 1.3. 2 Guaranteed specifications, based on characterization data. @ V = 5.0 V, T = 25°C, unless otherwise noted. S A Table 2. E Grade F Grade Parameter Symbol Conditions Min Typ Max Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage V OP113 125 175 μV OS −40°C ≤ T ≤ +85°C 175 250 μV A OP213 150 300 μV −40°C ≤ T ≤ +85°C 225 375 μV A OP413 175 325 μV −40°C ≤ T ≤ +85°C 250 400 μV A Input Bias Current I V = 0 V, V = 2 300 650 650 nA B CM OUT −40°C ≤ T ≤ +85°C 750 750 nA A Input Offset Current I V = 0 V, V = 2 OS CM OUT −40°C ≤ T ≤ +85°C 50 50 nA A Input Voltage Range V 0 4 4 V CM Common-Mode Rejection CMR 0 V ≤ V ≤ 4 V 93 106 90 dB CM 0 V ≤ V ≤ 4 V, CM −40°C ≤ T ≤ +85°C 90 87 dB A Large-Signal Voltage Gain A OP113, OP213, VO R = 600 Ω, 2 kΩ, L 0.01 V ≤ V ≤ 3.9 V 2 2 V/μV OUT OP413, R = 600, 2 kΩ, L 0.01 V ≤ V ≤ 3.9 V 1 1 V/μV OUT Long-Term Offset Voltage1 V 200 350 μV OS Offset Voltage Drift2 ∆V /∆T 0.2 1.0 1.5 μV/°C OS Rev. F | Page 4 of 24

OP113/OP213/OP413 E Grade F Grade Parameter Symbol Conditions Min Typ Max Min Typ Max Unit OUTPUT CHARACTERISTICS Output Voltage Swing High V R = 600 kΩ 4.0 4.0 V OH L R = 100 kΩ, L −40°C ≤ T ≤ +85°C 4.1 4.1 V A R = 600 Ω, L −40°C ≤ T ≤ +85°C 3.9 3.9 V A Output Voltage Swing Low V R = 600 Ω, OL L −40°C ≤ T ≤ +85°C 8 8 mV A R = 100 kΩ, L −40°C ≤ T ≤ +85°C 8 8 mV A Short-Circuit Limit I ±30 ±30 mA SC POWER SUPPLY Supply Current I V = 2.0 V, no load 1.6 2.7 2.7 mA SY OUT I –40°C ≤ T ≤ +85°C 3.0 3.0 mA SY A AUDIO PERFORMANCE THD + Noise V = 0 dBu, f = 1 kHz 0.001 0.001 % OUT Voltage Noise Density e f = 10 Hz 9 9 nV/√Hz n f = 1 kHz 4.7 4.7 nV/√Hz Current Noise Density i f = 1 kHz 0.45 0.45 pA/√Hz n Voltage Noise e p-p 0.1 Hz to 10 Hz 120 120 nV p-p n DYNAMIC PERFORMANCE Slew Rate SR R = 2 kΩ 0.6 0.9 0.6 V/μs L Gain Bandwidth Product GBP 3.5 3.5 MHz Settling Time t to 0.01%, 2 V step 5.8 5.8 μs S 1 Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at 125°C, with an LTPD of 1.3. 2 Guaranteed specifications, based on characterization data. Rev. F | Page 5 of 24

OP113/OP213/OP413 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 3. Parameter Rating Table 4. Thermal Resistance Supply Voltage ±18 V Package Type θ θ Unit JA JC Input Voltage ±18 V 8-Lead PDIP (P) 103 43 °C/W Differential Input Voltage ±10 V 8-Lead SOIC_N (S) 158 43 °C/W Output Short-Circuit Duration to GND Indefinite 16-Lead SOIC_W (S) 92 27 °C/W Storage Temperature Range −65°C to +150°C Operating Temperature Range −40°C to +85°C Junction Temperature Range −65°C to +150°C ESD CAUTION Lead Temperature Range (Soldering, 60 sec) 300°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. F | Page 6 of 24

OP113/OP213/OP413 TYPICAL PERFORMANCE CHARACTERISTICS 100 150 VS = ±15V VS = ±15V TA = 25°C –40°C ≤ TA ≤ +85°C 400 × OP AMPS 400 × OP AMPS 80 PLASTIC PACKAGE 120 PLASTIC PACKAGE 60 90 S S T T NI NI U U 40 60 20 30 0 00286-005 0 00286-008 –50 –40 –30 –20 –10 0 10 20 30 40 50 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 INPUT OFFSET VOLTAGE, VOS (µV) TCVOS (µV) Figure 5. OP113 Input Offset (VOS) Distribution @ ±15 V Figure 8. OP113 Temperature Drift (TCVOS) Distribution @ ±15 V 500 500 VS = ±15V VS = ±15V TA = 25°C –40°C ≤ TA ≤ +85°C 896 × OP AMPS 896 × OP AMPS 400 PLASTIC PACKAGE 400 PLASTIC PACKAGE 300 300 S S T T NI NI U U 200 200 100 100 0 00286-006 0 00286-009 –100 –80 –60 –40 –20 0 20 40 60 80 100 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 INPUT OFFSET VOLTAGE, VOS (µV) TCVOS (µV) Figure 6. OP213 Input Offset (VOS) Distribution @ ±15 V Figure 9. OP213 Temperature Drift (TCVOS) Distribution @ ±15 V 500 600 VS = ±15V VS = ±15V TA = 25°C –40°C ≤ TA ≤ +85°C 400 1P2L2A0S ×T IOCP P AAMCPKSAGE 500 1P2L2A0S ×T IOCP P AAMCPKSAGE 400 300 S S NIT NIT300 U U 200 200 100 100 0 00286-007 0 00286-010 –60 –40 –20 0 20 40 60 80 100 120 140 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 INPUT OFFSET VOLTAGE, VOS (µV) TCVOS (µV) Figure 7. OP413 Input Offset (VOS) Distribution @ ±15 V Figure 10. OP413 Temperature Drift (TCVOS) Distribution @ ±15 V Rev. F | Page 7 of 24

OP113/OP213/OP413 1000 500 800 400 A) A) n n NT ( VCM = 0V NT ( VS = +5V E 600 E300 R R R R CU CU VS = ±15V BIAS 400 VVSC M= =+ 5+V2.5V BIAS 200 T T U U P P N N I 200 VS = ±15V I100 VCM = 0V 0 00286-011 0 00286-014 –75 –50 –25 0 25 50 75 100 125 –75 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) TEMPERATURE (°C) Figure 11. OP113 Input Bias Current vs. Temperature Figure 14. OP213 Input Bias Current vs. Temperature 5.0 2.0 15.0 VS = 5V 14.5 VS = ±15V R+SL W= I2NkGΩ OSITIVE OUTPUT SWING (V) 434...550 RR++LSLS =WW= 6I2INN0k0GGΩΩ R–SL W= I2NkGΩ 101...550 GATIVE OUTPUT SWING (mV) OSITIVE OUTPUT SWING (V)–1111133234.....50550 R+LS =W 6IN00GΩ R–SL W= I2NkGΩ P –SWING NE P–14.0 –RSLW = I6N0G0Ω 3.0–75 –50 –25 TE0MPERA25TURE (5°0C)RL =7 5600Ω100 1250 00286-012 ––1154..05–75 –50 –25 TE0MPERA25TURE (5°0C) 75 100 12500286-015 Figure 12. Output Swing vs. Temperature and RL @ 5 V Figure 15. Output Swing vs. Temperature and RL @ ±15 V 60 20 40 VTAS == 2±51°5CV 18 VVSO == 53V.9V 20 16 ATION (dB) –200 AIN (V/µV)1124 RL = 2kΩ R G EPA –40 OP 10 S O EL –60 N-L 8 RL = 600Ω N E N –80 P 6 A O H C–100 4 105 –120 00286-013 02 00286-016 10 100 1k 10k 100k 1M 10M –75 –50 –25 0 25 50 75 100 125 FREQUENCY (Hz) TEMPERATURE (°C) Figure 13. Channel Separation Figure 16. Open-Loop Gain vs. Temperature @ 5 V Rev. F | Page 8 of 24

OP113/OP213/OP413 12.5 10 VS = ±15V 9 VS = ±15V RL = 2kΩ VD = ±10V VO = ±10V 10.0 8 µV) µV) 7 RL = 2kΩ V/ V/ N ( 7.5 N ( 6 AI AI G RL = 1kΩ G P P 5 O O O O L 5.0 L 4 N- N- PE RL = 600Ω PE 3 O O RL = 600Ω 2.5 2 0 00286-017 01 00286-020 –75 –50 –25 0 25 50 75 100 125 –75 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) TEMPERATURE (°C) Figure 17. OP413 Open-Loop Gain vs. Temperature Figure 20. OP213 Open-Loop Gain vs. Temperature 100 100 V+ = 5V TA = 25°C 80 VTA– == 025V°C 0 80 VS = ±15V 0 OPEN-LOOP GAIN (dB) 426000 PHASE GAIN θm = 57° 9140355PHASE (Degrees) OPEN-LOOP GAIN (dB) 426000 PHASE GAIN θm = 72° 1943055 PHASE (Degrees) 0 180 0 180 –201k 10k FREQU1E00NkCY (Hz) 1M 10M225 00286-018 –201k 10k FREQU1E0N0kCY (Hz) 1M 10M225 00286-021 Figure 18. Open-Loop Gain, Phase vs. Frequency @ 5 V Figure 21. Open-Loop Gain, Phase vs. Frequency @ ±15 V 50 50 V+ = 5V TA = 25°C 40 VTA– == 025V°C 40 VS = ±15V AV = 100 AV = 100 N (dB)30 N (dB) 30 AI AI G20 G 20 OP AV = 10 OP AV = 10 O O D-L10 D-L 10 CLOSE 0 AV = 1 CLOSE 0 AV = 1 –10 –10 –20 00286-019 –20 00286-052 1k 10k 100k 1M 10M 1k 10k 100k 1M 10M FREQUENCY (Hz) FREQUENCY (Hz) Figure 19. Closed-Loop Gain vs. Frequency @ 5 V Figure 22. Closed-Loop Gain vs. Frequency @ ±15 V Rev. F | Page 9 of 24

OP113/OP213/OP413 70 5 70 5 V+ = 5V V– = 0V VS = ±15V Hz) Hz) ees) 65 4 CT (M ees) 65 GBW 4 CT (M Degr GBW ODU Degr ODU N ( PR N ( θm PR GI 60 3 H GI 60 3 H R T R T MA θm WID MA WID E D E D S N S N PHA 55 2 N BA PHA 55 2 N BA AI AI G G 50–75 –50 –25 TE0MPERA25TURE (5°0C) 75 100 1251 00286-022 50–75 –50 –25 TE0MPERA25TURE (5°0C) 75 100 1251 00286-025 Figure 23. Gain Bandwidth Product and Phase Margin vs. Temperature @ 5 V Figure 26. Gain Bandwidth Product and Phase Margin vs. Temperature @ ±15 V 30 3.0 TA = 25°C TA = 25°C VS = ±15V VS = ±15V Hz) 25 Hz)2.5 GE NOISE DENSITY (nV/ 112500 NT NOISE DENSITY (pA/112...500 A E T R VOL 5 CUR0.5 0 00286-023 0 00286-026 1 10 100 1k 1 10 100 1k FREQUENCY (Hz) FREQUENCY (Hz) Figure 24. Voltage Noise Density vs. Frequency Figure 27. Current Noise Density vs. Frequency 140 140 120 VVTA+– === 025V5V°C 120 TVAS == 2±51°5CV B) B) d d N (100 N (100 O O TI TI C C EJE 80 EJE 80 R R E E OD 60 OD 60 M M N- N- MO 40 MO 40 M M O O C C 20 20 0 00286-024 0 00286-027 100 1k 10k 100k 1M 100 1k 10k 100k 1M FREQUENCY (Hz) FREQUENCY (Hz) Figure 25. Common-Mode Rejection vs. Frequency @ 5 V Figure 28. Common-Mode Rejection vs. Frequency @ ±15 V Rev. F | Page 10 of 24

OP113/OP213/OP413 140 40 TVAS == 2±51°5CV TVAS == 2±51°5CV 120 B) N (d100 30 O UPPLY REJECTI 6800 –PSRR +PSRR MPEDANCE (Ω)20 S I R 40 AV = 100 E 10 W PO 20 AV = 10 0 00286-028 0 AV = 1 00286-031 100 1k 10k 100k 1M 100 1k 10k 100k 1M FREQUENCY (Hz) FREQUENCY (Hz) Figure 29. Power Supply Rejection vs. Frequency @ ±15 V Figure 32. Closed-Loop Output Impedance vs. Frequency @ ±15 V 6 30 VS = 5V VS = ±15V RL = 2kΩ RL = 2kΩ V) 5 TAAV C=L 2 =5 °1C V)25 TAAV O=L 2 =5 °1C G ( G ( WIN 4 WIN20 S S T T U U TP 3 TP15 U U O O M M MU 2 MU10 XI XI A A M M 1 5 0 00286-029 0 00286-032 1k 10k 100k 1M 10M 1k 10k 100k 1M 10M FREQUENCY (Hz) FREQUENCY (Hz) Figure 30. Maximum Output Swing vs. Frequency @ 5 V Figure 33. Maximum Output Swing vs. Frequency @ ±15 V 50 20 %) 344505 VRVATASILVN C ====L 2 521=5Vk0 °Ω10CmV p-p %)111468 VRVTAASILVN C ====L 2 ±21=51k0 °5Ω10CVmV p-p PEODGSIETIVE OT ( 30 OT (12 OVERSHO 2205 NEDEGGAETIVE OVERSHO108 NEDEGGAETIVE 15 PEODGSIETIVE 6 10 4 50 00286-030 02 00286-033 0 100 200 300 400 500 0 100 200 300 400 500 LOAD CAPACITANCE (pF) LOAD CAPACITANCE (pF) Figure 31. Small-Signal Overshoot vs. Load Capacitance @ 5 V Figure 34. Small-Signal Overshoot vs. Load Capacitance @ ±15 V Rev. F | Page 11 of 24

OP113/OP213/OP413 2.0 2.0 VS = 5V VS = ±15V 0.5V ≤ VOUT ≤ 4.0V –10V ≤ VOUT ≤ +10V +SLEW RATE 1.5 1.5 V/µs) +SLEW RATE V/µs) –SLEW RATE E ( E ( AT1.0 AT1.0 R R EW –SLEW RATE EW SL SL 0.5 0.5 0 00286-034 0 00286-037 –75 –50 –25 0 25 50 75 100 125 –75 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) TEMPERATURE (°C) Figure 35. Slew Rate vs. Temperature @ 5 V (0.5 V ≤ VOUT ≤ 4.0 V) Figure 38. Slew Rate vs. Temperature @ ±15 V (–10 V ≤ VOUT ≤ +10.0 V) 1s 1s 100 90 100 90 10 10 0% 0% 20mV 00286-035 20mV 00286-038 Figure 36. Input Voltage Noise @ ±15 V (20 nV/div) Figure 39. Input Voltage Noise @ 5 V (20 nV/div) 5 4 A) 909Ω T (m VS = ±18V VS = ±15V N3 100Ω RE 0.1Hz TO 10Hz UR VS = +5V AV = 1000 Y C2 L P P U AV = 100 tOUT 00286-036 S1 0 00286-039 –75 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) Figure 37. Noise Test Diagram Figure 40. Supply Current vs. Temperature Rev. F | Page 12 of 24

OP113/OP213/OP413 APPLICATIONS The OP113, OP213, and OP413 form a new family of high PHASE REVERSAL performance amplifiers that feature precision performance in The OPx13 family is protected against phase reversal as long as standard dual-supply configurations and, more importantly, both of the inputs are within the supply ranges. However, if maintain precision performance when a single power supply is there is a possibility of either input going below the negative used. In addition to accurate dc specifications, it is the lowest supply (or ground in the single-supply case), the inputs should noise single-supply amplifier available with only 4.7 nV/√Hz be protected with a series resistor to limit input current to 2 mA. typical noise density. OP113 OFFSET ADJUST Single-supply applications have special requirements due to the The OP113 has the facility for external offset adjustment, using generally reduced dynamic range of the output signal. Single- the industry standard arrangement. Pin 1 and Pin 5 are used in supply applications are often operated at voltages of 5 V or 12 V, conjunction with a potentiometer of 10 kΩ total resistance, compared to dual-supply applications with supplies of ±12 V or connected with the wiper to V− (or ground in single-supply ±15 V. This results in reduced output swings. Where a dual- applications). The total adjustment range is about ±2 mV using supply application may often have 20 V of signal output swing, this configuration. single-supply applications are limited to, at most, the supply range and, more commonly, several volts below the supply. Adjusting the offset to 0 has minimal effect on offset drift In order to attain the greatest swing, the single-supply output (assuming the potentiometer has a tempco of less than stage must swing closer to the supply rails than in dual-supply 1000 ppm/°C). Adjustment away from 0, however, (as with all applications. bipolar amplifiers) results in a TCV of approximately OS 3.3 μV/°C for every millivolt of induced offset. The OPx13 family has a new patented output stage that allows the output to swing closer to ground, or the negative supply, It is, therefore, not generally recommended that this trim be than previous bipolar output stages. Previous op amps had used to compensate for system errors originating outside of the outputs that could swing to within about 10 mV of the negative OP113. The initial offset of the OP113 is low enough that supply in single-supply applications. However, the OPx13 external trimming is almost never required, but if necessary, the family combines both a bipolar and a CMOS device in the output 2 mV trim range may be somewhat excessive. Reducing the stage, enabling it to swing to within a few hundred μV of ground. trimming potentiometer to a 2 kΩ value results in a more reasonable range of ±400 μV. When operating with reduced supply voltages, the input range is also reduced. This reduction in signal range results in reduced signal-to-noise ratio for any given amplifier. There are only two ways to improve this: increase the signal range or reduce the noise. The OPx13 family addresses both of these parameters. Input signal range is from the negative supply to within 1 V of the positive supply over the full supply range. Competitive parts have input ranges that are 0.5 V to 5 V less than this. Noise has also been optimized in the OPx13 family. At 4.7 nV/√Hz, the noise is less than one fourth that of competitive devices. Rev. F | Page 13 of 24

OP113/OP213/OP413 APPLICATION CIRCUITS 5V A HIGH PRECISION INDUSTRIAL LOAD-CELL SCALE AMPLIFIER 2 IN The OPx13 family makes an excellent amplifier for 8 + 3 2.5V 6 OUT REF43 1/2 conditioning a load-cell bridge. Its low noise greatly improves 2N2222A 1 OP295 GND 4 – 2 4 the signal resolution, allowing the load cell to operate with a smaller output range, thus reducing its nonlinearity. Figure 41 4V 350Ω R8 R7 5V shows one half of the OPx13 family used to generate a very 35mV 12kΩ 20kΩ FS 8 OUTPUT stable 10 V bridge excitation voltage while the second amplifier 5 + 0V 3.5V 1/2 provides a differential gain. R4 should be trimmed for OP295 7 6 – maximum common-mode rejection. 4 3 + R3 +15V 1/2 20kΩ –15V OP213 1 R4 2 16 2 – R2 100kΩ 1Rk5Ω 8 + 3 +10V 1 14 20kΩ 2N2219A 1 A2 15 OP+21011V/32 – 2 93 4 6AD1518182BQ13 +7 11080µF R1010kΩ 2R.R1Gk5 =Ω 212277R..446ΩΩ 00286-041 R3 Figure 42. Single Supply Strain Gage Amplifier 17.2kΩ R4 3L5O0AΩD 0.1% 500Ω CMRR TRIM A HIGH ACCURACY LINEARIZED RTD CELL 1T0.C-T. ULRENSS THAN 50ppm/°C THERMOMETER AMPLIFIER 6 – 100mV F.S. A1 7 OUTPUT Zero suppressing the bridge facilitates simple linearization of 5 + 4 1/2 0 10V OP213 FS the resistor temperature device (RTD) by feeding back a small –15V amount of the output signal to the RTD. In Figure 43, the left 107R..121%kΩ 300R.112%Ω 00286-040 lAegm opfl itfhieer b Ari1d, gaen ids tsheerv roigehdt t loe ga ovfi rtthuea lb grirdoguen ids vseorltvaogeed b tyo 0 V Figure 41. Precision Load-Cell Scale Amplifier by Amplifier A2. This eliminates any error resulting from common-mode voltage change in the amplifier. A 3-wire RTD A LOW VOLTAGE, SINGLE SUPPLY STRAIN GAGE is used to balance the wire resistance on both legs of the bridge, AMPLIFIER thereby reducing temperature mismatch errors. The 5 V bridge The true zero swing capability of the OPx13 family allows the excitation is derived from the extremely stable AD588 reference amplifier in Figure 42 to amplify the strain gage bridge device with 1.5 ppm/°C drift performance. accurately even with no signal input while being powered by a Linearization of the RTD is done by feeding a fraction of the single 5 V supply. A stable 4 V bridge voltage is made possible output voltage back to the RTD in the form of a current. With by the rail-to-rail OP295 amplifier, whose output can swing to just the right amount of positive feedback, the amplifier output within a millivolt of either rail. This high voltage swing greatly will be linearly proportional to the temperature of the RTD. increases the bridge output signal without a corresponding increase in bridge input. Rev. F | Page 14 of 24

OP113/OP213/OP413 –15V +15V 5V 12V 2 REF02EZ 6 11 16 2 0.1µF+ 4 R1 R5 12R49kΩ 12 14 10.7kΩ 40.2kΩ 12V 15 1N4148 10µF 13 AD588BQ + D1 0.1µF 4 1 R3 RG FULL SCALE ADJUST R2 R8 + 6 3 50Ω R2 R5 R7 K-TYPE – – 2.74kΩ 453Ω 2 – 8 10µF+7 9 8 10 R8.125kΩ 8.25kΩ 4.02k+Ω15V100Ω THERMO4C0.O7UµVP/L°CE + + 200RΩ6 3O+P1/24213 10(0V° CT OT O1 01V000°C) R4 R3 1R0T0ΩD RRWW12 R1040Ω 65 +–A248 OP172/213 V–+15O.VU5 TV= (=+1 50–0m105V°0C/°°CC) Figure 44. A5.c62ckuΩrate K53-T.6yΩpe Thermocouple Amplifier 00286-043 R6 should be adjusted for a 0 V output with the thermocouple –15V R9 measuring tip immersed in a 0°C ice bath. When calibrating, be RW3 R8 5kΩ 49.9kΩ LINEARITY sure to adjust R6 initially to cause the output to swing in the ADJUST @1/2 FS positive direction first. Then back off in the negative direction 2 – A1 1 until the output just stops changing. 3 +OP12/213 00286-042 AINNS TURLUTRMAELNOTWAT NIOONIS AE,M SPINLGIFLIEER S UPPLY Figure 43. Ultraprecision RTD Amplifier Extremely low noise instrumentation amplifiers can be built To calibrate the circuit, first immerse the RTD in a 0°C ice bath using the OPx13 family. Such an amplifier that operates from a or substitute an exact 100 Ω resistor in place of the RTD. Adjust single supply is shown in Figure 45. Resistors R1 to R5 should the zero adjust potentiometer for a 0 V output, and then set R9, be of high precision and low drift type to maximize CMRR linearity adjust potentiometer, to the middle of its adjustment performance. Although the two inputs are capable of operating range. Substitute a 280.9 Ω resistor (equivalent to 500°C) in to 0 V, the gain of −100 configuration limits the amplifier input place of the RTD, and adjust the full-scale adjust potentiometer common-mode voltage to 0.33 V. for a full-scale voltage of 5 V. 5V TO 36V To calibrate out the nonlinearity, substitute a 194.07 Ω resistor (equivalent to 250°C) in place of the RTD, and then adjust the + + 1/2 linearity adjust potentiometer for a 2.5 V output. Check and VIN OP213 VOUT – + – readjust the full-scale and half-scale as needed. 1/2 OP213 Once calibrated, the amplifier outputs a 10 mV/°C temperature *R1 – *R2 *R3 *R4 10kΩ 10kΩ 10kΩ 10kΩ coefficient with an accuracy better than ±0.5°C over an RTD measurement range of −150°C to +500°C. Indeed the amplifier *RG 20kΩ cAa nH bIGe cHal iAbrCaCteUd RtoA aC hYig hTeHr EteRmMpeOraCtuOreU rPanLgEe ,A uMp tPoL 8I5F0I°ECR. *ALL RESISTORS ±0.1%, ±2(52p0p0mΩ /+°C 1.2.7Ω) GAIN = R G + 6 00286-044 Figure 45. Ultralow Noise, Single Supply Instrumentation Amplifier Figure 44 shows a popular K-type thermocouple amplifier with SUPPLY SPLITTER CIRCUIT cold-junction compensation. Operating from a single 12 V The OPx13 family has excellent frequency response supply, the OPx13 family’s low noise allows temperature characteristics that make it an ideal pseudoground reference measurement to better than 0.02°C resolution over a 0°C to generator, as shown in Figure 46. The OPx13 family serves as a 1000°C range. The cold-junction error is corrected by using an voltage follower buffer. In addition, it drives a large capacitor inexpensive silicon diode as a temperature measuring device. that serves as a charge reservoir to minimize transient load It should be placed as close to the two terminating junctions as changes, as well as a low impedance output device at high physically possible. An aluminum block might serve well as an isothermal system. frequencies. The circuit easily supplies 25 mA load current with good settling characteristics. Rev. F | Page 15 of 24

OP113/OP213/OP413 VS+ = 5V 12V R3 5V 2.5kΩ – 5V 10µF C1 + 8 0.1µF 2 – 2 5kRΩ1 IN OP12/213 1 O2.U5VTPUT 10kΩ 10kΩ R2 32 +–OP12/84213 1 10R04Ω +C1µ2F V2S+OUTPUT RGEON4FUD4T3 6 Figure 47. Low+C1 N02µoFise3 Vo+ltag4e Refe3reµnVc pe- p NOISE 00286-046 5kΩ 00286-045 5 V ONLY STEREO DAC FOR MULTIMEDIA Figure 46. False Ground Generator The OPx13 family’s low noise and single supply capability are LOW NOISE VOLTAGE REFERENCE ideally suited for stereo DAC audio reproduction or sound Few reference devices combine low noise and high output drive synthesis applications such as multimedia systems. Figure 48 capabilities. Figure 47 shows the OPx13 family used as a two- shows an 18-bit stereo DAC output setup that is powered from a pole active filter that band limits the noise of the 2.5 V reference. single 5 V supply. The low noise preserves the 18-bit dynamic Total noise measures 3 μV p-p. range of the AD1868. For DACs that operate on dual supplies, the OPx13 family can also be powered from the same supplies. 5VSUPPLY AD1868 VBL 1 VL 16 2 LL 1D8-ABCIT – 15 3 + 1/28 220µF LEFT + 7.68kΩ 9.76kΩ OP213 1 + – COHUATNPUNTEL 3 DLS1RE8ER-BGIAIT.L VOL 14 330pF + 2 – 4 47kΩ 4 CK VREF 13 100pF DR 5 AGND 12 7.68kΩ 18-BIT 6 LR SREERGIA.L VREF 11 7.68kΩ DGND + VOR 7 – 10 100pF 18-BIT DAC 7.68kΩ 9.76kΩ 8 VBR VS 9 330pF + 6 –OP1/2213 7 +220–µF RCOIHUGATHNPTUNTEL 5 + 47kΩ 00286-047 Figure 48. 5 V Only 18-Bit Stereo DAC Rev. F | Page 16 of 24

OP113/OP213/OP413 LOW VOLTAGE HEADPHONE AMPLIFIERS 10kΩ 5V Figure 49 shows a stereo headphone output amplifier for the AD1849 16-bit SOUNDPORT® stereo codec device.1 The – 1/2 pseudo-reference voltage is derived from the common-mode LEFT 10µ+F 50Ω O+P213 17 MINL ELECTRET voltage generated internally by the AD1849, thus providing a CONDENSER convenient bias for the headphone output amplifiers. INPMUICT 20Ω 10kΩ 100Ω AD1849 OPTIONAL 5V G1AkΩIN 5kΩ – 19 CMOUT VREF OP12/213 5V + 100Ω 10µF LOUT1L 31 10kΩ LC OVNOTLRUOMLE +–OP1/2213 16Ω 2+20µF HLEEFATDPHONE 20Ω10µ+F 501Ω0kΩ + 1/2 47kΩ OP213 15MINR RIGHT ELECTRET – AD1849 5V CONDEINNSPMEUIRCT 10kΩ 00286-049 1/2 – Figure 50. Low Noise Stereo Microphone Amplifier for Multimedia Sound VREF OP213 Codec + PRECISION VOLTAGE COMPARATOR CMOUT 19 With its PNP inputs and 0 V common-mode capability, the 10kΩ –1/2 16Ω 2+20µF HEADPHONE OPx13 family can make useful voltage comparators. There is OP213 RIGHT only a slight penalty in speed in comparison to IC comparators. LOUT1R 29 + 10µF 47kΩ However, the significant advantage is its voltage accuracy. For R VOLUME CONTROL 5kΩ example, VOS can be a few hundred microvolts or less, combined 1kΩ OPTIONAL with CMRR and PSRR exceeding 100 dB, while operating from VREFGAIN 00286-048 ao p5e Vra tseu popnl y5. VS,t abnudt anrodt cwoimthp caoramtomrso lnik me othdee 1a1t 1g/r3o1u1n fda,m niolyr with Figure 49. Headphone Output Amplifier for Multimedia Sound Codec offset below 3 mV. Indeed, no commercially available single- LOW NOISE MICROPHONE AMPLIFIER FOR supply comparator has a V less than 200 μV. OS MULTIMEDIA The OPx13 family is ideally suited as a low noise microphone preamp for low voltage audio applications. Figure 50 shows a gain of 100 stereo preamp for the AD1849 16-bit SOUNDPORT 1 SOUNDPORT is a registered trademark of Analog Devices, Inc. stereo codec chip. The common-mode output buffer serves as a phantom power driver for the microphones. Rev. F | Page 17 of 24

OP113/OP213/OP413 Figure 51 shows the OPx13 family response to a 10 mV The low noise and 250 μV (maximum) offset voltage enhance overdrive signal when operating in open loop. The top trace the overall dc accuracy of this type of comparator. Note that zero- shows the output rising edge has a 15 μs propagation delay, crossing detectors and similar ground referred comparisons can be whereas the bottom trace shows a 7 μs delay on the output implemented even if the input swings to −0.3 V below ground. falling edge. This ac response is quite acceptable in many applications. ±10mV OVERDRIVE 5V +IN +2.5V 25kΩ 9V 9V 0V + OUT 1/2 –2.5V 100Ω OP113 –IN tr =tf = 5ms – 2V 5µs 100 90 00286-051 Figure 52. OP213 Simplified Schematic 10 0% 2V 00286-050 Figure 51. Precision Comparator Rev. F | Page 18 of 24

OP113/OP213/OP413 OUTLINE DIMENSIONS 0.400 (10.16) 0.365 (9.27) 0.355 (9.02) 8 5 0.280 (7.11) 0.250 (6.35) 1 4 0.240 (6.10) 0.325 (8.26) 0.310 (7.87) 0.100 (2.54) 0.300 (7.62) BSC 0.060 (1.52) 0.195 (4.95) 0.210 (5.33) MAX 0.130 (3.30) MAX 0.115 (2.92) 0.015 0.150 (3.81) (0.38) 0.015 (0.38) 0.130 (3.30) MIN GAUGE 0.115 (2.92) SEATING PLANE 0.014 (0.36) PLANE 0.010 (0.25) 0.022 (0.56) 0.008 (0.20) 0.005 (0.13) 0.430 (10.92) 0.018 (0.46) MIN MAX 0.014 (0.36) 0.070 (1.78) 0.060 (1.52) 0.045 (1.14) COMPLIANTTO JEDEC STANDARDS MS-001 CONTROLLING DIMENSIONSARE IN INCHES; MILLIMETER DIMENSIONS (RCINEOFRPEANRERERENN LCTEEHA EODSNSEL MSY)AAAYNR BDEE AR CROOEU NNNFODIGETUDAR-POEPFDRFOA INSPC RWHIAH ETOEQL UFEIO VORAR LU EHSNAETL ISFN FLDOEEARSDIGSN.. 070606-A Figure 53. 8-Lead Plastic Dual In-Line Package [PDIP] Narrow Body P-Suffix (N-8) Dimensions shown in inches and (millimeters) 5.00(0.1968) 4.80(0.1890) 8 5 4.00 (0.1574) 6.20 (0.2441) 3.80 (0.1497) 1 4 5.80 (0.2284) 1.27 (0.0500) 0.50 (0.0196) BSC 1.75 (0.0688) 0.25 (0.0099) 45° 0.25 (0.0098) 1.35 (0.0532) 8° 0.10 (0.0040) 0° COPLANARITY 0.51 (0.0201) 0.10 SEATING 0.31 (0.0122) 0.25 (0.0098) 10..2470 ((00..00510507)) PLANE 0.17 (0.0067) COMPLIANTTO JEDEC STANDARDS MS-012-AA C(RINOEFNPETARRREOENNLCLTEIHN EOGSN DELSIYM)AEANNRDSEI AORRNOESU NANORDEET DAIN-PO MPFRIFLO LMPIIMRLELIATIMTEEER TFSEO; RIRN ECUQHSU EDI VIINMA LEDENENSSTIIOGSN NFS.OR 012407-A Figure 54. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body S-Suffix (R-8) Dimensions shown in millimeters and (inches) Rev. F | Page 19 of 24

OP113/OP213/OP413 10.50 (0.4134) 10.10 (0.3976) 16 9 7.60 (0.2992) 7.40 (0.2913) 1 10.65 (0.4193) 8 10.00 (0.3937) 1.27 (0.0500) 0.75 (0.0295) BSC 2.65 (0.1043) 0.25 (0.0098) 45° 0.30 (0.0118) 2.35 (0.0925) 8° 0.10 (0.0039) 0° COPLANARITY 0.10 0.51 (0.0201) SPLEAATNIENG 0.33 (0.0130) 1.27 (0.0500) 0.31 (0.0122) 0.20 (0.0079) 0.40 (0.0157) COMPLIANTTO JEDEC STANDARDS MS-013-AA C(RINOEFNPEATRRREOENNLCLTEIHN EOGSN EDLSIYM)AEANNRDSEI AORRNOESU NANORDEET DAIN-PO MPFRIFLO LMPIIMRLELIATIMTEEER TFSEO; RIRN ECUQHSU EDI VIINMA LEDENENSSTIIOGSN NFS.OR 030707-B Figure 55. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body S-Suffix (RW-16) Dimensions shown in millimeters and (inches) ORDERING GUIDE Model Temperature Range Package Description Package Options OP113ES −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP113ES-REEL −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP113ES-REEL7 −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP113ESZ1 −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP113ESZ-REEL1 −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP113ESZ-REEL71 −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP113FS −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP113FS-REEL −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP113FS-REEL7 −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP113FSZ1 −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP113FSZ-REEL1 −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP113FSZ-REEL71 −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP213ES −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP213ES-REEL −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP213ES-REEL7 −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP213ESZ1 −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP213ESZ-REEL1 −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP213ESZ-REEL71 −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP213FP −40°C to +85°C 8-Lead PDIP N-8 (P-Suffix) OP213FPZ1 −40°C to +85°C 8-Lead PDIP N-8 (P-Suffix) OP213FS −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP213FS-REEL −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP213FS-REEL7 −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP213FSZ1 −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP213FSZ-REEL1 −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) OP213FSZ-REEL71 −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix) Rev. F | Page 20 of 24

OP113/OP213/OP413 Model Temperature Range Package Description Package Options OP413ES −40°C to +85°C 16-Lead Wide Body SOIC_W RW-16 (S-Suffix) OP413ES-REEL −40°C to +85°C 16-Lead Wide Body SOIC_W RW-16 (S-Suffix) OP413ESZ1 −40°C to +85°C 16-Lead Wide Body SOIC_W RW-16 (S-Suffix) OP413ESZ-REEL1 −40°C to +85°C 16-Lead Wide Body SOIC_W RW-16 (S-Suffix) OP413FS −40°C to +85°C 16-Lead Wide Body SOIC_W RW-16 (S-Suffix) OP413FS-REEL −40°C to +85°C 16-Lead Wide Body SOIC_W RW-16 (S-Suffix) OP413FSZ1 −40°C to +85°C 16-Lead Wide Body SOIC_W RW-16 (S-Suffix) OP413FSZ-REEL1 −40°C to +85°C 16-Lead Wide Body SOIC_W RW-16 (S-Suffix) 1 Z = RoHS Compliant Part. Rev. F | Page 21 of 24

OP113/OP213/OP413 NOTES Rev. F | Page 22 of 24

OP113/OP213/OP413 NOTES Rev. F | Page 23 of 24

OP113/OP213/OP413 NOTES ©1993–2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C00286-0-3/07(F) Rev. F | Page 24 of 24

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: A nalog Devices Inc.: OP113ESZ-REEL OP413FSZ OP213ESZ OP213FSZ-REEL OP213ES OP213FSZ OP413ESZ OP213ESZ-REEL OP113ES-REEL7 OP213FS-REEL7 OP113FSZ-REEL OP213FPZ OP113FSZ-REEL7 OP413FSZ-REEL OP213FS OP113ESZ-REEL7 OP213ES-REEL7 OP213FSZ-REEL7 OP113ES OP213ESZ-REEL7 OP113FSZ OP113ESZ OP413ESZ-REEL