图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: NCP4680DSQ18T1G
  • 制造商: ON Semiconductor
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

NCP4680DSQ18T1G产品简介:

ICGOO电子元器件商城为您提供NCP4680DSQ18T1G由ON Semiconductor设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 提供NCP4680DSQ18T1G价格参考以及ON SemiconductorNCP4680DSQ18T1G封装/规格参数等产品信息。 你可以下载NCP4680DSQ18T1G参考资料、Datasheet数据手册功能说明书, 资料中有NCP4680DSQ18T1G详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC REG LDO 1.8V 0.15A SC70低压差稳压器 150 mA LDO Wide Voltage Input

产品分类

PMIC - 稳压器 - 线性

品牌

ON Semiconductor

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

电源管理 IC,低压差稳压器,ON Semiconductor NCP4680DSQ18T1G-

数据手册

点击此处下载产品Datasheet

产品型号

NCP4680DSQ18T1G

产品种类

低压差稳压器

供应商器件封装

SC-70

其它名称

NCP4680DSQ18T1G-ND
NCP4680DSQ18T1GOSTR

包装

带卷 (TR)

商标

ON Semiconductor

回动电压—最大值

250 mV

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

6-TSSOP(5 引线),SC-88A,SOT-353

封装/箱体

SC-70-5

工作温度

-40°C ~ 85°C

工厂包装数量

3000

最大功率耗散

380 mW

最大输入电压

6 V

标准包装

3,000

电压-跌落(典型值)

0.33V @ 150mA

电压-输入

最高 5.25V

电压-输出

1.8V

电压调节准确度

1 %

电流-输出

150mA

电流-限制(最小值)

-

稳压器拓扑

正,固定式

稳压器数

1

系列

NCP4680

负载调节

30 mV

输出电压

1.8 V

输出电流

150 mA

输出端数量

1 Output

输出类型

Adjustable

推荐商品

型号:1.5SMC36A

品牌:Littelfuse Inc.

产品名称:电路保护

获取报价

型号:SC4524SETRT

品牌:Semtech Corporation

产品名称:集成电路(IC)

获取报价

型号:MC8640DHX1250HC

品牌:NXP USA Inc.

产品名称:集成电路(IC)

获取报价

型号:RC0603FR-07110RL

品牌:Yageo

产品名称:电阻器

获取报价

型号:MAX3030ECUE+T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:ATP304-TL-H

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:CRCW060327K0JNEAHP

品牌:Vishay Dale

产品名称:电阻器

获取报价

型号:TPS77018DBVRG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
NCP4680DSQ18T1G 相关产品

ECJ-3YB1E106M

品牌:Panasonic Electronic Components

价格:

LM3674MFX-ADJ

品牌:Texas Instruments

价格:

SN75374N

品牌:Texas Instruments

价格:¥11.32-¥23.09

NSI45035JZT1G

品牌:ON Semiconductor

价格:

VS-3EJH01-M3/6B

品牌:Vishay Semiconductor Diodes Division

价格:

LT3013MPFE#PBF

品牌:Linear Technology/Analog Devices

价格:

168105K50G-F

品牌:Cornell Dubilier Electronics (CDE)

价格:

M80-8430642

品牌:Harwin Inc.

价格:¥7.06-¥8.10

PDF Datasheet 数据手册内容提取

NCP4680 150 mA, Low Noise Low Dropout Regulator The NCP4680 is a CMOS linear voltage regulator with 150 mA output current capability. The device is available in a tiny 0.8x0.8 mm XDFN, and has high output voltage accuracy, low supply current and high ripple rejection. The NCP4680 is easy to use and includes output http://onsemi.com current fold−back protection. A Chip Enable function is included to MARKING save power by lowering supply current. The line and load transient DIAGRAMS responses are very good, making this regulator ideal for use as a power supply for communication equipment. XXX Features XMM • SC−70 Operating Input Voltage Range: 1.40 V to 5.25 V CASE 419A • Output Voltage Range: 0.8 V to 3.6 V (available in 0.1 V steps) • Output Voltage Accuracy: ±1.0% • Supply Current: 50 (cid:2)A typical • Dropout Voltage: 0.25 V (I = 150 mA, V = 2.5 V) OUT OUT XX • High PSRR: 75 dB (f = 1 kHz, VOUT = 2.5 V) SOT−23−5 M • Line Regulation: 0.02%/V Typ. CASE 1212 • Stable with Ceramic Capacitors: 0.1 (cid:2)F or more • Current Fold Back Protection XM • Available in XDFN4 0.8 x 0.8 mm, SC−70, SOT23 Packages 1 M • 1 These are Pb−Free Devices XDFN4 CASE 711AB Typical Applications • Battery−powered Equipment • XX, XXX= Specific Device Code Networking and Communication Equipment M, MM = Date Code • Cameras, DVRs, STB and Camcorders A = Assembly Location • Y = Year Home Appliances W = Work Week (cid:2) = Pb−Free Package NCP4680x VIN VOUT (Note: Microdot may be in either location) VIN VOUT CE ORDERING INFORMATION C1 GND C2 See detailed ordering and shipping information in the package 100n 100n dimensions section on page 17 of this data sheet. Figure 1. Typical Application Schematic © Semiconductor Components Industries, LLC, 2011 1 Publication Order Number: June, 2011 − Rev. 1 NCP4680/D

NCP4680 VIN VOUT VIN VOUT Vref Vref Current Limit Current Limit CE CE GND GND NCP4680Hxxxx NCP4680Dxxxx Figure 2. Simplified Schematic Block Diagram PIN FUNCTION DESCRIPTION Pin No. Pin No. Pin No. XDFN4* SC−70 SOT23 Pin Name Description 1 4 5 VOUT Output pin 2 3 2 GND Ground 3 1 3 CE Chip enable pin (Active “H”) 4 5 1 VIN Input pin − 2 4 NC No connection *Tab is GND level. (They are connected to the reverse side of this IC. The tab is better to be connected to the GND, but leaving it open is also acceptable. ABSOLUTE MAXIMUM RATINGS Rating Symbol Value Unit Input Voltage (Note 1) VIN 6.0 V Output Voltage VOUT −0.3 to VIN + 0.3 V Chip Enable Input VCE 6.0 V Output Current IOUT 180 mA Power Dissipation XDFN0808 286 mW Power Dissipation SC−70 PD 380 Power Dissipation SOT23 420 Junction Temperature T −40 to 150 °C J Storage Temperature T −55 to 125 °C STG ESD Capability, Human Body Model (Note 2) ESD 2000 V HBM ESD Capability, Machine Model (Note 2) ESD 200 V MM Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area. 2. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114) ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115) Latch−up Current Maximum Rating tested per JEDEC standard: JESD78. http://onsemi.com 2

NCP4680 THERMAL CHARACTERISTICS Rating Symbol Value Unit Thermal Characteristics, XDFN 0.8 x 0.8 mm R(cid:3)JA 350 °C/W Thermal Resistance, Junction−to−Air Thermal Characteristics, SOT23 R(cid:3)JA 238 °C/W Thermal Resistance, Junction−to−Air Thermal Characteristics, SC−70 R(cid:3)JA 263 °C/W Thermal Resistance, Junction−to−Air ELECTRICAL CHARACTERISTICS −40°C ≤ TA ≤ 85°C; VIN = VOUT(NOM) + 1 V or 2.5 V, whichever is greater; IOUT = 1 mA, CIN = COUT = 0.1 (cid:2)F, unless otherwise noted. Typical values are at TA = +25°C. Parameter Test Conditions Symbol Min Typ Max Unit Operating Input Voltage VIN 1.40 5.25 V Output Voltage TA = +25 °C VOUT ≥ 1.8 V VOUT x0.99 x1.01 V VOUT < 1.8 V −18 18 mV −40°C ≤ TA ≤ 85°C VOUT ≥ 1.8 V x0.985 x1.015 V VOUT < 1.8 V −50 50 mV Output Voltage Temp. Coefficient −40°C ≤ TA ≤ 85°C VOUT ≥ 1.8 V (cid:4)VOUT/(cid:4)TA ±30 ppm/°C VOUT < 1.8 V ±100 Line Regulation VOUT(NOM) + 0.5 V ≤ VIN ≤ 5.25 V, VIN ≥ 1.4 V LineReg 0.02 0.10 %/V Load Regulation IOUT = 1 mA to 150 mA LoadReg 5 30 mV Dropout Voltage IOUT = 150 mA VOUT = 0.8 V VDO 0.70 1.00 V VOUT = 0.9 V 0.62 0.91 1.0 V ≤ VOUT < 1.2 V 0.56 0.82 1.2 V ≤ VOUT < 1.4 V 0.47 0.67 1.4 V ≤ VOUT < 1.8 V 0.39 0.54 1.8 V ≤ VOUT < 2.1 V 0.33 0.48 2.1 V ≤ VOUT < 2.5 V 0.28 0.40 2.5 V ≤ VOUT < 3.0 V 0.25 0.35 3.0 V ≤ VOUT < 3.6 V 0.23 0.32 Output Current IOUT 150 mA Short Current Limit VOUT = 0 V ISC 40 mA Quiescent Current IQ 50 70 (cid:2)A Standby Current VCE = 0 V, TA = 25°C ISTB 0.1 1.0 (cid:2)A CE Pin Threshold Voltage CE Input Voltage “H” VCEH 1.0 V CE Input Voltage “L” VCEL 0.4 CE Pull Down Current ICEPD 0.3 (cid:2)A Power Supply Rejection Ratio VIN = VOUT + 1 V, (cid:4)VIN = 0.2 Vpk−pk, PSRR 75 dB IOUT = 30 mA, f = 1 kHz Output Noise Voltage f = 10 Hz to 100 kHz, VOUT ≥ 1.8 V VN 20 x (cid:2)Vrms IOUT = 30 mA VOUT VOUT < 1.8 V 40 x VOUT Low Output N−channel Tr. On Res- VIN = 4 V, VCE = 0 V RLOW 60 (cid:5) istance Minimum Start−up Equivalent Res- VOUT ≤ 1.8 V (Note 3) RSUMIN 13 * (cid:5) istance VOUT VOUT > 1.8 V 6.7 * VOUT 3. See Current Limit paragraph in application part for explanation. http://onsemi.com 3

NCP4680 TYPICAL CHARACTERISTICS 0.9 2.0 0.8 1.8 2.8 V 4.8 V 0.7 VIN = 1.4 V 1.6 V 1.6 VIN = 2.2 V 1.5 V 1.4 2.8 V 0.6 V) 0.5 1.8 V V) 1.2 3.8 V (T (T 1.0 5.25 V U U O 0.4 O V V 0.8 0.3 0.6 0.2 4.8 V 3.8 V 0.4 0.1 0.2 0.0 0.0 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 400 IOUT (mA) IOUT (mA) Figure 3. Output Voltage vs. Output Current Figure 4. Output Voltage vs. Output Current 0.8 V Version (T = 25(cid:2)C) 1.8 V Version (T = 25(cid:2)C) J J 3.0 3.5 5.25 V 5.25 V 2.5 VIN = 3 V 3.0 VIN = 3.5 V 4.5 V 4.5 V 3.2 V 2.5 2.0 3.6 V V) 3.5 V V) 2.0 (T 1.5 (T U U O O 1.5 V V 1.0 1.0 0.5 0.5 0.0 0.0 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 IOUT (mA) IOUT (mA) Figure 5. Output Voltage vs. Output Current Figure 6. Output Voltage vs. Output Current 2.8 V Version (T = 25(cid:2)C) 3.3 V Version (T = 25(cid:2)C) J J 0.8 0.40 0.7 0.35 0.6 TJ = 85°C 0.30 TJ = 85°C 0.5 0.25 V) 25°C V) (DO 0.4 −40°C (DO0.20 25°C V V 0.3 0.15 −40°C 0.2 0.10 0.1 0.05 0 0 0 25 50 75 100 125 150 0 25 50 75 100 125 150 IOUT (mA) IOUT (mA) Figure 7. Dropout Voltage vs. Output Current Figure 8. Dropout Voltage vs. Output Current 0.8 V Version 1.8 V Version http://onsemi.com 4

NCP4680 TYPICAL CHARACTERISTICS 0.30 0.30 0.25 0.25 0.20 0.20 TJ = 85°C V) V) V (DO 0.15 25°C V (DO 0.15 TJ = 85°C 0.10 −40°C 0.10 25°C −40°C 0.05 0.05 0 0 0 25 50 75 100 125 150 0 25 50 75 100 125 150 IOUT (mA) IOUT (mA) Figure 9. Dropout Voltage vs. Output Current Figure 10. Dropout Voltage vs. Output Current 2.8 V Version 3.3 V Version 0.85 1.85 0.84 VIN = 1.8 V 1.84 VIN = 2.8 V 0.83 1.83 0.82 1.82 V) 0.81 V) 1.81 (T0.80 (T 1.80 U U O O V 0.79 V 1.79 0.78 1.78 0.77 1.77 0.76 1.76 0.75 1.75 −40 −20 0 20 40 60 80 −40 −20 0 20 40 60 80 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 11. Output Voltage vs. Temperature, Figure 12. Output Voltage vs. Temperature, 0.8 V Version 1.8 V Version 2.85 3.35 2.84 VIN = 3.8 V 3.34 VIN = 4.3 V 2.83 3.33 2.82 3.32 V) 2.81 V) 3.31 (T2.80 (T 3.30 U U O O V 2.79 V 3.29 2.78 3.28 2.77 3.27 2.76 3.26 2.75 3.25 −40 −20 0 20 40 60 80 −40 −20 0 20 40 60 80 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 13. Output Voltage vs. Temperature, Figure 14. Output Voltage vs. Temperature, 2.8 V Version 3.3 V Version http://onsemi.com 5

NCP4680 TYPICAL CHARACTERISTICS 120 140 120 100 100 80 A) A) 80 (cid:2) (cid:2) (D 60 (D N N 60 G G I I 40 40 20 20 0 0 0 1 2 3 4 5 0 1 2 3 4 5 VIN, INPUT VOLTAGE (V) VIN, INPUT VOLTAGE (V) Figure 15. Supply Current vs. Input Voltage, Figure 16. Supply Current vs. Input Voltage, 0.8 V Version 1.8 V Version 140 140 120 120 100 100 A) 80 A) 80 (cid:2) (cid:2) (D (D N 60 N 60 G G I I 40 40 20 20 0 0 0 1 2 3 4 5 0 1 2 3 4 5 VIN, INPUT VOLTAGE (V) VIN, INPUT VOLTAGE (V) Figure 17. Supply Current vs. Input Voltage, Figure 18. Supply Current vs. Input Voltage, 2.8 V Version 3.3 V Version 60 60 55 55 A) A) (cid:2) (cid:2) (D 50 (D 50 N N G G I I 45 45 40 40 −40 −20 0 20 40 60 80 −40 −20 0 20 40 60 80 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 19. Supply Current vs. Temperature, Figure 20. Supply Current vs. Temperature, 0.8 V Version 1.8 V Version http://onsemi.com 6

NCP4680 TYPICAL CHARACTERISTICS 60 60 55 55 A) A) (cid:2) (cid:2) (D 50 (D 50 N N G G I I 45 45 40 40 −40 −20 0 20 40 60 80 −40 −20 0 20 40 60 80 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 21. Supply Current vs. Temperature, Figure 22. Supply Current vs. Temperature, 2.8 V Version 3.3 V Version 0.9 2.0 0.8 1.8 0.7 1.6 1.4 0.6 1 mA V) 0.5 V) 1.2 (T (T 1.0 OU 0.4 30 mA OU 1 mA V V 0.8 0.3 IOUT = 50 mA 0.6 30 mA 0.2 0.4 IOUT = 50 mA 0.1 0.2 0 0 0 1 2 3 4 5 0 1 2 3 4 5 VIN, INPUT VOLTAGE (V) VIN, INPUT VOLTAGE (V) Figure 23. Output Voltage vs. Input Voltage, Figure 24. Output Voltage vs. Input Voltage, 0.8 V Version 1.8 V Version 3.0 3.5 3.0 2.5 2.5 2.0 V) V) 2.0 (T 1.5 (T U U O O 1.5 V V 1.0 1 mA 30 mA 1.0 1 mA 30 mA 0.5 IOUT = 50 mA 0.5 IOUT = 50 mA 0 0.0 0 1 2 3 4 5 0 1 2 3 4 5 VIN, INPUT VOLTAGE (V) VIN, INPUT VOLTAGE (V) Figure 25. Output Voltage vs. Input Voltage, Figure 26. Output Voltage vs. Input Voltage, 2.8 V Version 3.3 V Version http://onsemi.com 7

NCP4680 TYPICAL CHARACTERISTICS 120 120 100 100 IOUT = 1 mA IOUT = 1 mA 30 mA 80 80 B) B) 30 mA d d R ( 60 R ( 60 R R 150 mA PS 150 mA PS 40 40 20 20 0 0 0.1 1 10 100 1000 0.1 1 10 100 1000 FREQUENCY (kHz) FREQUENCY (kHz) Figure 27. PSRR, 0.8 V Version, V = 1.8 V Figure 28. PSRR, 1.8 V Version, V = 2.8 V IN IN 120 120 100 100 IOUT = 1 mA IOUT = 1 mA 30 mA 30 mA 80 80 B) B) d d R ( 60 R ( 60 R 150 mA R S S 150 mA P P 40 40 20 20 0 0 0.1 1 10 100 1000 0.1 1 10 100 1000 FREQUENCY (kHz) FREQUENCY (kHz) Figure 29. PSRR, 2.8 V Version, V = 3.8 V Figure 30. PSRR, 3.3 V Version, V = 4.3 V IN IN 2.5 2.5 2.0 2.0 z) z) H1.5 H 1.5 √ √ /s /s m m Vr Vr (cid:2) (N1.0 (cid:2) (N 1.0 V V 0.5 0.5 0 0.1 0.01 0.1 1 10 100 1000 0.01 0.1 1 10 100 1000 FREQUENCY (kHz) FREQUENCY (kHz) Figure 31. Output Voltage Noise, 0.8 V Version, Figure 32. Output Voltage Noise, 1.8 V Version, V = 1.8 V V = 2.8 V IN IN http://onsemi.com 8

NCP4680 TYPICAL CHARACTERISTICS 4.0 5.0 4.5 3.5 4.0 3.0 3.5 Hz) 2.5 Hz) 3.0 √ √ /s /s m 2.0 m 2.5 Vr Vr (cid:2) (N 1.5 (cid:2) (N 2.0 V V 1.5 1.0 1.0 0.5 0.5 0 0 0.01 0.1 1 10 100 1000 0.01 0.1 1 10 100 1000 FREQUENCY (kHz) FREQUENCY (kHz) Figure 33. Output Voltage Noise, 2.8 V Version, Figure 34. Output Voltage Noise, 3.3 V Version, V = 3.8 V V = 4.3 V IN IN 3.3 2.8 2.3 1.8 (V)UT 1.3 (V)N O VI V 0.801 0.800 0.799 0.798 0.797 0 10 20 30 40 50 60 70 80 90 100 t ((cid:2)s) Figure 35. Line Transients, 0.8 V Version, t = t = 5 (cid:2)s, I = 30 mA R F OUT 4.3 3.8 3.3 2.8 2.3 (V)UT (V)N O VI V 1.801 1.800 1.799 1.798 1.797 0 10 20 30 40 50 60 70 80 90 100 t ((cid:2)s) Figure 36. Line Transients, 1.8 V Version, t = t = 5 (cid:2)s, I = 30 mA R F OUT http://onsemi.com 9

NCP4680 TYPICAL CHARACTERISTICS 5.3 4.8 4.3 3.8 (V)UT 3.3 (V)N O VI V 2.801 2.800 2.799 2.798 2.797 0 10 20 30 40 50 60 70 80 90 100 t ((cid:2)s) Figure 37. Line Transients, 2.8 V Version, t = t = 5 (cid:2)s, I = 30 mA R F OUT 5.8 5.3 4.8 4.3 (V)UT 3.302 3.8 (V)N O VI V 3.301 3.300 3.299 3.298 3.297 0 10 20 30 40 50 60 70 80 90 100 t ((cid:2)s) Figure 38. Line Transients, 3.3 V Version, t = t = 5 (cid:2)s, I = 30 mA R F OUT 150 100 50 0 V) 0.83 A) (UT 0.82 (mT O U V 0.81 O I 0.80 0.79 0.78 0.77 0 10 20 30 40 50 60 70 80 90 100 t ((cid:2)s) Figure 39. Load Transients, 0.8 V Version, I = 50 − 100 mA, t = t = 0.5 (cid:2)s, V = 1.8 V OUT R F IN http://onsemi.com 10

NCP4680 TYPICAL CHARACTERISTICS 150 100 50 0 V) 1.83 A) (UT 1.82 (mT O U V 1.81 O I 1.80 1.79 1.78 1.77 0 10 20 30 40 50 60 70 80 90 100 t ((cid:2)s) Figure 40. Load Transients, 1.8 V Version, I = 50 − 100 mA, t = t = 0.5 (cid:2)s, V = 2.8 V OUT R F IN 150 100 50 0 V) 2.83 A) (UT 2.82 (mT O U V 2.81 O I 2.80 2.79 2.78 2.77 0 10 20 30 40 50 60 70 80 90 100 t ((cid:2)s) Figure 41. Load Transients, 2.8 V Version, I = 50 − 100 mA, t = t = 0.5 (cid:2)s, V = 3.8 V OUT R F IN 150 100 50 0 V) 2.83 A) (UT 2.82 (mT O U V 2.81 O I 2.80 2.79 2.78 2.77 0 10 20 30 40 50 60 70 80 90 100 t ((cid:2)s) Figure 42. Load Transients, 3.3 V Version, I = 50 − 100 mA, t = t = 0.5 (cid:2)s, V = 4.3 V OUT R F IN http://onsemi.com 11

NCP4680 TYPICAL CHARACTERISTICS 225 150 75 0 V) A) (UT 0.90 (mT O U V 0.85 O I 0.80 0.75 0.70 0.65 0 10 20 30 40 50 60 70 80 90 100 t ((cid:2)s) Figure 43. Load Transients, 0.8 V Version, I = 1 − 150 mA, t = t = 0.5 (cid:2)s, V = 1.8 V OUT R F IN 225 150 75 0 V) A) (UT 1.90 (mT O U V 1.85 O I 1.80 1.75 1.70 1.65 0 10 20 30 40 50 60 70 80 90 100 t ((cid:2)s) Figure 44. Load Transients, 1.8 V Version, I = 1 − 150 mA, t = t = 0.5 (cid:2)s, V = 2.8 V OUT R F IN 225 150 75 0 V) A) (UT 2.90 (mT O U V 2.85 O I 2.80 2.75 2.70 2.65 0 10 20 30 40 50 60 70 80 90 100 t ((cid:2)s) Figure 45. Load Transients, 2.8 V Version, I = 1 − 150 mA, t = t = 0.5 (cid:2)s, V = 3.8 V OUT R F IN http://onsemi.com 12

NCP4680 TYPICAL CHARACTERISTICS 225 150 75 0 V) A) (UT 3.40 (mT O U V 3.35 O I 3.30 3.25 3.20 3.15 0 10 20 30 40 50 60 70 80 90 100 t ((cid:2)s) Figure 46. Load Transients, 3.3 V Version, I = 1 − 150 mA, t = t = 0.5 (cid:2)s, V = 4.3 V OUT R F IN 2.0 Chip Enable 1.5 1.0 0.5 V) 0 V) V (OUT 00..68 IOUT = 1 mA V (CE 0.4 IOUT = 100 mA 0.2 0 −0.2 0 5 10 15 20 25 30 35 40 45 50 t ((cid:2)s) Figure 47. Start−up, 0.8 V Version, V = 1.8 V IN 4 3 Chip Enable 2 1 V) 0 V) V (OUT 12..50 V (CE IOUT = 1 mA 1.0 0.5 IOUT = 150 mA 0 −0.5 0 5 10 15 20 25 30 35 40 45 50 t ((cid:2)s) Figure 48. Start−up, 1.8 V Version, V = 2.8 V IN http://onsemi.com 13

NCP4680 TYPICAL CHARACTERISTICS 4.5 Chip Enable 3.0 1.5 3.0 0 V) 2.5 V) V (OUT 12..50 IOUT = 1 mA (VCE 1.0 IOUT = 150 mA 0.5 0 −0.5 0 5 10 15 20 25 30 35 40 45 50 t ((cid:2)s) Figure 49. Start−up, 2.8 V Version, V = 3.8 V IN 6.0 4.5 Chip Enable 3.0 1.5 0 V) V) V (OUT 34 (VCE 2 IOUT = 1 mA 1 IOUT = 150 mA 0 −1 0 5 10 15 20 25 30 35 40 45 50 t ((cid:2)s) Figure 50. Start−up, 3.3 V Version, V = 4.3 V IN 2.0 1.5 1.0 0.5 0 V (V)OUT 00..68 IOUT = 1 mA Chip Enable (V)VCE 0.4 IOUT = 30 mA 0.2 IOUT = 100 mA 0 −0.2 0 10 20 30 40 50 60 70 80 90 100 t ((cid:2)s) Figure 51. Shutdown, 0.8 V Version D, V = 1.8 V IN http://onsemi.com 14

NCP4680 TYPICAL CHARACTERISTICS 4 3 2 1 V (V)OUT 12..50 IOUT = 1 mA Chip Enable 0 (V)VCE 1.0 IOUT = 30 mA 0.5 IOUT = 150 mA 0 −0.5 0 10 20 30 40 50 60 70 80 90 100 t ((cid:2)s) Figure 52. Shutdown, 1.8 V Version D, V = 2.8 V IN 4.5 3.0 1.5 3.0 0 Chip Enable V) 2.5 V) V (OUT 12..50 IOUT = 1 mIOAUT = 30 mA (VCE 1.0 0.5 IOUT = 150 mA 0 −0.5 0 10 20 30 40 50 60 70 80 90 100 t ((cid:2)s) Figure 53. Shutdown, 2.8 V Version D, V = 3.8 V IN 6.0 4.5 3.0 1.5 Chip Enable V) 0 V) V (OUT 34 (VCE IOUT = 1 mA 2 IOUT = 30 mA 1 IOUT = 150 mA 0 −1 0 10 20 30 40 50 60 70 80 90 100 t ((cid:2)s) Figure 54. Shutdown, 3.3 V Version D, V = 4.3 V IN http://onsemi.com 15

NCP4680 APPLICATION INFORMATION A typical application circuit for NCP4680 series is shown start−up into at least double the minimum equivalent load. in Figure 55. The minimum equivalent resistance can be computed by formula 1: NCP4680x VIN VOUT V OUT(NOM) VIN VOUT REQMIN(cid:2) I (eq. 1) OUTMAX This leads us to the result that the minimum equivalent CE C1 GND C2 start up resistance for VOUT(NOM) < 1.8 V is: 100n 100n R (cid:2)2(cid:3)R (eq. 2) SUMIN EQMIN Enable Operation The enable pin CE may be used for turning the regulator on and off. The IC is switched on when a high level voltage Figure 55. Typical Application Schematic is applied to the CE pin. The enable pin has an internal pull down current source. If the enable function is not needed connect CE pin to VIN. Input Decoupling Capacitor (C1) A 0.1 (cid:2)F ceramic input decoupling capacitor should be Output Discharger connected as close as possible to the input and ground pin of The D version includes a transistor between VOUT and the NCP4680. Higher values and lower ESR improves line GND that is used for faster discharging of the output transient response. capacitor. This function is activated when the IC goes into disable mode. Output Decoupling Capacitor (C2) A 0.1 (cid:2)F ceramic output decoupling capacitor is enough Thermal to achieve stable operation of the IC. If a tantalum capacitor As power across the IC increase, it might become is used, and its ESR is high, loop oscillation may result. The necessary to provide some thermal relief. The maximum capacitors should be connected as close as possible to the power dissipation supported by the device is dependent output and ground pins. Larger values and lower ESR upon board design and layout. Mounting pad configuration improves dynamic parameters. on the PCB, the board material, and also the ambient temperature affect the rate of temperature increase for the Current Limit part. When the device has good thermal conductivity The NCP4680 includes fold−back type current limit through the PCB the junction temperature will be relatively protection. Its typical characteristic for 0.8 V version is low in high power dissipation applications. shown in Figure 3. The advantage of this protection is that power loss at the regulator is minimized at over current or PCB layout short circuit conditions. When the over current or short Make the VIN and GND line as large as practical. If their circuit event disappears, the regulator reverts from fold back impedance is high, noise pickup or unstable operation may to regulation. This kind of current limit may cause issues at result. Connect capacitors C1 and C2 as close as possible to start−up for voltage versions below 1.8 V and some load the IC, and make wiring as short as possible. types: for these lower voltage options it is recommended to http://onsemi.com 16

NCP4680 ORDERING INFORMATION Nominal Output Device Voltage Description Marking Package Shipping† NCP4680DMX10TCG 1.0 V Auto discharge A (fixed)* XDFN4 10000 / Tape & Reel (Pb−Free) NCP4680DMX12TCG 1.2 V Auto discharge A (fixed)* XDFN4 10000 / Tape & Reel (Pb−Free) NCP4680DMX15TCG 1.5 V Auto discharge A (fixed)* XDFN4 10000 / Tape & Reel (Pb−Free) NCP4680DMX18TCG 1.8 V Auto discharge A (fixed)* XDFN4 10000 / Tape & Reel (Pb−Free) NCP4680DMX23TCG 2.3 V Auto discharge A (fixed)* XDFN4 10000 / Tape & Reel (Pb−Free) NCP4680DMX28TCG 2.8 V Auto discharge A (fixed)* XDFN4 10000 / Tape & Reel (Pb−Free) NCP4680DMX30TCG 3.0 V Auto discharge A (fixed)* XDFN4 10000 / Tape & Reel (Pb−Free) NCP4680DMX33TCG 3.3 V Auto discharge A (fixed)* XDFN4 10000 / Tape & Reel (Pb−Free) NCP4680DSQ08T1G 0.8 V Auto discharge AF08 SC−70 3000 / Tape & Reel (Pb−Free) NCP4680DSQ09T1G 0.9 V Auto discharge AF09 SC−70 3000 / Tape & Reel (Pb−Free) NCP4680DSQ12T1G 1.2 V Auto discharge AF12 SC−70 3000 / Tape & Reel (Pb−Free) NCP4680DSQ15T1G 1.5 V Auto discharge AF15 SC−70 3000 / Tape & Reel (Pb−Free) NCP4680DSQ18T1G 1.8 V Auto discharge AF18 SC−70 3000 / Tape & Reel (Pb−Free) NCP4680DSQ25T1G 2.5 V Auto discharge AF25 SC−70 3000 / Tape & Reel (Pb−Free) NCP4680DSQ28T1G 2.8 V Auto discharge AF28 SC−70 3000 / Tape & Reel (Pb−Free) NCP4680DSQ30T1G 3.0 V Auto discharge AF30 SC−70 3000 / Tape & Reel (Pb−Free) NCP4680DSQ33T1G 3.3 V Auto discharge AF33 SC−70 3000 / Tape & Reel (Pb−Free) †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *Marking codes for XDFN0808 packages are unified. **To order other package and voltage variants, please contact your ON Semiconductor sales representative. http://onsemi.com 17

NCP4680 PACKAGE DIMENSIONS SC−88A (SC−70−5/SOT−353) CASE 419A−02 ISSUE K A NOTES: 1. DIMENSIONING AND TOLERANCING G PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A−01 OBSOLETE. NEW STANDARD 419A−02. 4. DIMENSIONS A AND B DO NOT INCLUDE 5 4 MOLD FLASH, PROTRUSIONS, OR GATE BURRS. S −B− INCHES MILLIMETERS 1 2 3 DIM MIN MAX MIN MAX A 0.071 0.087 1.80 2.20 B 0.045 0.053 1.15 1.35 C 0.031 0.043 0.80 1.10 D 0.004 0.012 0.10 0.30 D 5 PL 0.2 (0.008) M B M G 0.026 BSC 0.65 BSC H --- 0.004 --- 0.10 J 0.004 0.010 0.10 0.25 N K 0.004 0.012 0.10 0.30 N 0.008 REF 0.20 REF S 0.079 0.087 2.00 2.20 J C K H http://onsemi.com 18

NCP4680 PACKAGE DIMENSIONS SOT−23 5−LEAD CASE 1212−01 ISSUE A NOTES: A 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. A D B A2 2. CONTROLLING DIMENSIONS: MILLIMETERS. 0.05 S A1 3. DATUM C IS THE SEATING PLANE. MILLIMETERS 5 4 DIM MIN MAX E L A --- 1.45 1 2 3 A1 0.00 0.10 E1 A2 1.00 1.30 L1 5Xb C b 0.30 0.50 c 0.10 0.25 e 0.10 M C B S A S C D 2.70 3.10 E 2.50 3.10 E1 1.50 1.80 e 0.95 BSC L 0.20 --- RECOMMENDED L1 0.45 0.75 SOLDERING FOOTPRINT* 3.30 5X 0.85 5X 0.56 0.95 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 19

NCP4680 PACKAGE DIMENSIONS XDFN4 0.8x0.8, 0.48P CASE 711AB−01 ISSUE O NOTES: D A 4XL3 1. DASIMMEEN YS1IO4.N5IMN,G 1 9A9N4D. TOLERANCING PER B 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINALS. PIN ONE L2 4. COPLANARITY APPLIES TO THE EXPOSED REFERENCE 0.06 PAD AS WELL AS THE TERMINALS. E 2X 0.05 C ÉÉ REF MILLIMETERS DETAIL A DIM MIN MAX A −−− 0.40 2X 0.05 C A1 0.00 0.05 A3 0.10 REF TOP VIEW 0.07 b 0.17 0.27 D 0.80 BSC 0.05 C (A3) 4X0.17 D2 0.20 0.30 0.37 E 0.80 BSC A e 0.48 BSC L 0.23 0.33 0.05 C L2 0.17 0.27 L3 0.01 0.11 NOTE 4 SIDE VIEW A1 C SPELAATNIENG DETAIL B RECOMMENDED e MOUNTING FOOTPRINT* e/2 4X 0.27 D2 DETAIL A 1 2 45(cid:2) 03X.44 0.32 PACKAGE 4 3 OUTLINE 1.00 3XL 4Xb 0.05 M C A B DETAIL B 0.48 BOTTOM VIEW NOTE 3 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: N. American Technical Support: 800−282−9855 Toll Free ON Semiconductor Website: www.onsemi.com Literature Distribution Center for ON Semiconductor USA/Canada P.O. Box 5163, Denver, Colorado 80217 USA Europe, Middle East and Africa Technical Support: Order Literature: http://www.onsemi.com/orderlit Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Phone: 421 33 790 2910 Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Japan Customer Focus Center For additional information, please contact your local Email: orderlit@onsemi.com Phone: 81−3−5773−3850 Sales Representative http://onsemi.com NCP4680/D 20

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: O N Semiconductor: NCP4680DMX23TCG NCP4680DSQ30T1G NCP4680DSQ25T1G NCP4680DSQ28T1G NCP4680DSQ33T1G NCP4680DMX28TCG NCP4680DMX18TCG NCP4680DMX30TCG NCP4680DMX10TCG NCP4680DSQ08T1G NCP4680DMX12TCG NCP4680DMX33TCG NCP4680DSQ18T1G NCP4680DSQ15T1G NCP4680DSQ09T1G NCP4680DSQ12T1G NCP4680DMX15TCG