图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: MAX9981ETX+
  • 制造商: Maxim
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

MAX9981ETX+产品简介:

ICGOO电子元器件商城为您提供MAX9981ETX+由Maxim设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 提供MAX9981ETX+价格参考¥124.86-¥136.27以及MaximMAX9981ETX+封装/规格参数等产品信息。 你可以下载MAX9981ETX+参考资料、Datasheet数据手册功能说明书, 资料中有MAX9981ETX+详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

射频/IF 和 RFID

描述

IC MIXER 825-915MHZ 36TQFN射频混合器 825-915MHz Dual SiGe Active Mixer

产品分类

RF 混频器

品牌

Maxim Integrated

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

RF集成电路,射频混合器,Maxim Integrated MAX9981ETX+MAX9981

数据手册

点击此处下载产品Datasheet

产品型号

MAX9981ETX+

RF类型

手机,EDGE,GSM

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=25703http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=25705

产品种类

射频混合器

供应商器件封装

36-TQFN (6x6)

包装

管件

商标

Maxim Integrated

噪声系数

10.8 dB

增益

2.7dB

安装风格

SMD/SMT

封装

Tube

封装/外壳

36-WFQFN 裸露焊盘

封装/箱体

QFN-36

工作电源电压

4.75 V to 5.25 V

工厂包装数量

50

应用说明

点击此处下载产品Datasheet

最大功率耗散

2200 mW

最大工作温度

+ 85 C

最小工作温度

- 40 C

标准包装

50

混频器数

2

电压-电源

4.75 V ~ 5.25 V

电流-电源

325mA

电源电流

325 mA

系列

MAX9981

转换损失——最大

53 dB

辅助属性

-

零件号别名

MAX9981

频率

825MHz ~ 915MHz

频率范围

825 MHz to 915 MHz

推荐商品

型号:EKZE500ELL330MH07D

品牌:United Chemi-Con

产品名称:电容器

获取报价

型号:MC34675AEPR2

品牌:NXP USA Inc.

产品名称:集成电路(IC)

获取报价

型号:TCST2300

品牌:Vishay Semiconductor Opto Division

产品名称:传感器,变送器

获取报价

型号:SP490EEN-L/TR

品牌:MaxLinear, Inc.

产品名称:集成电路(IC)

获取报价

型号:25TLV220M8X10.5

品牌:Rubycon

产品名称:电容器

获取报价

型号:AD1854JRSZ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:TUSB1105RTZR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:SN74HC02DT

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
MAX9981ETX+ 相关产品

MC908LJ12CPBE

品牌:NXP USA Inc.

价格:

EKZE630ELL391MK25S

品牌:United Chemi-Con

价格:¥20.46-¥28.30

UPSD3254A-40T6

品牌:STMicroelectronics

价格:

MLX90251EVA-FAA-200-BU

品牌:Melexis Technologies NV

价格:

MMBZ5243BLT1

品牌:ON Semiconductor

价格:¥询价-¥询价

EP20K200EFC484-1X

品牌:Intel

价格:

MT4JSF6464HY-1G4B1

品牌:Micron Technology Inc.

价格:

MX1A-11NW

品牌:Cherry Americas LLC

价格:¥6.23-¥9.17

PDF Datasheet 数据手册内容提取

19-2588; Rev 0; 9/02 825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer General Description Features M The MAX9981 dual high-linearity mixer integrates a local (cid:3) +27.3dBm Input IP3 A oscillator (LO) switch, LO buffer, LO splitter, and two (cid:3) +13.6dBm Input 1dB Compression Point X active mixers. On-chip baluns allow for single-ended RF (cid:3) 825MHz to 915MHz RF Frequency Range and LO inputs. The active mixers eliminate the need for 9 an additional IF amplifier because the mixer provides a (cid:3) 70MHz to 170MHz IF Frequency Range 9 typical overall conversion gain of 2.1dB. (cid:3) 725MHz to 1085MHz LO Frequency Range 8 The MAX9981 active mixers are optimized to meet the (cid:3) 2.1dB Conversion Gain 1 demanding requirements of GSM850, GSM900, and (cid:3) 10.8dB Noise Figure CDMA850 base-station receivers. These mixers provide exceptional linearity with an input IP3 of greater than (cid:3) 42dB Channel-to-Channel Isolation +27dBm. The integrated LO driver allows for a wide (cid:3) -5dBm to +5dBm LO Drive range of LO drive levels from -5dBm to +5dBm. In addi- (cid:3) +5V Single-Supply Operation tion, the built-in high-isolation switch enables rapid LO selection of less than 250ns, as needed for GSM trans- (cid:3) Built-In LO Switch with 52dB LO1 to LO2 Isolation ceiver designs. (cid:3) ESD Protection The MAX9981 is available in a 36-pin QFN package (cid:3) Integrated RF and LO Baluns for Single-Ended (6mm ✕6mm) with an exposed paddle, and is specified Inputs over the -40°C to +85°C extended temperature range. Ordering Information Applications GSM850/GSM900 2G and 2.5G EDGE Base- PART TEMP RANGE PIN-PACKAGE Station Receivers MAX9981EGX-T -40°C to +85°C 36 QFN-EP* (6mm × 6mm) Cellular cdmaOne™ and cdma2000™ Base- *EP = Exposed paddle. Station Receivers Pin Configuration/ TDMA and Integrated Digital Enhanced Network Functional Diagram (iDEN)™ Base-Station Receivers Digital and Spread-Spectrum Communication TOP VIEW N+ N- Systems VCC GND GND IFMAI IFMAI GND VCC GND GND Microwave Point-to-Point Links 36 35 34 33 32 31 30 29 28 RFMAIN 1 27 LO2 TAPMAIN 2 MAX9981 26 GND MAINBIAS 3 25 GND GND 4 24 GND GND 5 23 LOSEL GND 6 22 GND DIVBIAS 7 21 VCC TAPDIV 8 20 GND cdmaOne is a trademark of CDMA Development Group. RFDIV 9 19 LO1 cdma2000 is a trademark of Telecommunications Industry 10 11 12 13 14 15 16 17 18 Association. iDEN is a trademark of Motorola, Inc. VCC GND GND IFDIV+ IFDIV- GND VCC GND GND 6mm x 6mm QFN-EP ________________________________________________________________Maxim Integrated Products 1 For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer 1 ABSOLUTE MAXIMUM RATINGS 8 VCC........................................................................-0.3V to +5.5V Continuous Power Dissipation (TA= +70°C) 9 IFMAIN+, IFMAIN-, IFDIV+, IFDIV-, 36-Pin QFN (derate 33mW/°C above +70°C)..............2200mW 9 MAINBIAS, DIVBIAS, LOSEL..................-0.3V to (VCC+ 0.3V) Operating Temperature Range...........................-40°C to +85°C TAPMAIN, TAPDIV..............................................................+5.5V Junction Temperature......................................................+150°C X MAINBIAS, DIVBIAS Current................................................5mA Storage Temperature Range.............................-65°C to +150°C A RFMAIN, RFDIV, LO1, LO2 Input Power........................+20dBm Lead Temperature (soldering, 10s).................................+300°C M Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = +4.75V to +5.25V, no RF signals applied, all RF inputs and outputs terminated with 50Ω, 267Ωresistors connected from MAINBIAS and DIVBIAS to GND, TA= -40°C to +85°C, unless otherwise noted. Typical values are at VCC= +5.0V, TA= +25°C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Supply Voltage VCC 4.75 5.00 5.25 V Supply Current ICC 260 291 325 mA Input High Voltage VIH 3.5 V Input Low Voltage VIL 0.4 V LOSEL Input Current ILOSEL -5 +5 µA AC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC= +4.75V to +5.25V, PLO= -5dBm to +5dBm, fRF= 825MHz to 915MHz, fLO= 725MHz to 1085MHz, TA = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 870MHz, fLO= 770MHz, TA= +25°C, unless otherwise noted.) (Notes 1, 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS RF Frequency fRF 825 915 MHz LO Frequency fLO 725 1085 MHz Must meet RF and LO frequency range. IF IF Frequency fIF matching components affect IF frequency 70 170 MHz range. LO Drive Level PLO -5 +5 dBm Cellular band, VCC = +5.0V, fRF = 825MHz to 2.7 fIF = 100MHz, 850MHz Conversion Gain (Note 3) GC low-side injection, dB GSM band, PRF = 0dBm, PLO = -5dBm fRF = 880MHz 2.1 to 915MHz Gain Variation from Nominal fRF = 825MHz to 915MHz, 3σ ±0.6 dB Inject PIN = -20dBm at fLO + 100MHz into Conversion Loss from LO to IF LO port. Measure 100MHz at IF port as 53 dB POUT. No RF signal at RF port. Cellular band, 100MHz IF, 10.8 fRF = 825MHz to 850MHz Noise Figure NF low-side dB injection GSM band, 11.9 fRF = 880MHz to 915MHz 2 _______________________________________________________________________________________

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer AC ELECTRICAL CHARACTERISTICS (continued) M (Typical Application Circuit, VCC= +4.75V to +5.25V, PLO= -5dBm to +5dBm, fRF= 825MHz to 915MHz, fLO= 725MHz to 1085MHz, A TA = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 870MHz, fLO= 770MHz, TA= +25°C, unless otherwise noted.) (Notes 1, 2) X 9 PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 9 Input 1dB Compression Point P1dB Low-side injection 13.6 dBm 8 Input Third-Order Intercept Point IIP3 PLO = -5dBm to +5dBm (Notes 3, 4) 27.3 dBm 1 2 RF - 2 LO Spur Rejection 2 × 2 fRF = 915MHz, fLO = 815MHz, Main 53.3 dBc fSPUR = 865MHz, PRF = -5dBm Diversity 43.2 3 RF - 3 LO Spur Rejection 3 × 3 fRF = 915MHz, fLO = 815MHz, 79.7 dBc fSPUR = 848.3MHz, PRF = -5dBm PLO = -5dBm to +5dBm, Maximum LO Leakage at RF Port -42 dBm fLO = 725MHz to 1100MHz PLO = -5dBm to +5dBm, Maximum LO Leakage at IF Port -30.6 dBm fLO = 725MHz to 1100MHz PLO = -5dBm to +5dBm, Minimum RF to IF Isolation 18 dB fRF = 825MHz to 915MHz fRF = 825MHz to 915MHz, PLO1 = PLO2 = LO1 to LO2 Isolation 52 dB +5dBm, fIF = 100MHz (Note 5) PRFMAIN = -5dBm, RFDIV terminated with 50Ω. 39.5 Measured power at IFDIV fRF = 825MHz relative to IFMAIN. to 915MHz, Minimum Channel Isolation dBc fLO = 725MHz PRFDIV = -5dBm, RFMAIN to 1085MHz terminated with 50Ω. 42 Measured power at IFMAIN relative to IFDIV. LO Switching Time 50% of LOSEL to IF settled within 2° 250 ns RF Return Loss 25 dB LO port selected 19 LO Return Loss dB LO port unselected 14.3 RF and LO terminated into 50Ω, IF Return Loss 15 dB fIF = 100MHz (Note 6) Note 1: Guaranteed by design and characterization. Note 2: All limits reflect losses of external components. Output measurements taken at IF OUT of Typical Application Circuit. Note 3: Production tested. Note 4: Two tones at 1MHz spacing, -5dBm per tone at RF port. Note 5: Measured at IF port at IF frequency. fLO1and fLO2are offset by 1MHz. Note 6: IF return loss can be optimized by external matching components. _______________________________________________________________________________________ 3

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer 1 Typical Operating Characteristics 8 (Typical Application Circuit, VCC= 5.0V, PRF= -5dBm, PLO= 0dBm, TA= +25°C, unless otherwise noted.) 9 9 CONVERSION GAIN CONVERSION GAIN CONVERSION GAIN X vs. RF FREQUENCY LOW-SIDE INJECTION vs. RF FREQUENCY LOW-SIDE INJECTION vs. RF FREQUENCY LOW-SIDE INJECTION MA 45 TA = -40°C fMIFA =I N1 0M0IMXEHRz MAX9981 toc01 45 fMIFA =I N1 0M0IMXEHRz MAX9981 toc02 45 fMIFA =I N1 0M0IMXEHRz MAX9981 toc03 N (dB) N (dB) N (dB) GAI 3 GAI 3 GAI 3 N N N O O O CONVERSI 2 CONVERSI 2 PLO = -5dBm, 0dBm, +5dBm CONVERSI 2 VCC = 4.75V, 5.0V, 5.25V 1 TA = +85°C 1 1 TA = +25°C 0 0 0 820 840 860 880 900 920 820 840 860 880 900 920 820 840 860 880 900 920 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) CONVERSION GAIN CONVERSION GAIN CONVERSION GAIN vs. RF FREQUENCY HIGH-SIDE INJECTION vs. RF FREQUENCY HIGH-SIDE INJECTION vs. RF FREQUENCY HIGH-SIDE INJECTION 45 TA = -40°C fMIFA =I N1 2M0IMXEHRz MAX9981 toc04 45 fMIFA =I N1 2M0IMXEHRz MAX9981 toc05 45 fMIFA =I N1 2M0IMXEHRz MAX9981 toc06 N (dB) N (dB) N (dB) GAI 3 GAI 3 GAI 3 N N N O O O NVERSI 2 NVERSI 2 NVERSI 2 O O O C C PLO = -5dBm, 0dBm, +5dBm C VCC = 4.75V, 5.0V, 5.25V 1 1 1 TA = +85°C TA = +25°C 0 0 0 820 840 860 880 900 920 820 840 860 880 900 920 820 840 860 880 900 920 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) 2 RF - 2 LO RESPONSE 2 RF - 2 LO RESPONSE 2 RF - 2 LO RESPONSE vs. RF FREQUENCY LOW-SIDE INJECTION vs. RF FREQUENCY LOW-SIDE INJECTION vs. RF FREQUENCY LOW-SIDE INJECTION NSE (dBc) 778050 TA = +85°C fMPIFRA F=I N=1 0-M50IdMXBEHmRz MAX9981 toc07 NSE (dBc) 7855 fMPIFRA F=I N=1 0-M50IdMXBEHmRz PLO = -5dBm MAX9981 toc08 NSE (dBc) 778050 fMPIFRA F=I N=1 0-M50IdMXBEHmRz MAX9981 toc09 O RESPO 6605 TA = +25°C O RESPO 65 O RESPO 6605 2 RF - 2 L 55 TA = -40°C 2 RF - 2 L 55 PLO = 0dBm 2 RF - 2 L 55 50 50 VCC = 4.75V, 5.0V, 5.25V PLO = +5dBm 45 45 45 820 840 860 880 900 920 820 840 860 880 900 920 820 840 860 880 900 920 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) 4 _______________________________________________________________________________________

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer Typical Operating Characteristics (continued) M (Typical Application Circuit, VCC= 5.0V, PRF= -5dBm, PLO= 0dBm, TA= +25°C, unless otherwise noted.) A X 2 RF - 2 LO RESPONSE 2 RF - 2 LO RESPONSE 2 RF - 2 LO RESPONSE 9 vs. RF FREQUENCY LOW-SIDE INJECTION vs. RF FREQUENCY LOW-SIDE INJECTION vs. RF FREQUENCY LOW-SIDE INJECTION 9 60 60 60 Bc) 55 TA = +85°C fDPIFRI VF=E =1R 0-S50ITdMYBH mMzIXER MAX9981 toc10 Bc) 55 PLO = +5dBm fDPIFRI VF=E =1R 0-S50ITdMYBH mMzIXER MAX9981 toc11 Bc) 55 fDPIFRI VF=E =1R 0-S50ITdMYBH mMzIXER MAX9981 toc12 81 d d d E ( E ( E ( S S S N N N O O O P P P ES 50 ES 50 ES 50 R R R O O O L L L 2 2 2 2 RF - 45 TA = +25°C 2 RF - 45 PLO = 0dBm 2 RF - 45 VCC = 4.75V, 5.0V, 5.25V TA = -40°C PLO = -5dBm 40 40 40 820 840 860 880 900 920 820 840 860 880 900 920 820 840 860 880 900 920 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) 2 LO - 2 RF RESPONSE 2 LO - 2 RF RESPONSE 2 LO - 2 RF RESPONSE vs. RF FREQUENCY HIGH-SIDE INJECTION vs. RF FREQUENCY HIGH-SIDE INJECTION vs. RF FREQUENCY HIGH-SIDE INJECTION 70 60 60 Bc) 65 fMPIFRA F=I N=1 2-M50IdMXBEHmRz MAX9981 toc13 Bc) 58 fMPIFRA F=I N=1 2-M50IdMXBEHmRz MAX9981 toc14 Bc) 58 fMPIFRA F=I N=1 2-M50IdMXBEHmRz MAX9981 toc15 d d d E ( E ( E ( S S S PON 60 TA = +85°C PON 56 PLO = 0dBm PON 56 VCC = 5.25V RES RES PLO = -5dBm RES F F F R 55 R 54 R 54 2 2 2 O - TA = +25°C O - O - 2 L 2 L 2 L VCC = 4.75, 5.0V 50 52 52 TA = -40°C PLO = +5dBm 45 50 50 820 840 860 880 900 920 820 840 860 880 900 920 820 840 860 880 900 920 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) 2 LO - 2 RF RESPONSE 2 LO - 2 RF RESPONSE 2 LO - 2 RF RESPONSE vs. RF FREQUENCY HIGH-SIDE INJECTION vs. RF FREQUENCY HIGH-SIDE INJECTION vs. RF FREQUENCY HIGH-SIDE INJECTION 47 52.5 46 E (dBc) 4465 TA = +85°C fDPIFRI VF=E =1R 2-S50ITdMYBH mMzIXER MAX9981 toc16 E (dBc) 5407..05 PLO = 0dBm PLO = +5dBmfDPIFRI VF=E =1R 2-S50ITdMYBH mMzIXER MAX9981 toc17 E (dBc) 45 fDPIFRI VF=E =1R 2-S50ITdMYBH mMzIXER MAX9981 toc18 S S S N N N PO 44 PO PO F RES 43 TA = +25°C F RES 45.0 F RES 44 VCC = 5.25V R R R 2 2 2 2 LO - 42 TA = -40°C 2 LO - 42.5 2 LO - 43 41 40.0 VCC = 4.75V, 5.0V PLO = -5dBm 40 37.5 42 820 840 860 880 900 920 820 840 860 880 900 920 820 840 860 880 900 920 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) _______________________________________________________________________________________ 5

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer 1 Typical Operating Characteristics (continued) 8 (Typical Application Circuit, VCC= 5.0V, PRF= -5dBm, PLO= 0dBm, TA= +25°C, unless otherwise noted.) 9 9 INPUT IP3 INPUT IP3 INPUT IP3 X vs. RF FREQUENCY LOW-SIDE INJECTION vs. RF FREQUENCY LOW-SIDE INJECTION vs. RF FREQUENCY LOW-SIDE INJECTION MA 2390 fMIFA =I N1 0M0IMXEHRz MAX9981 toc19 2390 fMIFA =I N1 0M0IMXEHRz MAX9981 toc20 2390 fMIFA =I N1 0M0IMXEHRz MAX9981 toc21 TA = +85°C PLO = +5dBm VCC = 5.25V m) m) m) INPUT IP3 (dB 2278 INPUT IP3 (dB 2278 INPUT IP3 (dB 2278 TA = +25°C PLO = 0dBm VCC = 5.0V 26 26 26 TA = -40°C PLO = -5dBm VCC = 4.75V 25 25 25 820 840 860 880 900 920 820 840 860 880 900 920 820 840 860 880 900 920 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT IP3 INPUT IP3 INPUT IP3 vs. RF FREQUENCY HIGH-SIDE INJECTION vs. RF FREQUENCY HIGH-SIDE INJECTION vs. RF FREQUENCY HIGH-SIDE INJECTION 2390 TA = -40fM°IFCA =I N1 2M0IMXEHRz MAX9981 toc22 2390 fMIFA =I N1 2M0IMXEHRz MAX9981 toc23 2390 VCC = 5.25V fMIFA =I N1 2M0IMXEHRz MAX9981 toc24 PLO = -5dBm m) m) m) VCC = 5.0V INPUT IP3 (dB 2278 INPUT IP3 (dB 2278 PLO = 0dBm INPUT IP3 (dB 2278 TA = +25°C 26 26 26 TA = +85°C PLO = +5dBm VCC = 4.75V 25 25 25 820 840 860 880 900 920 820 840 860 880 900 920 820 840 860 880 900 920 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT P1dB INPUT P1dB INPUT P1dB vs. RF FREQUENCY LOW-SIDE INJECTION vs. RF FREQUENCY LOW-SIDE INJECTION vs. RF FREQUENCY LOW-SIDE INJECTION 1167 fMIFA =I N1 0M0IMXEHRz MAX9981 toc25 1167 fMIFA =I N1 0M0IMXEHRz MAX9981 toc26 1167 fMIFA =I N1 0M0IMXEHRz MAX9981 toc27 m) m) m) INPUT P1dB (dB 1145 TA = +25°C TA = +85°C INPUT P1dB (dB 1145 PLO = 0dBm PLO = -5dBm INPUT P1dB (dB 1145 VCC = 5.25V VCC = 5.0V 13 13 13 TA = -40°C PLO = +5dBm VCC = 4.75V 12 12 12 820 840 860 880 900 920 820 840 860 880 900 920 820 840 860 880 900 920 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) 6 _______________________________________________________________________________________

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer Typical Operating Characteristics (continued) M (Typical Application Circuit, VCC= 5.0V, PRF= -5dBm, PLO= 0dBm, TA= +25°C, unless otherwise noted.) A X INPUT P1dB INPUT P1dB INPUT P1dB 9 vs. RF FREQUENCY HIGH-SIDE INJECTION vs. RF FREQUENCY HIGH-SIDE INJECTION vs. RF FREQUENCY HIGH-SIDE INJECTION 9 17 17 17 Bm) 16 TA = +25°C TA = +85°CfMIFA =I N1 2M0IMXEHRz MAX9981 toc28 Bm) 16 PLO = -5dBm fMIFA =I N1 2M0IMXEHRz MAX9981 toc29 Bm) 16 VCC = 5.25V VCC = 5.0VfMIFA =I N1 2M0IMXEHRz MAX9981 toc30 81 B (d 15 B (d 15 B (d 15 P1d P1d P1d UT 14 UT 14 UT 14 P P P N N N I I PLO = 0dBm I 13 13 PLO = +5dBm 13 VCC = 4.75V TA = -40°C 12 12 12 820 840 860 880 900 920 820 840 860 880 900 920 820 840 860 880 900 920 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) CHANNEL ISOLATION CHANNEL ISOLATION CHANNEL ISOLATION vs. RF FREQUENCY LOW-SIDE INJECTION vs. RF FREQUENCY LOW-SIDE INJECTION vs. RF FREQUENCY LOW-SIDE INJECTION 55 55 55 RfIFF =M 1A0I0NM INH/zIF DIVERSITY OUT MAX9981 toc31 RfIFF =M 1A0I0NM INH/zIF DIVERSITY OUT MAX9981 toc32 RfIFF =D 1IV0E0RMSHITzY IN/IF MAIN OUT MAX9981 toc33 dBc) 50 TA = +85°C dBc) 50 dBc) 50 N ( N ( N ( O O O TI TI TI A A A OL 45 OL 45 OL 45 S S S L I L I L I E E E N N N N N N A A A CH 40 TA = +25°C CH 40 CH 40 PLO = -5dBm, 0dBm, +5dBm PLO = -5dBm, 0dBm, +5dBm TA = -40°C 35 35 35 820 840 860 880 900 920 820 840 860 880 900 920 820 840 860 880 900 920 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) CHANNEL ISOLATION CHANNEL ISOLATION CHANNEL ISOLATION vs. RF FREQUENCY HIGH-SIDE INJECTION vs. RF FREQUENCY HIGH-SIDE INJECTION vs. RF FREQUENCY HIGH-SIDE INJECTION 55 55 55 RfIFF =M 1A2I0NM INH/zIF DIVERSITY OUT MAX9981 toc34 RfIFF =M 1A2I0NM INH/zIF DIVERSITY OUT MAX9981 toc35 RfIFF =D 1IV2E0RMSHITzY IN/IF MAIN OUT MAX9981 toc36 Bc) 50 TA = +85°C Bc) 50 Bc) 50 d d d N ( N ( N ( O O O TI TI TI A A A OL 45 OL 45 OL 45 L IS TA = +25°C L IS L IS E E E N N N N N N A A A H H H C 40 C 40 C 40 PLO = -5dBm, 0dBm, +5dBm PLO = -5dBm, 0dBm, +5dBm TA = -40°C 35 35 35 820 840 860 880 900 920 820 840 860 880 900 920 820 840 860 880 900 920 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) _______________________________________________________________________________________ 7

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer 1 Typical Operating Characteristics (continued) 8 (Typical Application Circuit, VCC= 5.0V, PRF= -5dBm, PLO= 0dBm, TA= +25°C, unless otherwise noted.) 9 9 LO SWITCH ISOLATION LO SWITCH ISOLATION LO SWITCH ISOLATION X vs. RF FREQUENCY LOW-SIDE INJECTION vs. RF FREQUENCY LOW-SIDE INJECTION vs. RF FREQUENCY HIGH-SIDE INJECTION MA Bc) 5556 TA = +85°C LfDIFOI V= OE 1RF0FS0SITMEYTH Mz1MIXHEzR MAX9981 toc37 Bc) 5556 LfDIFOI V= OE 1RF0FS0SITMEYTH Mz1MIXHEzR PLO = -5dBm MAX9981 toc38 Bc) 5556 LfMIFOA = OI N1F 2FM0SIMEXTEH Rz1MHz MAX9981 toc39 d d d N ( N ( N ( ATIO 54 ATIO 54 ATIO 54 TA = +85°C L L L O O O S S S H I H I H I C 53 C 53 C 53 WIT TA = +25°C WIT WIT S S S LO 52 TA = +-40°C LO 52 PLO = 0dBm LO 52 PLO = +5dBm TA = +25°C TA = -40°C 51 51 51 820 840 860 880 900 920 820 840 860 880 900 920 820 840 860 880 900 920 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) LO LEAKAGE AT IF PORT LO LEAKAGE AT IF PORT LO LEAKAGE AT RF PORT vs. LO FREQUENCY vs. LO FREQUENCY vs. LO FREQUENCY --3330 TA = +85°C MAIN MIXER MAX9981 toc40 --3207 PLO = 0dBm MAIN MIXER MAX9981 toc41 --4450 MAIN MIXER PLO = -5dBm MAX9981 toc42 LO LEAKAGE (dBm) --3396 TA = +25°C LO LEAKAGE (dBm) --3363 PLO = +5dBm LO LEAKAGE (dBm) ---655050 PLO = 0dBm TA = -40°C -42 -39 PLO = -5dBm -65 PLO = +5dBm -45 -42 -70 750 800 850 900 950 1000 750 800 850 900 950 1000 700 800 900 1000 1100 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz) RF TO IF ISOLATION RF TO IF ISOLATION NOISE FIGURE vs. RF FREQUENCY vs. RF FREQUENCY vs. RF FREQUENCY LOW-SIDE INJECTION 2370 MAIN MIXER MAX9981 toc43 26 MAIN MIXER MAX9981 toc44 1145 fMIFA =I N1 0M0IMXEHRz MAX9981 toc45 SOLATION (dB) 24 TA = +85°C SOLATION (dB) 2224 PLO = 0dBm, +5dBm FIGURE (dB) 1123 TA = +85°C O IF I 21 TA = +25°C O IF I OISE 11 RF T RF T 20 N 10 TA = +25°C 18 TA = -40°C PLO = -5dBm 9 TA = -40°C 15 18 8 820 840 860 880 900 920 820 840 860 880 900 920 820 840 860 880 900 920 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) 8 _______________________________________________________________________________________

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer Typical Operating Characteristics (continued) M (Typical Application Circuit, VCC= 5.0V, PRF= -5dBm, PLO= 0dBm, TA= +25°C, unless otherwise noted.) A X 9 RF RETURN LOSS vs. RF FREQUENCY IF RETURN LOSS vs. IF FREQUENCY LO RETURN LOSS vs. LO FREQUENCY 9 50 MAIN MIXER MAX9981 toc46 0 MSEATI NB YM EIXXETRERNAL MATCHING MAX9981 toc47 50 LO INPUT SELECTED MAX9981 toc48 81 5 RF RETURN LOSS (dB) 22115050 PLO = -5dBm, 0dBm, +5dBm IF RETURN LOSS (dB) 10 LO RETURN LOSS (dB) 22115050 PLO = -5dBm 15 PLO = 0dBm 30 30 PLO = +5dBm 35 20 35 700 800 900 1000 1100 50 75 100 125 150 175 200 700 800 900 1000 1100 RF FREQUENCY (MHz) IF FREQUENCY (MHz) LO FREQUENCY (MHz) LO RETURN LOSS vs. LO FREQUENCY SUPPLY CURRENT vs. TEMPERATURE 50 LO INPUT UNSELECTED MAX9981 toc49 331200 VCC = 5.25V MAX9981 toc50 S (dB) 10 T (mA) 300 TURN LOS 2105 Y CURREN 290 VCC = 5.0V RE PL LO 25 PLO = -5dBm, 0dBm, +5dBm SUP 280 30 270 VCC = 4.75V 35 260 700 800 900 1000 1100 -40 -15 10 35 60 85 LO FREQUENCY (MHz) TEMPERATURE (°C) _______________________________________________________________________________________ 9

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer 1 Pin Description 8 PIN NAME FUNCTION 9 9 Main Channel RF Input. This input is internally matched to 50Ω and is DC shorted to ground 1 RFMAIN X through a balun. 2 TAPMAIN Main RF Balun Center Tap. Connect bypass capacitors from this pin to ground. A Bias control for the Main Mixer. Connect a 267Ω resistor from this pin to ground to set the bias M 3 MAINBIAS current for the main mixer. 4, 5, 6, 11, 12, 15, 17, 18, 20, 22, GND Ground 24, 25, 26, 28, 29, 31, 34, 35, EP Bias Control for the Diversity Mixer. Connect a 267Ω resistor from this pin to ground to set the bias 7 DIVBIAS current for the diversity mixer. 8 TAPDIV Diversity RF Balun Center Tap. Connect bypass capacitors from this pin to ground. Diversity Channel RF Input. This input is internally matched to 50Ω and is DC shorted to ground 9 RFDIV through a balun. 10, 16, 21, Power-Supply Connections. Connect bypass capacitors as shown in the Typical Application VCC 30, 36 Circuit. Differential IF Output for Diversity Mixer. Connect 560nH pullup inductors and 137Ω pullup 13, 14 IFDIV+, IFDIV- resistors from each of these pins to VCC for a 70MHz to 100MHz IF range. Local Oscillator Input 1. This input is internally matched to 50Ω and is DC shorted to ground 19 LO1 through a balun. 23 LOSEL Local Oscillator Select. Set this pin to logic HIGH to select LO1; set to logic LOW to select LO2. Local Oscillator Input 2. This input is internally matched to 50Ω and is DC shorted to ground 27 LO2 through a balun. IFMAIN-, Differential IF Output for the Main Mixer. Connect 560nH pullup inductors and 137Ω pullup 32, 33 IFMAIN+ resistors from each of these pins to VCC for a 70MHz to 100MHz IF range. 10 ______________________________________________________________________________________

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer Typical Application Circuit M A C14 X T1 9 3 6 L1 R3 IFMAIN_OUT 9 5.0V 2 4:1 (200:50) 8 C13 C16 TRANSFORMER 1 1 4 L2 R4 C15 5.0V 5.0V C5 C10 N+ N- VCC GND GND IFMAI IFMAI GND VCC GND GND 36 35 34 33 32 31 30 29 28 C1 C8 RFMAIN LO2 RF_MAIN 1 27 LO2 TAPMAIN 2 MAX9981 26 GND C11 C2 MAINBIAS GND 3 25 GND GND R1 4 24 GND LOSEL 5 23 LO SELECT GND GND R2 6 22 5.0V DIVBIAS 7 21 VCC C12 C3 TAPDIV GND 8 20 RFDIV LO1 RF_DIV 9 19 LO1 C4 C7 10 11 12 13 14 15 16 17 18 5.0V VCC GND GND IFDIV+ IFDIV- GND VCC GND GND C6 5.0V C9 C19 T2 3 6 L4 R6 IFDIV_OUT 5.0V 2 4:1 (200:50) TRANSFORMER C17 C20 1 4 L3 R5 C18 ______________________________________________________________________________________ 11

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer 1 Component List 8 9 COMPONENT VALUE SIZE PART NUMBER 9 C1, C4 33pF 0603 Murata GRM1885C1H330J X C2, C3 3.9pF 0603 Murata GRM1885C1H3R9C A C5, C6, C9, C10 100pF 0603 Murata GRM1885C1H101J C7, C8 15pF 0603 Murata GRM1885C1H150J M C11, C12 0.033µF 0603 Murata GRM188R71E333K C13, C16, C17, C20 220pF 0603 Murata GRM1885C1H221J C14, C15, C18, C19 330pF 0603 Murata GRM1885C1H331J L1–L4 560nH 1008 CoilCraft 1008CS-561XJBB R1, R2 267Ω ±1% 0603 — R3–R6 137Ω ±1% 0603 — T1, T2 4:1 (200:50) — Mini-Circuits TC4-1W-7A Detailed Description IF Outputs Each mixer has an IF frequency range of 70MHz to The MAX9981 downconverter mixers are designed for 170MHz. The differential IF output ports require exter- GSM and CDMA base-station receivers with an RF fre- nal pullup inductors to VCCto resonate out the differen- quency between 825MHz and 915MHz. Each active tial on-chip capacitance of 1.8pF. See the Typical mixer provides 2.1dB to 2.7dB of overall conversion Application Circuit for recommended component val- gain to the receive signal, removing the need for an ues for an IF of 70MHz to 100MHz. The IF match can external IF amplifier. The mixers have excellent input be optimized for higher IF frequencies by reducing the IP3 measuring greater than +27dBm. The device also values of the pullup inductors L1, L2, L3, and L4. Note: features integrated RF and LO baluns that allow the Removing the ground plane from underneath these mixers to be driven with single-ended signals. inductors reduces parasitic capacitive loading and RF Inputs improves VSWR. The MAX9981 has two RF inputs (RFMAIN, RFDIV) that are Bias Circuitry internally matched to 50Ω requiring no external matching Connect bias resistors from MAINBIAS and DIVBIAS to components. A 33pF DC-blocking capacitor is required at ground to set the mixer bias current. A nominal resistor the input since the input is internally DC shorted to ground value of 267Ω sets an input IP3 of +27dBm and supply through a balun. Return loss is better than 15dB over the current of 290mA. Bias currents are fine-tuned at the entire frequency range of 825MHz to 915MHz. factory and should not be adjusted. LO Inputs Applications Information The mixers can be used for either high-side or low-side injection applications with an LO frequency range of Layout Considerations 725MHz to 1085MHz. An internal LO switch allows for A properly designed PC board is an essential part of switching between two single-ended LO ports. This is any RF/microwave circuit. Keep RF signal lines as short useful for fast frequency changes/frequency hopping. LO as possible to reduce losses, radiation, and induc- switching time is less than 250ns. The switch is controlled tance. For best performance, route the ground pin by a digital input (LOSEL) that when high, selects LO1 traces directly to the exposed paddle underneath the and when low, selects LO2. The selected LO input mixes package. This paddle should be connected to the with both RFMAIN and RFDIV to produce the IF signals. ground plane of the board by using multiple vias under Internal LO buffers allow for a wide power range on the the device to provide the best RF/thermal conduction LO ports. The LO signal power can vary from -5dBm to path. Solder the exposed paddle, on the bottom of the +5dBm. LO1 and LO2 are internally matched to 50Ω, so device package, to a PC board exposed pad. only a 15pF DC-blocking capacitor is required at each LO port. 12 ______________________________________________________________________________________

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer Power Supply Bypassing Chip Information M Proper voltage supply bypassing is essential for high-fre- TRANSISTOR COUNT: 358 quency circuit stability. Bypass each VCCpin, TAPMAIN, A and TAPDIV with the capacitors shown in the typical PROCESS: BiCMOS X application circuit. Place the TAPMAIN and TAPDIV 9 bypass capacitors to ground within 100mils of the TAPMAIN and TAPDIV pins. 9 8 1 ______________________________________________________________________________________ 13

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer 1 Package Information 8 (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, 9 go to www.maxim-ic.com/packages.) 9 S X P E N. A QF L, M 40 L, 6 3 14 ______________________________________________________________________________________

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer Package Information (continued) M (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, A go to www.maxim-ic.com/packages.) X 9 9 8 1 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________15 © 2002 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: M axim Integrated: MAX9981ETX+ MAX9981ETX+D MAX9981ETX+T MAX9981ETX+TD MAX9981ETX MAX9981ETX-T