图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: MAX4252EBL+T
  • 制造商: Maxim
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

MAX4252EBL+T产品简介:

ICGOO电子元器件商城为您提供MAX4252EBL+T由Maxim设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 MAX4252EBL+T价格参考。MaximMAX4252EBL+T封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 2 电路 推挽式,满摆幅 8-UCSP(3x3)。您可以下载MAX4252EBL+T参考资料、Datasheet数据手册功能说明书,资料中有MAX4252EBL+T 详细功能的应用电路图电压和使用方法及教程。

MAX4252EBL+T 是由 Maxim Integrated(现为 Analog Devices 旗下)生产的一款低功耗、高精度运算放大器,属于线性放大器类别中的运算放大器子类。该器件采用单电源供电,具有低输入偏置电流和低失调电压特性,适合高精度信号调理应用。

其主要应用场景包括:

1. 传感器信号调理:适用于压力、温度、湿度等传感器的微弱信号放大,因其低失调和低温漂特性,可提高测量精度。

2. 便携式设备:由于其低功耗特性(典型电流仅10μA),广泛用于电池供电设备,如手持式仪器、穿戴设备等。

3. 医疗电子设备:如心电图仪、血糖仪等对精度和稳定性要求高的医疗仪器中,用于放大微弱生物信号。

4. 工业控制系统:用于工业自动化中的信号放大和滤波,提升系统稳定性和抗干扰能力。

5. 数据采集系统:在高精度数据采集系统中作为前置放大器或缓冲器,确保信号完整性。

该器件采用6引脚SOT-23封装,体积小,适合空间受限的设计。其轨对轨输入输出特性使其在低电压系统中表现优异,适应性强。
产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)

描述

IC OPAMP GP 3MHZ RRO 8UCSP

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps

品牌

Maxim Integrated

数据手册

点击此处下载产品Datasheet

产品图片

产品型号

MAX4252EBL+T

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

-

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=25703http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=25705

产品目录页面

点击此处下载产品Datasheet

供应商器件封装

8-UCSP(3x3)

其它名称

MAX4252EBL+TCT

包装

剪切带 (CT)

压摆率

0.3 V/µs

增益带宽积

3MHz

安装类型

表面贴装

封装/外壳

8-UFBGA,WLCSP

工作温度

-40°C ~ 85°C

应用说明

点击此处下载产品Datasheet点击此处下载产品Datasheet点击此处下载产品Datasheet

放大器类型

通用

标准包装

1

电压-电源,单/双 (±)

2.4 V ~ 5.5 V, ±1.2 V ~ 2.75 V

电压-输入失调

70µV

电流-电源

420µA

电流-输入偏置

1pA

电流-输出/通道

68mA

电路数

2

输出类型

推挽式,满摆幅

推荐商品

型号:MAX9938FELT+T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:MAX4131EUA+

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:LT6202IS8#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:MAX4435EUK-T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:OPA2381AIDGKR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:OPA2363IDGST

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:OPA2604APG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:AD8014ARTZ-REEL7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
MAX4252EBL+T 相关产品

LTC6268HS6#TRMPBF

品牌:Linear Technology/Analog Devices

价格:

TS954IYPT

品牌:STMicroelectronics

价格:

EL8101IWZ-T7

品牌:Renesas Electronics America Inc.

价格:

MC33178DR2G

品牌:ON Semiconductor

价格:

OPA2364AIDGKTG4

品牌:Texas Instruments

价格:

LT1637CS8#PBF

品牌:Linear Technology/Analog Devices

价格:

TL084ACN

品牌:Texas Instruments

价格:

LMC6484IM/NOPB

品牌:Texas Instruments

价格:¥7.45-¥15.12

PDF Datasheet 数据手册内容提取

EVALUATION KIT AVAILABLE MAX4249–MAX4257 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps General Description Features The MAX4249–MAX4257 low-noise, low-distortion oper- ! Available in Space-Saving UCSP, SOT23, and ational amplifiers offer rail-to-rail outputs and single- µMAX®Packages supply operation down to 2.4V. They draw 400µA of ! Low Distortion: 0.0002% THD (1k"load) quiescent supply current per amplifier while featuring ! 400µA Quiescent Supply Current per Amplifier ultra-low distortion (0.0002% THD), as well as low input ! Single-Supply Operation from 2.4V to 5.5V voltage-noise density (7.9nV/!Hz) and low input ! Input Common-Mode Voltage Range Includes current-noise density (0.5fA/!Hz). These features make Ground the devices an ideal choice for portable/battery-powered applications that require low distortion and/or low noise. ! Outputs Swing Within 8mV of Rails with a 10k" Load For additional power conservation, the MAX4249/ ! 3MHz GBW Product, Unity-Gain Stable MAX4251/MAX4253/MAX4256 offer a low-power shut- (MAX4250–MAX4254) down mode that reduces supply current to 0.5µA and puts the amplifiers’ outputs into a high-impedance 22MHz GBW Product, Stable with AV#10V/V (MAX4249/MAX4255/MAX4256/MAX4257) state. The MAX4249-MAX4257’s outputs swing rail-to- ! Excellent DC Characteristics rail and their input common-mode voltage range VOS= 70µV includes ground. The MAX4250–MAX4254 are unity- IBIAS= 1pA gain stable with a gain-bandwidth product of 3MHz. Large-Signal Voltage Gain = 116dB The MAX4249/MAX4255/MAX4256/MAX4257 are inter- ! Low-Power Shutdown Mode nally compensated for gains of 10V/V or greater with a Reduces Supply Current to 0.5µA gain-bandwidth product of 22MHz. The single MAX4250/ Places Outputs in a High-Impedance State MAX4255 are available in space-saving 5-pin SOT23 ! 400pF Capacitive-Load Handling Capability packages. The MAX4252 is available in an 8-bump chip- scale package (UCSP™) and the MAX4253 is available in Ordering Information a 10-bump UCSP. The MAX4250AAUK comes in a 5-pin SOT23 package and is specified for operation over the PIN- TOP PART TEMP RANGE automotive (-40°C to +125°C) temperature range. PACKAGE MARK Applications MAX4249ESD+ -40°C to +85°C 14 SO — MAX4249EUB+ -40°C to +85°C 10 µMAX — Wireless Communications Devices MAX4250EUK+T -40°C to +85°C 5 SOT23 ACCI PA Control M AX 4250AAU K+ T -4 0°C to +1 25°C 5 SOT23 AEYJ Portable/Battery-Powered Equipment +Denotes a lead(Pb)-free/RoHS-compliant package. Medical Instrumentation T = Tape and reel. ADC Buffers Ordering Information continued at end of data sheet. Digital Scales/Strain Gauges Selector Guide appears at end of data sheet. Pin/Bump Configurations TOP VIEW (BUMPS ON BOTTOM) 1 2 3 A1 A2 A3 A4 A OUTA VDD OUTB OUTB INB- INB+ SHDNB B1 B4 B INA- MAX4252 INB- VDD MAX4253 VSS C1 C2 C3 C4 C INA+ VSS INB+ OUTA INA- INA+ SHDNA UCSP UCSP Pin/Bump Configurations continued at end of data sheet. UCSP is a trademark and µMAX is a registered trademark of Maxim Integrated Products, Inc. FFoorr pprriicciinngg,, ddeelliivveerryy,, aanndd oorrddeerriinngg iinnffoorrmmaattiioonn,, pplleeaassee ccoonnttaacctt MMaaxxiimm DDiirreecctt aatt 11--888888--662299--44664422,, oorr vviissiitt MMaaxxiimm IInntteeggrraatteedd’’ss wweebbssiittee aatt wwwwww..mmaaxxiimmiinntteeggrraatteedd..ccoomm.. 19-1295; Rev 9; 12/12

MAX4249–MAX4257 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps ABSOLUTE MAXIMUM RATINGS Power-Supply Voltage (VDDto VSS)......................+6.0V to -0.3V 10-Pin µMAX (derate 5.6mW/°C above +70°C)...........444mW Analog Input Voltage (IN_+, IN_-)....(VDD+ 0.3V) to (VSS- 0.3V) 14-Pin SO (derate 8.33mW/°C above +70°C)..............667mW SHDNInput Voltage......................................6.0V to (VSS- 0.3V) Operating Temperature Range...........................-40°C to +85°C Output Short-Circuit Duration to Either Supply..........Continuous MAX4250AAUK.............................................-40°C to +125°C Continuous Power Dissipation (TA= +70°C) Junction Temperature......................................................+150°C 5-Pin SOT23 (derate 7.1mW/°C above +70°C)...........571mW Storage Temperature Range.............................-65°C to +150°C 8-Bump UCSP (derate 4.7mW/°C above +70°C)........379mW Lead Temperature (soldering, 10s).................................+300°C 8-Pin µMAX (derate 4.5mW/°C above +70°C)............362mW Soldering Temperature (reflow).......................................+260°C 8-Pin SO (derate 5.88mW/°C above +70°C)...............471mW 10-Bump UCSP (derate 6.1mW/°C above +70°C)......484mW Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VDD= 5V, VSS= 0V, VCM= 0V, VOUT= VDD/2, RLconnected to VDD/2, SHDN= VDD, TA= TMINto TMAX, unless otherwise noted. Typical values are at TA= +25°C.) (Notes 2, 3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Supply Voltage Range VDD (Note 4) 2.4 5.5 V VDD = 3V 400 Normal E temperature 420 575 Quiescent Supply Current Per IQ mode VDD = 5V MAX4250AAUK 675 µA Amplifier VDD = 5V, UCSP only 420 655 Shutdown mode (SHDN = VSS) (Note 2) 0.5 1.5 E temperature ±0.07 ±0.75 Input Offset Voltage (Note 5) VOS mV MAX4250AAUK ±1.85 Input Offset Voltage Tempco TCVOS 0.3 µV/°C TA = +25°C 0.1 1 Input Bias Current IB (Note 6) TA = -40°C to +85°C 50 pA TA = -40°C to +125°C 1500 TA = +25°C 0.1 1 Input Offset Current IOS (Note 6) TA = -40°C to +85°C 10 pA TA = -40°C to +125°C 100 Differential Input Resistance RIN 1000 GΩ Input Common-Mode Voltage Guaranteed by E temperature -0.2 VDD -1.1 VCM V Range CMRR test MAX4250AAUK 0 VDD -1.1 VSS - 0.2V ≤ VCM ≤ E temperature 70 115 Common-Mode Rejection Ratio CMRR dB VDD - 1.1V MAX4250AAUK 68 2 Maxim Integrated

MAX4249–MAX4257 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps ELECTRICAL CHARACTERISTICS (continued) (VDD= 5V, VSS= 0V, VCM= 0V, VOUT= VDD/2, RLconnected to VDD/2, SHDN= VDD, TA= TMINto TMAX, unless otherwise noted. Typical values are at TA= +25°C.) (Notes 2, 3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS E temperature 75 100 Power-Supply Rejection Ratio PSRR VDD – 2.4V to 5.5V dB MAX4250AAUK 72 RL = 10kΩ to VDD/2; E temperature 80 116 VOUT = 25mV to VDD – 4.97V MAX4250AAUK 77 Large-Signal Voltage Gain AV dB RL = 1kΩ to VDD/2; E temperature 80 112 VOUT = 150V to VDD – 4.75V MAX4250AAUK 77 E 8 25 VDD - VOH |VIN+ - VIN-| ≥ 10mV; A 30 Output Voltage Swing VOUT RL = 10kΩ to VDD/2 E 7 20 mV VOL - VSS A 25 E 77 200 VDD - VOH |VIN+ - VIN-| ≥ 10mV, A 225 Output Voltage Swing VOUT mV RL = 1kΩ to VDD/2 E 47 100 VOL - VSS A 125 Output Short-Circuit Current ISC 68 mA Shutdown mode (SHDN = VSS), Output Leakage Current ILEAK 0.001 1.0 µA VOUT = VSS to VDD (Note 2) SHDN Logic Low VIL (Note 2) 0.2 X VD D V SHDN Logic High VIH (Note 2) 0.8 X VDD V SHDN Input Current IIL/IIH SHDN = VSS = VDD (Note 2) 0.5 1.5 µA Input Capacitance 11 pF MAX4250–MAX4254 3 Gain-Bandwidth Product GBW MHz MAX4249/MAX4255/MAX4256/MAX4257 22 MAX4250–MAX4254 0.3 Slew Rate SR V/µs MAX4249/MAX4255/MAX4256/MAX4257 2.1 Peak-to-Peak Input-Noise Voltage enP-P f = 0.1Hz to 10Hz 760 nVP-P f = 10Hz 27 Input Voltage-Noise Density en f = 1kHz 8.9 nV/√Hz f = 30kHz 7.9 Input Current-Noise Density in f = 1kHz 0.5 fA/√Hz Maxim Integrated 3

MAX4249–MAX4257 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps ELECTRICAL CHARACTERISTICS (continued) (VDD= 5V, VSS= 0V, VCM= 0V, VOUT= VDD/2, RLconnected to VDD/2, SHDN= VDD, TA= TMINto TMAX, unless otherwise noted. Typical values are at TA= +25°C.) (Notes 2, 3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS MAX4250–MAX4254 f = 1kHz 0.0004 AV = 1V/V, VOUT = 2VP-P, RL = 1kΩ to GND Total Harmonic Distortion Plus (Note 7) f = 20kHz 0.006 THD+N % Noise MAX4249/MAX4255/ f = 1kHz 0.0012 MAX4256/MAX4257 AV = 1V/V, VOUT = 2VP-P, f = 20kHz 0.007 RL = 1kΩ to GND (Note 7) Capacitive-Load Stability No sustained oscillations 400 pF MAX4250–MAX4254, AV = 1V/V 10 Gain Margin GM dB MAX4249/MAX4255/MAX4256/MAX4257, 12.5 AV = 10V/V MAX4250–MAX4254, AV = 1V/V 74 Phase Margin ΦM MAX4249/MAX4255/MAX4256/MAX4257, Degrees 68 AV = 10V/V MAX4250–MAX4254 6.7 To 0.01%, VOUT Settling Time MAX4249/MAX4255/ µs = 2V step 1.6 MAX4256/MAX4257 IVDD = 5% of MAX4251/MAX4253 0.8 Delay Time to Shutdown tSH normal µs operation MAX4249/MAX4256 1.2 VOUT = 2.5V, MAX4251/MAX4253 8 Delay Time to Enable tEN VOUT settles to µs 0.1% MAX4249/MAX4256 3.5 Power-Up Delay Time tPU VDD = 0 to 5V step, VOUT stable to 0.1% 6 µs Note 2:SHDNis available on the MAX4249/MAX4251/MAX4253/MAX4256 only. Note 3:All device specifications are 100% tested at TA= +25°C. Limits over temperature are guaranteed by design. Note 4:Guaranteed by the PSRR test. Note 5:Offset voltage prior to reflow on the UCSP. Note 6:Guaranteed by design. Note 7:Lowpass-filter bandwidth is 22kHz for f = 1kHz and 80kHz for f = 20kHz. Noise floor of test equipment = 10nV/!Hz. 4 Maxim Integrated

MAX4249–MAX4257 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps Typical Operating Characteristics (VDD = 5V, VSS = 0V, VCM = VOUT = VDD/2, input noise floor of test equipment =10nV/!Hz for all distortion measurements, TA= +25°C, unless otherwise noted.) MAX4251/MAX4256 OFFSET VOLTAGE INPUT OFFSET VOLTAGE INPUT OFFSET VOLTAGE DISTRIBUTION vs. TEMPERATURE vs. INPUT COMMON-MODE VOLTAGE S 334050 T4A0 =0V C+UM2N5 I=°T CS0 MAX4249-57 TOC01 112205050000 VCM = 0 MAX4249-57 TOC02 E (V)µ 125000 MAX4249-57 TOC03 UMBER OF UNIT 212055 V (V)µOS -55000 OFFSET VOLTAG 10500 VDD = 3V VDD = 5V N -100 UT 10 P N -150 I 0 5 -200 0 -250 -50 95755535137284969901031527292 -40 -20 0 20 40 60 80 -0.5 0.5 1.5 2.5 3.5 4.5 ----- 11111 VOS (µV) TEMPERATURE (°C) INPUT COMMON-MODE VOLTAGE (V) OUTPUT VOLTAGE OUTPUT VOLTAGE SWING (VOH) OUTPUT VOLTAGE SWING (VOL) vs. OUTPUT LOAD CURRENT vs. TEMPERATURE vs. TEMPERATURE VOLTAGE (V) 0000....3456 VVDDDIF F= =3 V± 1O0Rm 5VV VDD - VOH MAX4249-57 TOC04 - V (V)DOH 000000......000001567890 RL = 1kΩ MAX4249-57 TOC05 V(V) OL0000....00003456 RL = 1kΩ MAX4249 -57TOC06 UT VOL VD 0.04 P OUT 0.2 0.03 0.02 0.02 0.1 RL = 10kΩ 0.01 RL = 10kΩ 0.01 RL = 100kΩ RL = 100kΩ 0 0 0 0 1 2 3 4 5 6 7 8 9 10 -40 -20 0 20 40 60 80 -40 -20 0 20 40 60 80 OUTPUT LOAD CURRENT (mA) TEMPERATURE (°C) TEMPERATURE (°C) LARGE-SIGNAL VOLTAGE GAIN LARGE-SIGNAL VOLTAGE GAIN LARGE-SIGNAL VOLTAGE GAIN vs. OUTPUT VOLTAGE SWING vs. OUTPUT VOLTAGE SWING vs. OUTPUT VOLTAGE SWING 111324000 RRLL == 22000kkΩΩ MAX4249-57 TOC07 111234000 MAX4249-57 TOC08 111324000 RL = 200kΩ MAX4249-57 TOC09 A (dB)V 110100 RL = 2kΩ A (dB)V 110100 RL = 20kΩ RL = 200kΩ A (dB)V 110100 RL = 20kΩ RL = 2kΩ 90 90 80 90 RL = 2kΩ 80 70 80 70 60 VDD = 3V 70 VDD = 3V 60 VDD = 5V RL REFERENCED TO GND RL REFERENCED TO GND RL REFERENCED TO GND 50 60 50 0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250 VOUT SWING FROM EITHER SUPPLY (mV) VOUT SWING FROM EITHER SUPPLY (mV) VOUT SWING FROM EITHER SUPPLY (mV) Maxim Integrated 5

MAX4249–MAX4257 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps Typical Operating Characteristics (continued) (VDD = 5V, VSS = 0V, VCM = VOUT = VDD/2, input noise floor of test equipment =10nV/!Hz for all distortion measurements, TA= +25°C, unless otherwise noted.) LARGE-SIGNAL VOLTAGE GAIN LARGE-SIGNAL VOLTAGE GAIN SUPPLY CURRENT AND SHUTDOWN vs. OUTPUT VOLTAGE SWING vs. TEMPERATURE SUPPLY CURRENT vs. TEMPERATURE A (dB)V1111118901234500000000 RL = 200kΩ RLR L= =2 k2Ω0kΩ MAX4249-57 TOC10 A (dB)V 111111220505 VRLD DR E=F 5TRVEVOLOR U E=4TN .1 9=C09 E01mDk0VΩm T V O VDD/2 MAX4249-57 TOC11 UPPLY CURRENT (A)µ344448024600000 PER AMPLSIHFIDENR = VDD MAX4249-57 TOC12000...333777456 OWN SUPPLY CURRENT (A)µ S D 7600 RL REFERENCED VTDOD G =N 5DV 105 TRVOLO U =4T .1 7=k5 Ω1m5 V0 mV TRVOLO U =4T .1 9=07 k25Ω0mm VV 360 SHDN = VSS SHUT 50 100 340 0.373 0 50 100 150 200 250 -40 -20 0 20 40 60 80 -40 -20 0 20 40 60 80 VOUT SWING FROM EITHER SUPPLY (mV) TEMPERATURE (°C) TEMPERATURE (°C) SUPPLY CURRENT AND SHUTDOWN SUPPLY CURRENT INPUT OFFSET VOLTAGE SUPPLY CURRENT vs. SUPPLY VOLTAGE vs. OUTPUT VOLTAGE vs. SUPPLY VOLTAGE SUPPLY CURRENT (A)µ334446802400000 PSEHRD ANM =P VLDIFDIER SHDN = VSMSAX4249-57 TOC13 00000.....23456 DOWN SUPPLY CURRENT (A)µ SUPPLY CURRENT (A)µ21004000000 VDD = 3VVDD = 5V MAX4249-57 TOC14 V (V)µOS 11111820864000000 RL RRLE F=E 1R0EkNΩVCOERUDLT VT==OC 1VM kGD ΩDN=/ D02 MAX4249-57 TOC15 T U 340 0.1 SH 60 RL = 100kΩ 320 0 100 40 1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.35.5 0.001 0.01 0.1 1 5 1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.3 SUPPLY VOLTAGE (V) OUTPUT VOLTAGE (V) SUPPLY VOLTAGE (V) MAX4250–MAX4254 MAX4250–MAX4254 MAX4249/MAX4255/MAX4256/MAX4257 POWER-SUPPLY REJECTION RATIO GAIN AND PHASE vs. FREQUENCY GAIN AND PHASE vs. FREQUENCY vs. FREQUENCY 456000 VMDARDCAXL 4VL= 2= 4 ==39 5- V52107,00 kT5p0OΩVCF016 111804084 645000 RVCADLVL D=== =512 0003k0pVΩ0F, 5V GAMIANX4249-57 TOC17 111804084 ---3210000 VDD = 3V, 5V MAX4249-57 TOC18 30 72 30 72 S) GAIN S) EE -40 GAIN (dB)-1210000 --7330266 PHASE(DEGREE GAIN (dB)-1210000 PHASE --7330266 PHASE (DEGR PSRR (dB)---765000 PSRR+ -80 PSRR- -20 PHASE -108 -20 -108 -90 -30 -144 -30 -144 -100 -40 -180 -40 -180 -110 100 1k 10k 100k 1M 10M 100 1k 10k 100k 1M 10M 1 10 100 1k 10k 100k 1M 10M FREQUENCY(Hz) FREQUENCY (Hz) FREQUENCY(Hz) 6 Maxim Integrated

MAX4249–MAX4257 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps Typical Operating Characteristics (continued) (VDD = 5V, VSS = 0V, VCM = VOUT = VDD/2, input noise floor of test equipment =10nV/!Hz for all distortion measurements, TA= +25°C, unless otherwise noted.) OUTPUT IMPEDANCE INPUT VOLTAGE-N0ISE DENSITY vs. FREQUENCY vs. FREQUENCY 0.1Hz TO 10HzP-P NOISE )Ω1100000 A V = 1 0 ( MMAAXX44224596//MMAAXX44225557/) MAX4249-57 TOC19 TAGE (nV/Hz)√2305 MAX4249-57 TOC20 VDD = 3V OR 5V MAX4249-57 TOC21 CE ( VOL20 PEDAN 10 NOISE-15 200nV/div M T T I PU U N TP T I10 U N O 1 LE A UIV 5 0.1 AV = 1 (MAX4250–MAX4254) Vn-EQ 0 VP-PNOISE = 760nVP-P 1k 10k 100k 1M 10M 10 100 1k 10k 100k 1s/div FREQUENCY (Hz) FREQUENCY (Hz) MAX4250–MAX4254 MAX4250–MAX4254 MAX4249/MAX4255/MAX4256/MAX4257 TOTAL HARMONIC DISTORTION PLUS NOISE --42000 VOUFT F= T2V OP-FP DISTORTION ANDRf ONL =O=A V1I1S kk=HEΩ 1z MAX4249-57 TOC22 -22000 FFT OF VDINISTORTION ANDV ONUOTfO I=S = 4E 1VkPH-Pz MAX4249-57 TOC23 110 AFfOIVL = =Tv E31sRk0.H B zOWU =T 3P0UkHTz VVOINLTAGE (VDD = 5VRVL)O MAX4249-57 TOC24 MPLITUDE (dBc) -1--086000 fO MPLITUDE (dBc) ---864000 fO 11kΩ 100kΩ 1V0OkΩ THD+N (%) 0.1 RL = 1kΩ 11kΩ 100kΩ A A --114200 HDH2D3HD4HD5 --112000 HD2 HD3 0.01 RL = 10kΩ -160 -140 0.001 RL = 100kΩ 10 5k 10k 15k 20k 10 5k 10k 15k 20k 0 1 2 3 4 5 FREQUENCY (Hz) FREQUENCY (Hz) OUTPUT VOLTAGE (VP-P) MAX4250–MAX4254 MAX4249/MAX4255/MAX4256/MAX4257 MAX4250–MAX4254 TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION vs. OUTPUT VOLTAGE SWING (VDD = 3V) vs. OUTPUT VOLTAGE SWING PLUS NOISE vs. FREQUENCY 110 11VkΩIN 100kΩ RVLOUT MAX4249-57 TOC25 0.11 AV = 10 11kVΩIN 100kΩ RVLOUT MAX4249-57 TOC26 0.11 RV1IN R2 RL VOUT MAX4249-57 TOC27 THD+N (%) 0.1 RL = 1kΩ THD+N (%) fO = 20kHz, FILTER BW = 80kHz THD+N (%) 0.01 R1 =R 516 0=Ω 5.,6 Rk2Ω =, R523 k=Ω 5 3kΩ AAVV = = 1 1000 0.01 0.01 RL = 10kΩ 0.001 0.001 FAfOIVL = =T E31Rk0H BzW = 30kHz RL = 100kΩ 0.001 fO = 3kHz, FILTER BW = 30kHz 0.0001 AV = 1 FRILL T=E 1R0 BkVΩWO T==O 22 2GVkNPH-DPz 0 1 2 3 0 1 2 3 4 5 10 100 1k 10k OUTPUT VOLTAGE (VP-P) OUTPUT VOLTAGE (VP-P) FREQUENCY (Hz) Maxim Integrated 7

MAX4249–MAX4257 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps Typical Operating Characteristics (continued) (VDD = 5V, VSS = 0V, VCM = VOUT = VDD/2, input noise floor of test equipment =10nV/!Hz for all distortion measurements, TA= +25°C, unless otherwise noted.) MAX4250–MAX4254 MAX4250–MAX4254 MAX4250–MAX4254 TOTAL HARMONIC DISTORTION LARGE-SIGNAL PULSE RESPONSE SMALL-SIGNAL PULSE RESPONSE PLUS NOISE vs. FREQUENCY 0.1 RVFAIVLOL U=T=T E 1 1R=k Ω2BVW P -=P 80kHz MAX4249-57 TOC28 1.5V MAX4249-57 TOC29 0.6V MAX4249-57 TOC30 0.01 VOUT D+N(%) RL TO VDD/2RL TO GND 200mVV/OdUivT 20mV/div H T 0.001 RL TO VDD 0.5V VRDL D= =1 03kVΩ 0.5V VRDL D= =1 03kVΩ CL = 100pF CL = 100pF VIN = 1V PULSE VIN = 100V PULSE 0.0001 10 100 1k 10k 2µs/div 2µs/div FREQUENCY (Hz) MAX4249/MAX4255/MAX4256/MAX4257 MAX4249/MAX4255/MAX4256/MAX4257 LARGE-SIGNAL PULSE RESPONSE SMALL-SIGNAL PULSE RESPONSE CHANNEL SEPARATION vs. FREQUENCY 140 2V MAX4249-57 TOC31 MAX4249-57 TOC32 dB) 113200 MAX4249-57 TOC33 N ( 1.6V TIO 110 200mVV/OdUivT 50mVV/OdUivT SEPARA 100 L VRDL D= =1 03kVΩ 1.5V RVDL D= =1 03kVΩ CHANNE 9800 1V CL = 100pF CL = 100pF VIN = 100mV PULSE VIN = 10mV PULSE 70 AV = 10 AV = 10 0 2µs/div 2µs/div 1k 10k 100k 1M 10M FREQUENCY (Hz) 8 Maxim Integrated

MAX4249–MAX4257 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps Pin/Bump Description PIN/BUMP MA X 42 5 0 / MA X 42 5 1 / MA X 42 5 2 / MA X 42 4 9 / MA X 42 5 2 MA X 42 5 4 NAME FUNCTION MA X 42 5 5 MA X 42 5 6 MA X 42 5 7 MA X 42 5 3 5-PIN 8-PIN 8-PIN 8-BUMP 10-BUMP 10-PIN 14 - PIN 14-PIN SOT23 SO/µMAX SO/µMAX UCSP UCSP µMAX SO SO OUT, OUTA, 1, 7, 8, OUTB, 1 6 1, 7 A1, A3 A1, C1 1, 9 1, 13 Amplifier Output 14 OUTC, OUTD Negative Supply. Connect to 2 4 4 C2 B4 4 4 11 VSS ground for single- supply operation IN +, IN A+, 3, 5, 10, Noninverting 3 3 3, 5 C1, C3 A3, C3 3, 7 3, 11 IN B+ , INC + , 12 Amplifier Input IN D+ IN-, INA-, 2, 6, 9, Inverting 4 2 2, 6 B1, B3 A2, C2 2, 8 2, 12 INB-, 13 Amplifier Input INC-, IND- 5 7 8 A2 B1 10 14 4 VDD Positive Supply Shutdown Input, Connect to VDD SHDN, or leave — 8 — — A4, C4 5, 6 6, 9 — SHDNA, unconnected for SHDNB normal operation (amplifier(s) enabled). No Connection. 5, 7, — 1, 5 — — — — — N.C. Not internally 8, 10 connected. Not populated — — — B2 B2, B3 — — — — with solder sphere Detailed Description cy, and can drive capacitive loads up to 400pF without oscillation. The input common-mode voltage range The MAX4249–MAX4257 single-supply operational extends from VDD- 1.1V to 200mV beyond the negative amplifiers feature ultra-low noise and distortion while rail. The push-pull output stage maintains excellent DC consuming very little power. Their low distortion and low characteristics, while delivering up to ±5mA of current. noise make them ideal for use as preamplifiers in wide dynamic-range applications, such as 16-bit analog-to- The MAX4250–4254 are unity-gain stable, whereas, the digital converters (see Typical Operating Circuit). Their MAX4249/MAX4255/MAX4256/MAX4257 have a higher high-input impedance and low noise are also useful for slew rate and are stable for gains # 10V/V. The signal conditioning of high-impedance sources, such MAX4249/MAX4251/MAX4253/MAX4256 feature a low- as piezoelectric transducers. power shutdown mode, which reduces the supply cur- rent to 0.5µA and disables the outputs. These devices have true rail-to-rail output operation, drive loads as low as 1k"while maintaining DC accura- The MAX4250AAUK is specified for operation over the automotive (-40°C to +125°C) temperature range. Maxim Integrated 9

MAX4249–MAX4257 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps Low Distortion Many factors can affect the noise and distortion that the device contributes to the input signal. The following CZ guidelines offer valuable information on the impact of design choices on Total Harmonic Distortion (THD). RF Choosing proper feedback and gain resistor values for a particular application can be a very important factor in reducing THD. In general, the smaller the closed- RG VOUT loop gain, the smaller the THD generated, especially when driving heavy resistive loads. Large-value feed- back resistors can significantly improve distortion. The VIN THD of the part normally increases at approximately 20dB per decade, as a function of frequency. Operating the device near or above the full-power bandwidth significantly degrades distortion. Figure 1. Adding Feed-Forward Compensation Referencing the load to either supply also improves the part’s distortion performance, because only one of the MOSFETs of the push-pull output stage drives the out- put. Referencing the load to midsupply increases the part’s distortion for a given load and feedback setting. AV = 2V/V (See the Total Harmonic Distortion vs. Frequency graph RF = RG = 10kΩ in the Typical Operating Characteristics.) 100mV VIN = 50mV/div For gains # 10V/V, the decompensated devices MAX4249/MAX4255/MAX4256/MAX4257 deliver the best distortion performance, since they have a higher 0 slew rate and provide a higher amount of loop gain for VOUT = a given closed-loop gain setting. Capacitive loads 100mV/div below 400pF, do not significantly affect distortion results. Distortion performance remains relatively con- stant over supply voltages. Low Noise 2µs/div The amplifier’s input-referred, noise-voltage density is dominated by flicker noise at lower frequencies, and by Figure 2a. Pulse Response with No Feed-Forward Compensation thermal noise at higher frequencies. Because the ther- mal noise contribution is affected by the parallel combi- nation of the feedback resistive network (RF || RG, AV = 2 Figure 1), these resistors should be reduced in cases RF = RG = 100kΩ where the system bandwidth is large and thermal noise CZ = 11pF is dominant. This noise contribution factor decreases, 100mV 50mV/div however, with increasing gain settings. VIN For example, the input noise-voltage density of the cir- 0 cuit with RF = 100k", RG = 11k" (AV = 10V/V) is en = 15nV/!Hz, en can be reduced to 9nV/!Hz by choosing 100mV/div RF = 10k", RG = 1.1k" (AV = 10V/V), at the expense of greater current consumption and potentially higher VOUT distortion. For a gain of 100V/V with RF = 100k", RG= 1.1k", the enis low (9nV/!Hz). 2µs/div Figure 2b. Pulse Response with 10pF Feed-Forward Compensation 10 Maxim Integrated

MAX4249–MAX4257 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps Using a Feed-Forward Compensation Capacitor, CZ The amplifier’s input capacitance is 11pF. If the resis- tance seen by the inverting input is large (feedback network), this can introduce a pole within the amplifier’s RISO bandwidth, resulting in reduced phase margin. VOUT Compensate the reduced phase margin by introducing a feed-forward capacitor (CZ) between the inverting CL input and the output (Figure 1). This effectively cancels MAX4250 VIN MAX4251 the pole from the inverting input of the amplifier. MAX4252 Choose the value of CZas follows: MAX4253 CZ= 11 x (RF/ RG) [pF] MAX4254 In the unity-gain stable MAX4250–MAX4254, the use of a proper CZ is most important for AV = 2V/V, and Figure 3. Overdriven Input Showing No Phase Reversal AV = -1V/V. In the decompensated MAX4249/ MAX4255/MAX4256/MAX4257, CZ is most important for AV = 10V/V. Figures 2a and 2b show transient response both with and without CZ. 4.25V Using a slightly smaller CZ than suggested by the for- mula above achieves a higher bandwidth at the VOUT expense of reduced phase and gain margin. As a gen- eral guideline, consider using CZ for cases where RG || 0 RF is greater than 20k" (MAX4250–MAX4254) or 4.45V greater than 5k" (MAX4249/MAX4255/MAX4256/ MAX4257). VIN Applications Information 0 -200mV AV = 1 The MAX4249–MAX4257 combine good driving capa- VDD = 5V bility with ground-sensing input and rail-to-rail output RL = 10kΩ operation. With their low distortion, low noise, and low- 20µs/div power consumption, these devices are ideal for use in portable instrumentation systems and other low-power, Figure 4. Rail-to-Rail Output Operation noise-sensitive applications. Ground-Sensing and Rail-to-Rail Outputs The common-mode input range of these devices 5V extends below ground, and offers excellent common- mode rejection. These devices are guaranteed not to VOUT undergo phase reversal when the input is overdriven 1V/div (Figure 3). Figure 4 showcases the true rail-to-rail output opera- tion of the amplifier, configured with AV = 10V/V. The output swings to within 8mV of the supplies with a 0 10k" load, making the devices ideal in low-supply- VDD = 5V voltage applications. RL = 10kΩ AV = 10 f = 1kHz Output Loading and Stability Even with their low quiescent current of 400µA, these 200µs/div amplifiers can drive 1k" loads while maintaining excel- lent DCaccuracy. Stability while driving heavy capaci- Figure 5. Capacitive-Load Driving Circuit tive loads is another key feature. Maxim Integrated 11

MAX4249–MAX4257 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps 160 4.5 VDD = 3V 140 4.0 120 MHz) 3.5 )Ω100 WIDTH ( 3.0 R (ISO 80 N BAND 22..05 60 AI 40 SSHTAABDLEED O APREERAA ITNIODNICATES UNITY-G 11..05 SSHTAABDLEED O APREERAA ITNIODNICATES 20 WISIOTLHA NTIOO NN EREEDS IFSOTROR. 0.5 WISIOTLHA NTIOO NN EREEDS IFSOTROR. 0 0 10 100 1000 10,000 10 100 1000 10,000 CAPACITIVE LOADING (pF) CAPACITIVE LOAD (pF) NOTE: USING AN ISOLATION RESISTOR REDUCES PEAKING. NOTE: RISO CHOSEN FOR PEAKING <2dB. Figure 6. Isolation Resistance vs. Capacitive Loading to Figure 8. MAX4250–MAX4254 Unity-Gain Bandwidth vs. Minimize Peaking (<2dB) Capacitive Load These devices maintain stability while driving loads up to 400pF. To drive higher capacitive loads, place a 25 small isolation resistor in series between the output of MAX4250–MAX4254 (AV = 1) the amplifier and the capacitive load (Figure 5). This 20 RMISAOX =4 204 9/MAX4255–MAX4257 (AV = 10) resistor improves the amplifier’s phase margin by iso- lating the capacitor from the op amp’s output. NG (dB) 15 SSWHTIATAHBDL ENEDO O ANPREEEERADA I TNFIOODRNICATES Renesfeurreen ac elo Faidg ucraep 6a ctoit asnecleec tt haa rt elsimisittasn pceea vkainluge t oth a<t2 wdBill KI ISOLATION RESISTOR. (25%). For example, if the capacitive load is 1000pF, A PE 10 the corresponding isolation resistor is 150". Figure 7 shows that peaking occurs without the isolation resis- 5 tor. Figure 8 shows the unity-gain bandwidth vs. capac- itive load for the MAX4250–MAX4254. 0 10 100 1000 10,000 Power Supplies and Layout CAPACITIVE LOAD (pF) The MAX4249–MAX4257 operate from a single 2.4V to 5.5V power supply or from dual supplies of ±1.20V to ±2.75V. For single-supply operation, bypass the power Figure 7. Peaking vs. Capacitive Load supply with a 0.1µF ceramic capacitor placed close to the VDD pin. If operating from dual supplies, bypass each supply to ground. Good layout improves performance by decreasing the amount of stray capacitance and noise at the op amp’s inputs and output. To decrease stray capacitance, min- imize PC board trace lengths and resistor leads, and place external components close to the op amp’s pins. 12 Maxim Integrated

MAX4249–MAX4257 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps Typical Operating Circuit 5V 50kΩ VDD 2 7 MAX195 (16-BIT ADC) 6 MAX4256 AIN DOUT 3 VIN SHDN SCLK SERIAL 4 8 INTERFACE CS 5kΩ REF 4.096V VSS -5V SHDN Selector Guide GA I N MINIMUM NO. OF SHUTDOWN PART BA N D W IDT H STABLE AMPLIFIERS PIN-PACKAGE MODE (M H z ) GAIN (V/V) PER PACKAGE MAX4249 22 10 2 Yes 10-pin µMAX, 14-pin SO MAX4250/A 3 1 1 — 5-pin SOT23 MAX4251 3 1 1 Yes 8-pin µMAX/SO MAX4252 3 1 2 — 8-p in µMA X /S O , 8- bu m p UC S P 10-pin µMAX, 14-pin SO, MAX4253 3 1 2 Yes 10-bump UCSP MAX4254 3 1 4 — 14-pin SO MAX4255 22 10 1 — 5-pin SOT23 MAX4256 22 10 1 Yes 8-pin µMAX/SO MAX4257 22 10 2 — 8-pin µMAX/SO Maxim Integrated 13

MAX4249–MAX4257 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps Pin/Bump Configurations (continued) TOP VIEW + + + OUT 1 5 VDD N.C. 1 8 SHDN OUTA 1 8 VDD MAX4250 IN- 2 MAX4251 7 VDD INA- 2 MAX4252 7 OUTB VSS 2 MAX4250A MAX4256 MAX4257 IN+ 3 6 OUT INA+ 3 6 INB- MAX4255 IN+ 3 4 IN- VSS 4 5 N.C. VSS 4 5 INB+ µMAX/SO µMAX/SO SOT23 + + + OUTA 1 10 VDD OUTA 1 14 VDD OUTA 1 14 OUTD INA- 2 9 OUTB INA- 2 13 OUTB INA- 2 13 IND- MAX4249 INA+ 3 MAX4253 8 INB- INA+ 3 12 INB- INA+ 3 12 IND+ MAX4249 VSS 4 7 INB+ VSS 4 MAX4253 11 INB+ VDD 4 MAX4254 11 VSS SHDNA 5 6 SHDNB N.C. 5 10 N.C. INB+ 5 10 INC+ SHDNA 6 9 SHDNB INB- 6 9 INC- µMAX N.C. 7 8 N.C. OUTB 7 8 OUTC SO SO Ordering Information (continued) PIN- TOP PART TEMP RANGE PACKAGE MA RK MAX4251ESA+ -40°C to +85°C 8 SO — MAX4251EUA+ -40°C to +85°C 8 µMAX — MAX4252EBL+T -40°C to +85°C 8 UCSP AAO MAX4252ESA+ -40°C to +85°C 8 SO — MAX4252EUA+ -40°C to +85°C 8 µMAX — MAX4253EBC+T -40°C to +85°C 10 UCSP AAK MAX4253EUB+ -40°C to +85°C 10 µMAX — MAX4253ESD+ -40°C to +85°C 14 SO — MAX4254ESD+ -40°C to +85°C 14 SO — MAX4255EUK+T -40°C to +85°C 5 SOT23 ACC J MAX4256ESA+ -40°C to +85°C 8 SO — MAX4256EUA+ -40°C to +85°C 8 µMAX — MAX4257ESA+ -40°C to +85°C 8 SO — MAX4257ESA/V+ T -40°C to +85°C 8 SO — MAX4257EUA+ -40°C to +85°C 8 µMAX — 14 Maxim Integrated

MAX4249–MAX4257 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps Package Information For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. LAND PACKAGE TYPE PACKAGE CODE OUTLINE NO. PATTERN NO. 5 SOT-23 U5+2 21-0057 90-0174 8 µMAX U8+1 21-0036 90-0092 10 µMAX U10+2 21-0061 90-0330 3 x 3 µCSP B9+5 21-0093 — 14 SOIC S14+1 21-0041 90-0112 12 µCSP B12+4 21-0104 — Maxim Integrated 15

MAX4249–MAX4257 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps Revision History REVISION REVISION PAGES DESCRIPTION NUMBER DATE CHANGED Added lead-free packaging to the Ordering Information and changed the Input Bias 8 10/11 1, 2, 14 Current and Input Offset Current conditions in the Electrical Characteristics table 9 12/12 Added MAX4257ESA/V+T to Ordering Information. 14 Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. 16 Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000 © 2012 Maxim Integrated Products, Inc. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: M axim Integrated: MAX4250EUK+T MAX4252ESA+ MAX4252EUA+ MAX4253EUB+ MAX4249ESD+ MAX4249ESD+T MAX4249EUB+ MAX4249EUB+T MAX4250AAUK+T MAX4250EUK-T MAX4251ESA MAX4251ESA+ MAX4251ESA+T MAX4251EUA+ MAX4251EUA+T MAX4252EBL+T MAX4252ESA MAX4252ESA+T MAX4252EUA+T MAX4253EBC+T MAX4253ESD+ MAX4253ESD+T MAX4253EUB+G65 MAX4253EUB+T MAX4253EUB+TG65 MAX4255EUK+T MAX4256ESA+ MAX4256ESA+T MAX4256EUA+ MAX4256EUA+T MAX4257ESA+ MAX4257ESA+T MAX4257EUA+ MAX4257EUA+T MAX4251ESA-T MAX4252EBL-T MAX4252ESA-T MAX4253EBC-T MAX4253ESD MAX4253ESD-T MAX4253EUB MAX4253EUB-T MAX4257ESA MAX4257ESA-T MAX4257EUA MAX4257EUA-T