图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: LMT89DCKT
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

LMT89DCKT产品简介:

ICGOO电子元器件商城为您提供LMT89DCKT由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LMT89DCKT价格参考。Texas InstrumentsLMT89DCKT封装/规格:温度传感器 - 模拟和数字输出, 温度传感器 模拟,本地 -55°C ~ 130°C 11.77mV/°C SC-70-5。您可以下载LMT89DCKT参考资料、Datasheet数据手册功能说明书,资料中有LMT89DCKT 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

传感器,变送器

描述

IC TEMP SENSOR PREC ANGL SC70-5板上安装温度传感器 2.4V,10uA,DSBGA Temp Sensor

产品分类

温度传感器,变送器温度传感器

品牌

Texas Instruments

产品手册

http://www.ti.com/lit/gpn/lmt89

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

板上安装温度传感器,Texas Instruments LMT89DCKT-

数据手册

点击此处下载产品Datasheet

产品型号

LMT89DCKT

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30170

产品种类

板上安装温度传感器

供应商器件封装

SC-70-5

关闭

No Shutdown

其它名称

296-35757-6

准确性

+/- 1.5 C

包装

Digi-Reel®

商标

Texas Instruments

增益

- 11.77 mV / C

安装风格

SMD/SMT

封装

Reel

封装/外壳

6-TSSOP(5 引线),SC-88A,SOT-353

封装/箱体

SC-70-5

工厂包装数量

250

感应温度

-55°C ~ 130°C

数字输出-总线接口

-

最大工作温度

+ 130 C

最小工作温度

- 55 C

标准包装

1

电压-电源

2.4 V ~ 5.5 V

电源电压-最大

5.5 V

电源电压-最小

2.4 V

电源电流

4.5 uA

精度

±1.5°C

系列

LMT89

设备功能

Temperature Sensor

输出电流

10 mA

输出类型

模拟

配置

Local

推荐商品

型号:TMP175AIDR

品牌:Texas Instruments

产品名称:传感器,变送器

获取报价

型号:MLX90614ESF-DAA-000-TU

品牌:Melexis Technologies NV

产品名称:传感器,变送器

获取报价

型号:MAX6627MKA-T

品牌:Maxim Integrated

产品名称:传感器,变送器

获取报价

型号:LM95221CIMM/NOPB

品牌:Texas Instruments

产品名称:传感器,变送器

获取报价

型号:MAX6626PMTT+T

品牌:Maxim Integrated

产品名称:传感器,变送器

获取报价

型号:LM70CIMMX-3/NOPB

品牌:Texas Instruments

产品名称:传感器,变送器

获取报价

型号:MAX6699EE34+T

品牌:Maxim Integrated

产品名称:传感器,变送器

获取报价

型号:AT30TS74-UFM11-T

品牌:Microchip Technology

产品名称:传感器,变送器

获取报价

样品试用

万种样品免费试用

去申请
LMT89DCKT 相关产品

TC72-3.3MUA

品牌:Microchip Technology

价格:¥12.47-¥12.47

TC74A0-3.3VCTTR

品牌:Microchip Technology

价格:

LM83CIMQA/NOPB

品牌:Texas Instruments

价格:¥21.15-¥39.29

DS1631S/T&R

品牌:Maxim Integrated

价格:

TMP36GT9Z

品牌:Analog Devices Inc.

价格:¥4.88-¥6.10

2864273

品牌:Phoenix Contact

价格:

LM71QCIMFX/NOPB

品牌:Texas Instruments

价格:

NE1617ADS,112

品牌:NXP USA Inc.

价格:

PDF Datasheet 数据手册内容提取

Product Sample & Technical Tools & Support & Folder Buy Documents Software Community LMT89 SNIS176A–MARCH2013–REVISEDJANUARY2015 LMT89 2.4-V, 10-µA, SC70 Temperature Sensor 1 Features 3 Description • Cost-EffectiveAlternativetoThermistors The LMT89 device is a precision analog output 1 CMOS integrated-circuit temperature sensor that • Ratedforfull−55°Cto130°CRange operates over a −55°C to 130°C temperature range. • AvailableinanSC70Package The power supply operating range is 2.4 V to 5.5 V. • PredictableCurvatureError The transfer function of LMT89 device is predominately linear, yet has a slight predictable • SuitableforRemoteApplications parabolic curvature. The accuracy of the LMT89 device, when specified to a parabolic transfer 2 Applications function, is typically ±1.5°C at an ambient • Industrial temperature of 30°C. The temperature error increases linearly and reaches a maximum of ±2.5°C • HVAC at the temperature range extremes. The temperature • Automotive range is affected by the power supply voltage. At a • DiskDrives power supply voltage of 2.7 V to 5.5 V, the • PortableMedicalInstruments temperature range extremes are 130°C and −55°C. Decreasing the power supply voltage to 2.4 V • Computers changes the negative extreme to −30°C, while the • BatteryManagement positiveremainsat130°C. • Printers The quiescent current of the LMT89 device is less • PowerSupplyModules than 10 μA. Therefore, self-heating is less than • FAXMachines 0.02°C in still air. Shutdown capability for the LMT89 device is intrinsic because its inherent low power • MobilePhones consumption allows it to be powered directly from the • Automotive output of many logic gates or does not necessitate shutdownatall. The LMT89 device is a cost-competitive alternative to thermistors. DeviceInformation(1) PARTNUMBER PACKAGE BODYSIZE(NOM) LMT89 SOT(5) 2.00mm×1.25mm (1) For all available packages, see the orderable addendum at theendofthedatasheet. SimplifiedSchematic OutputVoltagevsTemperature +2.4V to +5.5V To MCU ADC V+ V O LMT89 GND NC 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

LMT89 SNIS176A–MARCH2013–REVISEDJANUARY2015 www.ti.com Table of Contents 1 Features.................................................................. 1 7.3 FeatureDescription...................................................6 2 Applications........................................................... 1 7.4 DeviceFunctionalModes..........................................7 3 Description............................................................. 1 8 ApplicationandImplementation.......................... 8 4 RevisionHistory..................................................... 2 8.1 ApplicationInformation..............................................8 8.2 TypicalApplications..................................................9 5 PinConfigurationandFunctions......................... 3 8.3 SystemExamples...................................................11 6 Specifications......................................................... 4 9 PowerSupplyRecommendations...................... 12 6.1 AbsoluteMaximumRatings......................................4 10 Layout................................................................... 12 6.2 ESDRatings..............................................................4 6.3 RecommendedOperatingConditions.......................4 10.1 LayoutGuidelines.................................................12 6.4 ThermalInformation..................................................4 10.2 LayoutExample....................................................13 6.5 ElectricalCharacteristics...........................................5 11 DeviceandDocumentationSupport................. 14 6.6 TypicalCharacteristics .............................................5 11.1 Trademarks...........................................................14 7 DetailedDescription.............................................. 6 11.2 ElectrostaticDischargeCaution............................14 7.1 Overview...................................................................6 11.3 Glossary................................................................14 7.2 FunctionalBlockDiagram.........................................6 12 Mechanical,Packaging,andOrderable Information........................................................... 14 4 Revision History ChangesfromOriginal(March2013)toRevisionA Page • AddedPinConfigurationandFunctionssection,ESDRatingstable,FeatureDescriptionsection,DeviceFunctional Modes,ApplicationandImplementationsection,PowerSupplyRecommendationssection,Layoutsection,Device andDocumentationSupportsection,andMechanical,Packaging,andOrderableInformationsection............................... 1 2 SubmitDocumentationFeedback Copyright©2013–2015,TexasInstrumentsIncorporated ProductFolderLinks:LMT89

LMT89 www.ti.com SNIS176A–MARCH2013–REVISEDJANUARY2015 5 Pin Configuration and Functions SC70-5TopView 4 3 V+ VO LMT89 2 GND 5 1 GND NC PinFunctions PIN I/O DESCRIPTION NO. NAME NC(pin1)mustbeleftfloatingorgrounded.Othersignaltracesmustnotbeconnectedto 1 NC — thispin. Devicesubstrateanddieattachpaddle,connecttopowersupplynegativeterminal.For 2 GND GND optimumthermalconductivitytothePCboardgroundplane,pin2mustbegrounded.This pinmayalsobeleftfloating. Analog 3 V Temperaturesensoranalogoutput O Output 4 V+ Power Positivepowersupplypin 5 GND GND Devicegroundpin,connecttopowersupplynegativeterminal. Copyright©2013–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LMT89

LMT89 SNIS176A–MARCH2013–REVISEDJANUARY2015 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1)(2) MIN MAX UNIT SupplyVoltage −0.2 6.5 V OutputVoltage (V++0.6V) −0.6 V OutputCurrent 10 mA InputCurrentatanypin(3) 5 mA MaximumJunctionTemperature(T ) 150 °C JMAX Storagetemperature(T ) −65 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) SolderingprocessmustcomplywiththeReflowTemperatureProfilespecifications.Refertohttp://www.ti.com/packaging..Reflow temperatureprofilesaredifferentforlead-freeandnon-lead-freepackages. (3) Whentheinputvoltage(V)atanypinexceedspowersupplies(V <GNDorV >V+),thecurrentatthatpinshouldbelimitedto5mA. I I I 6.2 ESD Ratings VALUE UNIT Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(2) ±2500 V(ESD)(1) Electrostaticdischarge Charged-devicemodel(CDM),perJEDECspecificationJESD22- V C101(3) ±250 (1) Accuracyisdefinedastheerrorbetweenthemeasuredandcalculatedoutputvoltageatthespecifiedconditionsofvoltage,current,and temperature(expressedin°C). (2) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (3) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 6.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN MAX UNIT LMT89with2.4V≤V+≤2.7V −30 130 °C LMT89with2.7V≤V+≤5.5V −55 130 °C SupplyVoltageRange(V+) 2.4 5.5 V 6.4 Thermal Information LMT89 THERMALMETRIC(1) SOT UNIT 5PINS R Junction-to-ambientthermalresistance 282 θJA R Junction-to-case(top)thermalresistance 93 θJC(top) R Junction-to-boardthermalresistance 62 θJB °C/W ψ Junction-to-topcharacterizationparameter 1.6 JT ψ Junction-to-boardcharacterizationparameter 62 JB R Junction-to-case(bottom)thermalresistance — θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheICPackageThermalMetricsapplicationreport,SPRA953.For measuredthermalresistanceusingspecificprintedcircuitboardlayoutsfortheLMT89,seeLayout. 4 SubmitDocumentationFeedback Copyright©2013–2015,TexasInstrumentsIncorporated ProductFolderLinks:LMT89

LMT89 www.ti.com SNIS176A–MARCH2013–REVISEDJANUARY2015 6.5 Electrical Characteristics Unlessotherwisenoted,thesespecificationsapplyforV+=2.7V .AlllimitsT =T =T toT ,unlessotherwisenoted. DC A J MIN MAX PARAMETER TESTCONDITIONS MIN(1) TYP(2) MAX(1) UNIT TemperaturetoVoltageError V =(−3.88×10−6×T2)+(−1.15×10−2×T) –2.5 ±1.5 2.5 °C O +1.8639V(3) OutputVoltageat0°C 1.8639 V VariancefromCurve ±1.0 °C Non-Linearity (4) –20°C≤T ≤80°C ±0.4% A SensorGain(TemperatureSensitivityor AverageSlope)toequation: –30°C≤T ≤100°C –12.2 –11.77 –11.4 mV/°C A V =−11.77mV/°C×T+1.860V O OutputImpedance SourcingI 0μAto16μA (5)(6) 160 Ω L LoadRegulation(7) SourcingI 0μAto16μA (5)(6) –2.5 mV L 2.4V≤V+≤5.0V 3.3 mV/V LineRegulation(8) 5.0V≤V+≤5.5V 11 mV 2.4V≤V+≤5.0V;T =25°C 4.5 7 μA A QuiescentCurrent 5.0V≤V+≤5.5V;T =25°C 4.5 9 μA A 2.4V≤V+≤5.0V 4.5 10 μA ChangeofQuiescentCurrent 2.4V≤V+≤5.5V 0.7 μA TemperatureCoefficientofQuiescentCurrent –11 nA/°C ShutdownCurrent V+≤0.8V 0.02 μA (1) LimitsarespecifiedtoTI'sAOQL(AverageOutgoingQualityLevel). (2) TypicalvaluesareatT =T =25°Candrepresentmostlikelyparametricnorm. J A (3) Accuracyisdefinedastheerrorbetweenthemeasuredandcalculatedoutputvoltageatthespecifiedconditionsofvoltage,current,and temperature(expressedin°C). (4) Non-Linearityisdefinedasthedeviationofthecalculatedoutput-voltage-versus-temperaturecurvefromthebest-fitstraightline,over thetemperaturerangespecified. (5) TheLMT89canatmostsink1μAandsource16μA. (6) Loadregulationoroutputimpedancespecificationsapplyoverthesupplyvoltagerangeof2.4Vto5.5V. (7) Regulationismeasuredatconstantjunctiontemperature,usingpulsetestingwithalowdutycycle.Changesinoutputduetoheating effectscanbecomputedbymultiplyingtheinternaldissipationbythethermalresistance. (8) Lineregulationiscalculatedbysubtractingtheoutputvoltageatthehighestsupplyinputvoltagefromtheoutputvoltageatthelowest supplyinputvoltage. 6.6 Typical Characteristics 5 MIN 4 MAX Median 3 2 ƒy (C) 1 ac 0 cur±1 c A ±2 ±3 ±4 ±5 ±60 ±40 ±20 0 20 40 60 80 100 120 140 DUT Temperature (ƒC) C001 Figure1.TemperatureSensorAccuracy Copyright©2013–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LMT89

LMT89 SNIS176A–MARCH2013–REVISEDJANUARY2015 www.ti.com 7 Detailed Description 7.1 Overview The LMT89 device is a precision analog output CMOS integrated-circuit temperature sensor that operates over a temperature range of −55°C to 130°C . The power supply operating range is 2.4 V to 5.5 V. The transfer function of LMT89 is predominately linear, yet has a slight predictable parabolic curvature. The accuracy of the LMT89 device, when specified to a parabolic transfer function, is typically ±1.5°C at an ambient temperature of 30°C. The temperature error increases linearly and reaches a maximum of ±5°C at the temperature range extremes. The temperature range is affected by the power supply voltage. At a power supply voltage of 2.7 V to 5.5 V, the temperature range extremes are 130°C and −55°C. Decreasing the power supply voltage to 2.4 V changes the negativeextremeto−30°C,whilethepositiveremainsat130°C. The LMT89 quiescent current is less than 10 μA. Therefore, self-heating is less than 0.02°C in still air. Shutdown capability for the LMT89 is intrinsic because its inherent low power consumption allows it to be powered directly fromtheoutputofmanylogicgatesordoesnotnecessitateshutdownatall. The temperature sensing element is comprised of a simple base emitter junction that is forward biased by a current source. The temperature sensing element is then buffered by an amplifier and provided to the OUT pin. The amplifier has a simple class A output stage thus providing a low impedance output that can source 16 µA andsink1µA. 7.2 Functional Block Diagram V+ V O Thermal Diodes GND 7.3 Feature Description 7.3.1 LMT89TransferFunction The transfer function of the LMT89 device can be described in different ways with varying levels of precision. A simplelineartransferfunctionwithgoodaccuracynear25°CisshowninEquation1. V =−11.69mV/°C×T+1.8663V (1) O Over the full operating temperature range of −55°C to 130°C, best accuracy can be obtained by using the parabolictransferfunction. V =(−3.88×10−6×T2)+(−1.15×10−2×T)+1.8639 (2) O UsingEquation2thefollowingtemperaturetovoltageoutputcharacteristictablecanbegenerated. 6 SubmitDocumentationFeedback Copyright©2013–2015,TexasInstrumentsIncorporated ProductFolderLinks:LMT89

LMT89 www.ti.com SNIS176A–MARCH2013–REVISEDJANUARY2015 Feature Description (continued) Table1.TemperaturetoVoltageOutputCharacteristicTable TEMP VOUT TEMP VOUT TEMP VOUT TEMP VOUT TEMP VOUT TEMP VOUT TEMP VOUT (°C) (V) (°C) (V) (°C) (V) (°C) (V) (°C) (V) (°C) (V) (°C) (V) –55 2.4847 –28 2.1829 –1 1.8754 26 1.5623 53 1.2435 80 0.9191 107 0.5890 –54 2.4736 –27 2.1716 0 1.8639 27 1.5506 54 1.2316 81 0.9069 108 0.5766 –53 2.4625 –26 2.1603 1 1.8524 28 1.5389 55 1.2197 82 0.8948 109 0.5643 –52 2.4514 –25 2.1490 2 1.8409 29 1.5271 56 1.2077 83 0.8827 110 0.5520 –51 2.4403 –24 2.1377 3 1.8294 30 1.5154 57 1.1958 84 0.8705 111 0.5396 –50 2.4292 –23 2.1263 4 1.8178 31 1.5037 58 1.1838 85 0.8584 112 0.5272 –49 2.4181 –22 2.1150 5 1.8063 32 1.4919 59 1.1719 86 0.8462 113 0.5149 –48 2.4070 –21 2.1037 6 1.7948 33 1.4802 60 1.1599 87 0.8340 114 0.5025 –47 2.3958 –20 2.0923 7 1.7832 34 1.4684 61 1.1480 88 0.8219 115 0.4901 –46 2.3847 –19 2.0810 8 1.7717 35 1.4566 62 1.1360 89 0.8097 116 0.4777 –45 2.3735 –18 2.0696 9 1.7601 36 1.4449 63 1.1240 90 0.7975 117 0.4653 –44 2.3624 –17 2.0583 10 1.7485 37 1.4331 64 1.1120 91 0.7853 118 0.4529 –43 2.3512 –16 2.0469 11 1.7369 38 1.4213 65 1.1000 92 0.7731 119 0.4405 –42 2.3401 –15 2.0355 12 1.7253 39 1.4095 66 1.0880 93 0.7608 120 0.4280 –41 2.3289 –14 2.0241 13 1.7137 40 1.3977 67 1.0760 94 0.7486 121 0.4156 –40 2.3177 –13 2.0127 14 1.7021 41 1.3859 68 1.0640 95 0.7364 122 0.4032 –39 2.3065 –12 2.0013 15 1.6905 42 1.3741 69 1.0519 96 0.7241 123 0.3907 –38 2.2953 –11 1.9899 16 1.6789 43 1.3622 70 1.0399 97 0.7119 124 0.3782 –37 2.2841 –10 1.9785 17 1.6673 44 1.3504 71 1.0278 98 0.6996 125 0.3658 –36 2.2729 –9 1.9671 18 1.6556 45 1.3385 72 1.0158 99 0.6874 126 0.3533 –35 2.2616 –8 1.9557 19 1.6440 46 1.3267 73 1.0037 100 0.6751 127 0.3408 –34 2.2504 –7 1.9442 20 1.6323 47 1.3148 74 0.9917 101 0.6628 128 0.3283 –33 2.2392 –6 1.9328 21 1.6207 48 1.3030 75 0.9796 102 0.6505 129 0.3158 –32 2.2279 –5 1.9213 22 1.6090 49 1.2911 76 0.9675 103 0.6382 130 0.3033 –31 2.2167 –4 1.9098 23 1.5973 50 1.2792 77 0.9554 104 0.6259 — — –30 2.2054 –3 1.8984 24 1.5857 51 1.2673 78 0.9433 105 0.6136 — — –29 2.1941 –2 1.8869 25 1.5740 52 1.2554 79 0.9312 106 0.6013 — — SolvingEquation2forT: (1.8639(cid:16)V ) T (cid:16)1481.96(cid:14) 2.1962u106(cid:14) O 3.88u10(cid:16)6 (3) ForothermethodsofcalculatingT,seeDetailedDesignProcedure. 7.4 Device Functional Modes The only functional mode of the LMT89 device is that it has an analog output inversely proportional to temperature. Copyright©2013–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LMT89

LMT89 SNIS176A–MARCH2013–REVISEDJANUARY2015 www.ti.com 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information The LMT89 has a very low supply current and a wide supply range therefore it can easily be driven by a battery asshowninFigure4. 8.1.1 CapacitiveLoads The LMT89 device handles capacitive loading well. Without any precautions, the LMT89 device can drive any capacitive load less than 300 pF as shown in Figure 2. The specified temperature range the LMT89 device has a maximum output impedance of 160 Ω. In an extremely noisy environment it may be necessary to add some filtering to minimize noise pickup. TI recommends that 0.1 μF be added from V+ to GND to bypass the power supply voltage, as shown in Figure 2. In a noisy environment it may even be necessary to add a capacitor from the output to ground with a series resistor as shown in Figure 2. A 1-μF output capacitor with the 160-Ω maximum output impedance and a 200-Ω series resistor will form a 442-Hz lowpass filter. Because the thermal time constant of the LMT89 device is much slower, the overall response time of the LMT89 device will not be significantlyaffected. In situations where a transient load current is placed on the circuit output, the series resistance value may be increasedtocompensateforanyringingthatmaybeobserved. + Heavy Capacitive Load, Wiring, Etc. LMT89 To A High-Impedance Load OUT d(cid:3) Figure2. LMT89NoDecouplingRequiredforCapacitiveLoadsLessThan300pF Table2.DesignParameters MinimumR(Ω) C(µF) 200 1 470 0.1 680 0.01 1k 0.001 + Heavy Capacitive Load, Wiring, Etc. LMT89 0.1 µF Bypass OUT Optional d(cid:3) R C + Heavy Capacitive Load, Wiring, Etc. R LMT89 0.1 µF Bypass OUT Optional d(cid:3) C Figure3. LMT89WithFilterforNoisyEnvironmentandCapacitiveLoadingGreaterThan300pF 8 SubmitDocumentationFeedback Copyright©2013–2015,TexasInstrumentsIncorporated ProductFolderLinks:LMT89

LMT89 www.ti.com SNIS176A–MARCH2013–REVISEDJANUARY2015 NOTE Eitherplacementofresistor,asshowninFigure2andFigure3,isjustaseffective. 8.2 Typical Applications 8.2.1 Full-RangeCentigradeTemperatureSensor +2.4V to +5.5V To MCU ADC V+ VO LMT89 GND NC Figure4. Full-RangeCelsius(Centigrade)TemperatureSensor(−55°Cto130°C)OperatingfromaSingle Li-IonBatteryCell 8.2.1.1 DesignRequirements Design requirements related to layout are also important because the LMT89 device is a simple temperature sensorthatprovidesananalogoutput,refertoLayout foradetaileddescription. 8.2.1.2 DetailedDesignProcedure TheLMT89deviceoutputisshowninEquation4. V =(−3.88×10−6×T2)+(−1.15×10−2×T)+1.8639 (4) O SolveforTasshowninEquation5: (1.8639(cid:16)V ) T (cid:16)1481.96(cid:14) 2.1962u106(cid:14) O 3.88u10(cid:16)6 where • Tistemperature,andV isthemeasuredoutputvoltageoftheLMT89device.Equation5isthemostaccurate O equationthatcanbeusedtocalculatethetemperatureoftheLMT89device. (5) An alternative to the quadratic equation a second order transfer function can be determined using the least squaresmethodshowninEquation6. T=(−2.3654×V 2)+(−78.154×V )+153.857 O O where • Tistemperatureexpressin°CandV istheoutputvoltageexpressedinvolts. (6) O Alineartransferfunctioncanbeusedoveralimitedtemperaturerangebycalculatingaslopeandoffsetthatgive best results over that range. A linear transfer function can be calculated from the parabolic transfer function of theLMT89device.TheslopeofthelineartransferfunctioncanbecalculatedusingEquation7. m=−7.76×10−6×T−0.0115, where • TisthemiddleofthetemperaturerangeofinterestandmisinV/°C.Forexampleforthetemperaturerangeof T =−30toT =100°C (7) MIN MAX T=35°C (8) and m=−11.77mV/°C (9) Copyright©2013–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LMT89

LMT89 SNIS176A–MARCH2013–REVISEDJANUARY2015 www.ti.com Typical Applications (continued) TheoffsetofthelineartransferfunctioncanbecalculatedusingEquation10. b=(V (T )+V (T)−m×(T +T))/2 OP MAX OP MAX where • V (T )isthecalculatedoutputvoltageatT usingtheparabolictransferfunctionforV . OP MAX MAX O • V (T)isthecalculatedoutputvoltageatTusingtheparabolictransferfunctionforV . (10) OP O The best fit linear transfer function for many popular temperature ranges was calculated in Table 3. As shown in Table3,theerrorintroducedbythelineartransferfunctionincreaseswithwidertemperatureranges. Table3.FirstOrderEquationsOptimizedforDifferentTemperatureRanges TEMPERATURERANGE MAXIMUMDEVIATIONOFLINEAREQUATION LINEAREQUATION T (°C) T (°C) FROMPARABOLICEQUATION(°C) min max −55 130 V =−11.79mV/°C×T+1.8528V ±1.41 O −40 110 V =−11.77mV/°C×T+1.8577V ±0.93 O −30 100 V =−11.77mV/°C×T+1.8605V ±0.70 O -40 85 V =−11.67mV/°C×T+1.8583V ±0.65 O −10 65 V =−11.71mV/°C×T+1.8641V ±0.23 O 35 45 V =−11.81mV/°C×T+1.8701V ±0.004 O 20 30 V =–11.69mV/°C×T+1.8663V ±0.004 O 8.2.1.3 ApplicationCurve Figure5. OutputVoltagevsTemperature 10 SubmitDocumentationFeedback Copyright©2013–2015,TexasInstrumentsIncorporated ProductFolderLinks:LMT89

LMT89 www.ti.com SNIS176A–MARCH2013–REVISEDJANUARY2015 8.2.2 CentigradeThermostat V+ R3 R4 4.1V R1 VT (High = overtemp alarm) + U1 VOUT LM4040 U3 0.1 PF - R2 LM7211 V+ LMT89 VTemp U2 Figure6. CentigradeThermostat 8.2.2.1 DesignRequirements A simple thermostat can be created by using a reference (LM4040) and a comparator (LM7211) as shown in Figure6. 8.2.2.2 DetailedDesignProcedure ThethresholdvaluescanbecalculatedusingEquation11andEquation12. (4.1)R2 VT1 = R2 + R1||R3 (11) (4.1)R2||R3 VT2 = R1 + R2||R3 (12) 8.2.2.3 ApplicationCurve VTEMP VT1 VT2 VOUT Figure7. ThermostatOutputWaveform 8.3 System Examples 8.3.1 ConservingPowerDissipationWithShutdown The LMT89 device draws very little power therefore it can simply be shutdown by driving its supply pin with the outputofanlogicgateasshowninFigure8. SHUTDOWN +VS VO LMT89 Any logic device output Figure8. ConservingPowerDissipationWithShutdown Copyright©2013–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LMT89

LMT89 SNIS176A–MARCH2013–REVISEDJANUARY2015 www.ti.com System Examples (continued) 8.3.2 Analog-to-DigitalConverterInputStage Most CMOS ADCs found in ASICs have a sampled data comparator input structure that is notorious for causing problems for analog output devices, such as the LMT89 and many op amps. The cause of this difficulty is the requirement of instantaneous charge of the input sampling capacitor in the ADC. This requirement is easily accommodated by the addition of a capacitor. Because not all ADCs have identical input stages, the charge requirements will vary necessitating a different value of compensating capacitor. This ADC is shown as an exampleonly.Ifadigitaloutputtemperatureisrequired,refertodevicessuchastheLM74device. V+ (+5.0V) 1 k 1 V+ 0.1 PF 4 3 470 Ÿ 3 6 CS V+ VO VIN 5 LMT89 2 DO GND 4 CLK 5 1 LM4040BIM3-4.1 GND NC 0.1 PF ADCV0831 2 GND Figure9. SuggestedConnectiontoaSamplingAnalog-to-DigitalConverterInputStage 9 Power Supply Recommendations The LMT89 device has a very wide 2.4-V to 5.5-V power supply voltage range making it ideal for many applications. In noisy environments, TI recommends adding at minimum 0.1 μF from V+ to GND to bypass the powersupplyvoltage.Largercapacitancesmayberequiredandaredependentonthepowersupplynoise. 10 Layout 10.1 Layout Guidelines The LMT89 device can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface. The temperature that the LMT89 device is sensing will be within about 0.02°CofthesurfacetemperaturetowhichtheleadsoftheLMT89deviceareattached. This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature measured would beatanintermediatetemperaturebetweenthesurfacetemperatureandtheairtemperature. To ensure good thermal conductivity the backside of the LMT89 die is directly attached to the pin 2 GND pin. The temperatures of the lands and traces to the other leads of the LMT89 will also affect the temperature that is beingsensed. Alternatively, the LMT89 device can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LMT89 device and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. Printed-circuit coatings and varnishes such as Humiseal and epoxy paints or dips are often used to ensure that moisture cannot corrode the LMT89 or its connections. 12 SubmitDocumentationFeedback Copyright©2013–2015,TexasInstrumentsIncorporated ProductFolderLinks:LMT89

LMT89 www.ti.com SNIS176A–MARCH2013–REVISEDJANUARY2015 Layout Guidelines (continued) The thermal resistance junction to ambient (R ) is the parameter used to calculate the rise of a device junction θJA temperatureduetoitspowerdissipation.Equation13isusedtocalculatetheriseinthedietemperature. T =T +R [(V+I )+(V+−V )I ] J A θJA Q O L where • I isthequiescentcurrentandI istheloadcurrentontheoutput.Becausethejunctiontemperatureofthe Q L LMT89istheactualtemperaturebeingmeasured,takecaretominimizetheloadcurrentthattheLMT89 deviceisrequiredtodrive. (13) Table 4 summarizes the rise in die temperature of the LMT89 device (without any loading), and the thermal resistancefordifferentconditions. Table4.TemperatureRiseofLMT89DuetoSelf-HeatingandThermalResistance(R )(1) JΘA SC70-5 SC70-5 NOHEATSINK SMALLHEATSINK R T −T R T −T θJA J A θJA J A (°C/W) (°C) (°C/W) (°C) Stillair 412 0.2 350 0.19 Movingair 312 0.17 266 0.15 (1) SeeLayoutExamplesforPCBlayoutsamples. 10.2 Layout Example NC GND GND Vo V+ Figure10. LayoutUsedforNoHeatSinkMeasurements NC GND GND NC Vo V+ Figure11. LayoutUsedforMeasurementsWithSmallHeatSink Copyright©2013–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LMT89

LMT89 SNIS176A–MARCH2013–REVISEDJANUARY2015 www.ti.com 11 Device and Documentation Support 11.1 Trademarks Alltrademarksarethepropertyoftheirrespectiveowners. 11.2 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 11.3 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 14 SubmitDocumentationFeedback Copyright©2013–2015,TexasInstrumentsIncorporated ProductFolderLinks:LMT89

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LMT89DCKR ACTIVE SC70 DCK 5 3000 Green (RoHS SN Level-1-260C-UNLIM -55 to 130 T3B & no Sb/Br) LMT89DCKT ACTIVE SC70 DCK 5 250 Green (RoHS SN Level-1-260C-UNLIM -55 to 130 T3B & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 13-May-2014 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LMT89DCKR SC70 DCK 5 3000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LMT89DCKT SC70 DCK 5 250 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 13-May-2014 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LMT89DCKR SC70 DCK 5 3000 210.0 185.0 35.0 LMT89DCKT SC70 DCK 5 250 210.0 185.0 35.0 PackMaterials-Page2

None

None

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated