图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: LMR12007XMK
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

LMR12007XMK产品简介:

ICGOO电子元器件商城为您提供LMR12007XMK由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LMR12007XMK价格参考。Texas InstrumentsLMR12007XMK封装/规格:PMIC - 稳压器 - DC DC 开关稳压器, Buck Switching Regulator IC Positive Adjustable 1.25V 1 Output 750mA SOT-23-6 Thin, TSOT-23-6。您可以下载LMR12007XMK参考资料、Datasheet数据手册功能说明书,资料中有LMR12007XMK 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC REG BUCK ADJ 0.75A SOT6稳压器—开关式稳压器 750mA Load SD DC/DC Regulator

产品分类

PMIC - 稳压器 - DC DC 开关稳压器

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

电源管理 IC,稳压器—开关式稳压器,Texas Instruments LMR12007XMKSIMPLE SWITCHER®

数据手册

点击此处下载产品Datasheet

产品型号

LMR12007XMK

PWM类型

电流模式

产品种类

稳压器—开关式稳压器

供应商器件封装

6-SOT

关闭

Shutdown

其它名称

296-37011-1

包装

剪切带 (CT)

同步整流器

商标

Texas Instruments

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

SOT-23-6 细型,TSOT-23-6

封装/箱体

SOT-23-6

工作温度

-40°C ~ 125°C

工作温度范围

- 40 C to + 125 C

工厂包装数量

1000

开关频率

1.6 MHz

拓扑结构

Buck

最大工作温度

+ 125 C

最大输入电压

18 V

最小工作温度

- 40 C

最小输入电压

3 V

标准包装

1

电压-输入

3 V ~ 18 V

电压-输出

1.25 V ~ 16 V

电流-输出

750mA

电源电压-最小

3 V

电源电流

1.5 mA

类型

降压(降压)

系列

LMR12007

输入电压

5 V

输出数

1

输出电压

16 V

输出电流

750 mA

输出端数量

1 Output

输出类型

可调式

频率-开关

1.6MHz

推荐商品

型号:LM3674MF-1.875/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT3506EDHD#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:MAX680ESA+

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:LM2594N-ADJ/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT1172CS8#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:RT8068AZSP

品牌:Richtek USA Inc.

产品名称:集成电路(IC)

获取报价

型号:LTC3612MPUDC#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:TPS62044DRCR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
LMR12007XMK 相关产品

LTC3642IDD-3.3#PBF

品牌:Linear Technology/Analog Devices

价格:

LT3437IFE#TRPBF

品牌:Linear Technology/Analog Devices

价格:

LTC3547EDDB#TRPBF

品牌:Linear Technology/Analog Devices

价格:

LT1171CQ#PBF

品牌:Linear Technology/Analog Devices

价格:

LM5008SDX

品牌:Texas Instruments

价格:

MAX16977RAUE+

品牌:Maxim Integrated

价格:¥17.16-¥17.16

LT3502AEMS#PBF

品牌:Linear Technology/Analog Devices

价格:

MAX641ACPA

品牌:Maxim Integrated

价格:

PDF Datasheet 数据手册内容提取

LMR12007 www.ti.com SNVS982–SEPTEMBER2013 LMR12007 Thin SOT23 750mA Load Step-Down DC-DC Regulator CheckforSamples:LMR12007 FEATURES DESCRIPTION 1 • ThinSOT-6Package The LMR12007 regulator is a monolithic, high 23 frequency, PWM step-down DC/DC converter in a 6- • 3.0Vto18VInputVoltageRange pin Thin SOT package. It provides all the active • 1.25Vto16VOutputVoltageRange functions to provide local DC/DC conversion with fast • 750mAOutputCurrent transient response and accurate regulation in the smallestpossiblePCBarea. • 550kHz(LMR12007Y)and1.6MHz(LMR12007X) SwitchingFrequencies With a minimum of external components and online design support through WEBENCH®, the LMR12007 • 350mΩ NMOSSwitch is easy to use. The ability to drive 750mA loads with • 30nAShutdownCurrent an internal 350mΩ NMOS switch using state-of-the- • 1.25V,2%InternalVoltageReference art 0.5µm BiCMOS technology results in the best • InternalSoft-Start power density available. The world class control circuitry allows for on-times as low as 13ns, thus • Current-Mode,PWMOperation supporting exceptionally high frequency conversion • WEBENCH®OnlineDesignTool over the entire 3V to 18V input operating range down • ThermalShutdown to the minimum output voltage of 1.25V. Switching frequency is internally set to 550kHz (LMR12007Y) or APPLICATIONS 1.6MHz (LMR12007X), allowing the use of extremely small surface mount inductors and chip capacitors. • LocalPointofLoadRegulation Even though the operating frequencies are very high, • CorePowerinHDDs efficiencies up to 90% are easy to achieve. External shutdown is included, featuring an ultra-low stand-by • Set-TopBoxes currentof30nA.TheLMR12007utilizescurrent-mode • BatteryPoweredDevices control and internal compensation to provide high- • USBPoweredDevices performance regulation over a wide range of operating conditions. Additional features include • DSLModems internal soft-start circuitry to reduce inrush current, • NotebookComputers pulse-by-pulse current limit, thermal shutdown, and outputover-voltageprotection. Typical Application Circuit EfficiencyvsLoadCurrent"X" V =5V,V =3.3V IN OUT D2 VIN VIN BOOST C1 C3 L1 SW VOUT ON D1 C2 EN OFF R1 FB GND R2 1 Pleasebeawarethatanimportantnoticeconcerningavailability,standardwarranty,anduseincriticalapplicationsof TexasInstrumentssemiconductorproductsanddisclaimerstheretoappearsattheendofthisdatasheet. WEBENCHisaregisteredtrademarkofTexasInstruments. 2 Allothertrademarksarethepropertyoftheirrespectiveowners. 3 PRODUCTIONDATAinformationiscurrentasofpublicationdate. Copyright©2013,TexasInstrumentsIncorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarilyincludetestingofallparameters.

LMR12007 SNVS982–SEPTEMBER2013 www.ti.com Connection Diagram BOOST 1 6 SW 1 6 GND 2 5 VIN 2 5 FB 3 4 EN 3 4 Figure1.6-LeadSOT Figure2.Pin1Indentification SeePackageNumberDDC(R-PDSO-G6) PINDESCRIPTIONS Pin Name Function 1 BOOST BoostvoltagethatdrivestheinternalNMOScontrolswitch.Abootstrapcapacitorisconnectedbetweenthe BOOSTandSWpins. 2 GND SignalandPowergroundpin.Placethebottomresistorofthefeedbacknetworkascloseaspossibletothispin foraccurateregulation. 3 FB Feedbackpin.ConnectFBtotheexternalresistordividertosetoutputvoltage. 4 EN Enablecontrolinput.Logichighenablesoperation.DonotallowthispintofloatorbegreaterthanV +0.3V. IN 5 V Inputsupplyvoltage.Connectabypasscapacitortothispin. IN 6 SW Outputswitch.Connectstotheinductor,catchdiode,andbootstrapcapacitor. Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. Absolute Maximum Ratings(1) V -0.5Vto22V IN SWVoltage -0.5Vto22V BoostVoltage -0.5Vto28V BoosttoSWVoltage -0.5Vto6.0V FBVoltage -0.5Vto3.0V ENVoltage -0.5Vto(V +0.3V) IN JunctionTemperature 150°C ESDSusceptibility(2) 2kV StorageTemp.Range -65°Cto150°C Infrared/ConvectionReflow(15sec) 220°C SolderingInformation WaveSolderingLeadTemp.(10sec) 260°C (1) IfMilitary/Aerospacespecifieddevicesarerequired,pleasecontacttheTexasInstrumentsSalesOffice/Distributorsforavailabilityand specifications. (2) Humanbodymodel,1.5kΩinserieswith100pF. 2 SubmitDocumentationFeedback Copyright©2013,TexasInstrumentsIncorporated ProductFolderLinks:LMR12007

LMR12007 www.ti.com SNVS982–SEPTEMBER2013 Operating Ratings(1) V 3Vto18V IN SWVoltage -0.5Vto18V BoostVoltage -0.5Vto23V BoosttoSWVoltage 1.6Vto5.5V JunctionTemperatureRange −40°Cto+125°C ThermalResistanceθ (2) 118°C/W JA (1) AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagetothedevicemayoccur.OperatingRatingsindicateconditionsfor whichthedeviceisintendedtobefunctional,butspecificperformanceisnotensured.Forspecificspecificationsandthetestconditions, seeElectricalCharacteristics. (2) Thermalshutdownwilloccurifthejunctiontemperatureexceeds165°C.ThemaximumpowerdissipationisafunctionofT ,θ J(MAX) JA andT .ThemaximumallowablepowerdissipationatanyambienttemperatureisP =(T –T )/θ .Allnumbersapplyfor A D J(MAX) A JA packagessoldereddirectlyontoa3”x3”PCboardwith2oz.copperon4layersinstillair.Fora2layerboardusing1oz.copperinstill air,θ =204°C/W. JA Electrical Characteristics SpecificationswithstandardtypefaceareforT =25°C,andthoseinboldfacetypeapplyoverthefullOperating J TemperatureRange(T =-40°Cto125°C).V =5V,V -V =5Vunlessotherwisespecified.Datasheetmin/max J IN BOOST SW specificationlimitsareensuredbydesign,test,orstatisticalanalysis. Symbol Parameter Conditions Min(1) Typ(2) Max(1) Units V FeedbackVoltage 1.225 1.250 1.275 V FB ΔV /ΔV FeedbackVoltageLineRegulation V =3Vto18V 0.01 %/V FB IN IN I FeedbackInputBiasCurrent Sink/Source 10 250 nA FB UndervoltageLockout V Rising 2.74 2.90 IN UVLO UndervoltageLockout V Falling 2.0 2.3 V IN UVLOHysteresis 0.30 0.44 0.62 LMR12007X 1.2 1.6 1.9 F SwitchingFrequency MHz SW LMR12007Y 0.40 0.55 0.66 LMR12007X 85 92 D MaximumDutyCycle % MAX LMR12007Y 90 96 LMR12007X 2 D MinimumDutyCycle % MIN LMR12007Y 1 R SwitchONResistance V -V =3V 350 650 mΩ DS(ON) BOOST SW I SwitchCurrentLimit V -V =3V 1.0 1.5 2.3 A CL BOOST SW I QuiescentCurrent Switching 1.5 2.5 mA Q QuiescentCurrent(shutdown) V =0V 30 nA EN LMR12007X(50%DutyCycle) 2.2 3.3 I BoostPinCurrent mA BOOST LMR12007Y(50%DutyCycle) 0.9 1.6 ShutdownThresholdVoltage V Falling 0.4 EN V V EN_TH EnableThresholdVoltage V Rising 1.8 EN I EnablePinCurrent Sink/Source 10 nA EN I SwitchLeakage 40 nA SW (1) SpecifiedtoTexasInstruments'AverageOutgoingQualityLevel(AOQL). (2) Typicalsrepresentthemostlikelyparametricnorm. Copyright©2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LMR12007

LMR12007 SNVS982–SEPTEMBER2013 www.ti.com Typical Performance Characteristics AllcurvestakenatV =5V,V -V =5V,L1=4.7µH("X"),L1=10µH("Y"),andT =25°C,unlessspecified IN BOOST SW A otherwise. EfficiencyvsLoadCurrent-"X"V =5V EfficiencyvsLoadCurrent-"Y"V =5V OUT OUT Figure3. Figure4. EfficiencyvsLoadCurrent-"X"V =3.3V EfficiencyvsLoadCurrent-"Y"V =3.3V OUT OUT Figure5. Figure6. EfficiencyvsLoadCurrent-"X"V =1.5V EfficiencyvsLoadCurrent-"Y"V =1.5V OUT OUT Figure7. Figure8. 4 SubmitDocumentationFeedback Copyright©2013,TexasInstrumentsIncorporated ProductFolderLinks:LMR12007

LMR12007 www.ti.com SNVS982–SEPTEMBER2013 Typical Performance Characteristics (continued) AllcurvestakenatV =5V,V -V =5V,L1=4.7µH("X"),L1=10µH("Y"),andT =25°C,unlessspecified IN BOOST SW A otherwise. OscillatorFrequencyvsTemperature-"X" OscillatorFrequencyvsTemperature-"Y" Figure9. Figure10. CurrentLimitvsTemperatureV =18V,V =5V V vsTemperature IN IN FB Figure11. Figure12. R vsTemperature I SwitchingvsTemperature DSON Q Figure13. Figure14. Copyright©2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LMR12007

LMR12007 SNVS982–SEPTEMBER2013 www.ti.com Typical Performance Characteristics (continued) AllcurvestakenatV =5V,V -V =5V,L1=4.7µH("X"),L1=10µH("Y"),andT =25°C,unlessspecified IN BOOST SW A otherwise. LineRegulation-"X"V =1.5V,I =500mA LineRegulation-"Y"V =1.5V,I =500mA OUT OUT OUT OUT Figure15. Figure16. LineRegulation-"X"V =3.3V,I =500mA LineRegulation-"Y"V =3.3V,I =500mA OUT OUT OUT OUT Figure17. Figure18. 6 SubmitDocumentationFeedback Copyright©2013,TexasInstrumentsIncorporated ProductFolderLinks:LMR12007

LMR12007 www.ti.com SNVS982–SEPTEMBER2013 Block Diagram VIN VIN Current-Sense Amplifier ONEN RIengateunrldantaolr +- RSENSE D2 CIN Enable OFF Circuit Thermal Shutdown BOOST VBOOST Under LVoocltkaoguet Output Driver 0.3: CBOOST CLuirmreitnt CLoongtircol Switch SW VSW L VOUT OVP Oscillator Reset Comparator D1 IL COUT Pulse - 1.375V + + PWM - R1 Comparator ISENSE + - FB + Internal - + Error Compensation + Corrective Ramp Signal + VREF R2 Error Amplifier - 1.25V GND Figure19. APPLICATION INFORMATION THEORY OF OPERATION The LMR12007 is a constant frequency PWM buck regulator IC that delivers a 750mA load current. The regulator has a preset switching frequency of either 550kHz (LMR12007Y) or 1.6MHz (LMR12007X). These high frequencies allow the LMR12007 to operate with small surface mount capacitors and inductors, resulting in DC/DC converters that require a minimum amount of board space. The LMR12007 is internally compensated, so it is simple to use, and requires few external components. The LMR12007 uses current-mode control to regulate theoutputvoltage. The following operating description of the LMR12007 will refer to the Simplified Block Diagram (Figure 19) and to the waveforms in Figure 20. The LMR12007 supplies a regulated output voltage by switching the internal NMOS control switch at constant frequency and variable duty cycle. A switching cycle begins at the falling edge of the reset pulse generated by the internal oscillator. When this pulse goes low, the output control logic turns on the internal NMOS control switch. During this on-time, the SW pin voltage (V ) swings up to approximately V , and SW IN the inductor current (I ) increases with a linear slope. I is measured by the current-sense amplifier, which L L generates an output proportional to the switch current. The sense signal is summed with the regulator’s corrective ramp and compared to the error amplifier’s output, which is proportional to the difference between the feedback voltage and V . When the PWM comparator output goes high, the output switch turns off until the REF next switching cycle begins. During the switch off-time, inductor current discharges through Schottky diode D1, which forces the SW pin to swing below ground by the forward voltage (V ) of the catch diode. The regulator D loopadjuststhedutycycle(D)tomaintainaconstantoutputvoltage. Copyright©2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LMR12007

LMR12007 SNVS982–SEPTEMBER2013 www.ti.com VSW D = TON/TSW VIN SW Voltage TON TOFF 0 VD t TSW IL IPK Inductor Current 0 t Figure20. LMR12007WaveformsofSWPinVoltageandInductorCurrent BOOST FUNCTION Capacitor C and diode D2 in Figure 21 are used to generate a voltage V . V - V is the gate BOOST BOOST BOOST SW drive voltage to the internal NMOS control switch. To properly drive the internal NMOS switch during its on-time, V needs to be at least 1.6V greater than V . Although the LMR12007 will operate with this minimum BOOST SW voltage, it may not have sufficient gate drive to supply large values of output current. Therefore, it is recommended that V be greater than 2.5V above V for best efficiency. V – V should not exceed BOOST SW BOOST SW themaximumoperatinglimitof5.5V. 5.5V> V –V > 2.5Vforbestperformance. BOOST SW VBOOST D2 VIN VIN BOOST CIN CBOOST L SW VOUT GND D1 COUT Figure21. V ChargesC OUT BOOST When the LMR12007 starts up, internal circuitry from the BOOST pin supplies a maximum of 20mA to C . BOOST This current charges C to a voltage sufficient to turn the switch on. The BOOST pin will continue to source BOOST currenttoC untilthevoltageatthefeedbackpinisgreaterthan1.18V. BOOST TherearevariousmethodstoderiveV : BOOST 1. Fromtheinputvoltage(V ) IN 2. Fromtheoutputvoltage(V ) OUT 3. Fromanexternaldistributedvoltagerail(V ) EXT 4. Fromashuntorserieszenerdiode In the Simplifed Block Diagram of Figure 19, capacitor C and diode D2 supply the gate-drive current for the BOOST NMOS switch. Capacitor C is charged via diode D2 by V . During a normal switching cycle, when the BOOST IN internal NMOS control switch is off (T ) (refer to Figure 20), V equals V minus the forward voltage of D2 OFF BOOST IN (V ), during which the current in the inductor (L) forward biases the Schottky diode D1 (V ). Therefore the FD2 FD1 voltagestoredacrossC is BOOST V -V =V -V +V (1) BOOST SW IN FD2 FD1 8 SubmitDocumentationFeedback Copyright©2013,TexasInstrumentsIncorporated ProductFolderLinks:LMR12007

LMR12007 www.ti.com SNVS982–SEPTEMBER2013 WhentheNMOSswitchturnson(T ),theswitchpinrisesto ON V =V –(R xI ), (2) SW IN DSON L forcingV torisethusreversebiasingD2.ThevoltageatV isthen BOOST BOOST V =2V –(R xI )–V +V (3) BOOST IN DSON L FD2 FD1 whichisapproximately 2V -0.4V (4) IN formanyapplications.Thusthegate-drivevoltageoftheNMOSswitchisapproximately V -0.2V (5) IN An alternate method for charging C is to connect D2 to the output as shown in Figure 21. The output BOOST voltage should be between 2.5V and 5.5V, so that proper gate voltage will be applied to the internal switch. In thiscircuit,C providesagatedrivevoltagethatisslightlylessthanV . BOOST OUT In applications where both V and V are greater than 5.5V, or less than 3V, C cannot be charged IN OUT BOOST directly from these voltages. If V and V are greater than 5.5V, C can be charged from V or V IN OUT BOOST IN OUT minus a zener voltage by placing a zener diode D3 in series with D2, as shown in Figure 22. When using a series zener diode from the input, ensure that the regulation of the input supply doesn’t create a voltage that falls outsidetherecommendedV voltage. BOOST (V –V )< 5.5V INMAX D3 (V –V )> 1.6V INMIN D3 D2 D3 VIN VIN BOOST VBOOST CIN CBOOST L SW VOUT GND D1 COUT Figure22. ZenerReducesBoostVoltagefromV IN An alternative method is to place the zener diode D3 in a shunt configuration as shown in Figure 23. A small 350mW to 500mW 5.1V zener in a SOT or SOD package can be used for this purpose. A small ceramic capacitor such as a 6.3V, 0.1µF capacitor (C4) should be placed in parallel with the zener diode. When the internal NMOS switch turns on, a pulse of current is drawn to charge the internal NMOS gate capacitance. The 0.1 µFparallelshuntcapacitorensuresthattheV voltageismaintainedduringthistime. BOOST Resistor R3 should be chosen to provide enough RMS current to the zener diode (D3) and to the BOOST pin. A recommended choice for the zener current (I ) is 1 mA. The current I into the BOOST pin supplies the ZENER BOOST gate current of the NMOS control switch and varies typically according to the following formula for the X - version: I =0.49x(D+0.54)x(V –V )mA (6) BOOST ZENER D2 I canbecalculatedfortheYversionusingthefollowing: BOOST I =0.20x(D+0.54)x(V -V )µA (7) BOOST ZENER D2 whereDisthedutycycle,V andV areinvolts,andI isinmilliamps.V isthevoltageappliedto ZENER D2 BOOST ZENER the anode of the boost diode (D2), and V is the average forward voltage across D2. Note that this formula for D2 I gives typical current. For the worst case I , increase the current by 40%. In that case, the worst case BOOST BOOST boostcurrentwillbe I =1.4xI (8) BOOST-MAX BOOST R3willthenbegivenby R3=(V -V )/(1.4xI +I ) (9) IN ZENER BOOST ZENER For example, using the X-version let V = 10V, V = 5V, V = 0.7V, I = 1mA, and duty cycle D = 50%. IN ZENER D2 ZENER Then Copyright©2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LMR12007

LMR12007 SNVS982–SEPTEMBER2013 www.ti.com I =0.49x(0.5+0.54)x(5-0.7)mA=2.19mA (10) BOOST R3=(10V-5V)/(1.4x2.19mA+1mA)=1.23kΩ (11) VZ C4 D3 D2 R3 VIN VIN BOOST VBOOST CIN CBOOST L SW VOUT GND D1 COUT Figure23. BoostVoltageSuppliedfromtheShuntZeneronV IN ENABLE PIN / SHUTDOWN MODE The LMR12007 has a shutdown mode that is controlled by the enable pin (EN). When a logic low voltage is applied to EN, the part is in shutdown mode and its quiescent current drops to typically 30nA. Switch leakage addsanother40nAfromtheinputsupply.ThevoltageatthispinshouldneverexceedV +0.3V. IN SOFT-START This function forces V to increase at a controlled rate during start up. During soft-start, the error amplifier’s OUT reference voltage ramps from 0V to its nominal value of 1.25V in approximately 200µs. This forces the regulator outputtorampupinamorelinearandcontrolledfashion,whichhelpsreduceinrushcurrent. OUTPUT OVERVOLTAGE PROTECTION The overvoltage comparator compares the FB pin voltage to a voltage that is 10% higher than the internal reference Vref. Once the FB pin voltage goes 10% above the internal reference, the internal NMOS control switchisturnedoff,whichallowstheoutputvoltagetodecreasetowardregulation. UNDERVOLTAGE LOCKOUT Undervoltagelockout(UVLO)preventstheLMR12007fromoperatinguntiltheinputvoltageexceeds2.74V(typ). The UVLO threshold has approximately 440mV of hysteresis, so the part will operate until V drops below IN 2.3V(typ).HysteresispreventsthepartfromturningoffduringpowerupifV isnon-monotonic. IN CURRENT LIMIT The LMR12007 uses cycle-by-cycle current limiting to protect the output switch. During each switching cycle, a current limit comparator detects if the output switch current exceeds 1.5A (typ), and turns off the switch until the nextswitchingcyclebegins. THERMAL SHUTDOWN Thermal shutdown limits total power dissipation by turning off the output switch when the IC junction temperature exceeds 165°C. After thermal shutdown occurs, the output switch doesn’t turn on until the junction temperature dropstoapproximately150°C. 10 SubmitDocumentationFeedback Copyright©2013,TexasInstrumentsIncorporated ProductFolderLinks:LMR12007

LMR12007 www.ti.com SNVS982–SEPTEMBER2013 Design Guide INDUCTORSELECTION TheDutyCycle(D)canbeapproximatedquicklyusingtheratioofoutputvoltage(V )toinputvoltage(V ): O IN V O D = V IN (12) The catch diode (D1) forward voltage drop and the voltage drop across the internal NMOS must be included to calculateamoreaccuratedutycycle.CalculateDbyusingthefollowingformula: V + V O D D = V + V - V IN D SW (13) V canbeapproximatedby: SW V =I xR (14) SW O DS(ON) The diode forward drop (V ) can range from 0.3V to 0.7V depending on the quality of the diode. The lower V is, D D thehighertheoperatingefficiencyoftheconverter. The inductor value determines the output ripple current. Lower inductor values decrease the size of the inductor, but increase the output ripple current. An increase in the inductor value will decrease the output ripple current. The ratio of ripple current (Δi ) to output current (I ) is optimized when it is set between 0.3 and 0.4 at 750mA. L O Theratiorisdefinedas: 'i L r = l O (15) One must also ensure that the minimum current limit (1.0A) is not exceeded, so the peak current in the inductor mustbecalculated.Thepeakcurrent(I )intheinductoriscalculatedby: LPK I =I +ΔI /2 (16) LPK O L If r = 0.7 at an output of 750mA, the peak current in the inductor will be 1.0125A. The minimum ensured current limit over all operating conditions is 1.0A. One can either reduce r to 0.6 resulting in a 975mA peak current, or make the engineering judgement that 12.5mA over will be safe enough with a 1.5A typical current limit and 6 sigmalimits.Whenthedesignedmaximumoutputcurrentisreduced,theratiorcanbeincreased.Atacurrentof 0.1A, r can be made as high as 0.9. The ripple ratio can be increased at lighter loads because the net ripple is actually quite low, and if r remains constant the inductor value can be made quite large. An equation empirically developedforthemaximumrippleratioatanycurrentbelow2Ais: r=0.387xI -0.3667 (17) OUT Notethatthisisjustaguideline. The LMR12007 operates at frequencies allowing the use of ceramic output capacitors without compromising transient response. Ceramic capacitors allow higher inductor ripple without significantly increasing output ripple. SeetheOUTPUTCAPACITORsectionformoredetailsoncalculatingoutputvoltageripple. Nowthattheripplecurrentorrippleratioisdetermined,theinductanceiscalculatedby: V + V O D L = x (1-D) I x r x f O S (18) where f is the switching frequency and I is the output current. When selecting an inductor, make sure that it is s O capable of supporting the peak output current without saturating. Inductor saturation will result in a sudden reduction in inductance and prevent the regulator from operating correctly. Because of the speed of the internal currentlimit,thepeakcurrentoftheinductorneedonlybespecifiedfortherequiredmaximumoutputcurrent.For example, if the designed maximum output current is 0.5A and the peak current is 0.7A, then the inductor should Copyright©2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LMR12007

LMR12007 SNVS982–SEPTEMBER2013 www.ti.com be specified with a saturation current limit of >0.7A. There is no need to specify the saturation or peak current of the inductor at the 1.5A typical switch current limit. The difference in inductor size is a factor of 5. Because of the operating frequency of the LMR12007, ferrite based inductors are preferred to minimize core losses. This presents little restriction since the variety of ferrite based inductors is huge. Lastly, inductors with lower series resistance(DCR)willprovidebetteroperatingefficiency.ForrecommendedinductorsseeExampleCircuits. INPUTCAPACITOR An input capacitor is necessary to ensure that V does not drop excessively during switching transients. The IN primary specifications of the input capacitor are capacitance, voltage, RMS current rating, and ESL (Equivalent Series Inductance). The recommended input capacitance is 10µF, although 4.7µF works well for input voltages below 6V. The input voltage rating is specifically stated by the capacitor manufacturer. Make sure to check any recommended deratings and also verify if there is any significant change in capacitance at the operating input voltage and the operating temperature. The input capacitor maximum RMS input current rating (I ) must be RMS-IN greaterthan: r2 IRMS-IN = IO x D x 1-D +12 (19) It can be shown from the above equation that maximum RMS capacitor current occurs when D = 0.5. Always calculate the RMS at the point where the duty cycle, D, is closest to 0.5. The ESL of an input capacitor is usually determined by the effective cross sectional area of the current path. A large leaded capacitor will have high ESL and a 0805 ceramic chip capacitor will have very low ESL. At the operating frequencies of the LMR12007, certaincapacitorsmayhaveanESLsolargethattheresultingimpedance(2πfL)willbehigherthanthatrequired to provide stable operation. As a result, surface mount capacitors are strongly recommended. Sanyo POSCAP, Tantalum or Niobium, Panasonic SP or Cornell Dubilier ESR, and multilayer ceramic capacitors (MLCC) are all good choices for both input and output capacitors and have very low ESL. For MLCCs it is recommended to use X7R or X5R dielectrics. Consult capacitor manufacturer datasheet to see how rated capacitance varies over operatingconditions. OUTPUTCAPACITOR The output capacitor is selected based upon the desired output ripple and transient response. The initial current ofaloadtransientisprovidedmainlybytheoutputcapacitor.Theoutputrippleoftheconverteris: 1 'V = 'i x (R + ) O L ESR 8 x f x C S O (20) When using MLCCs, the ESR is typically so low that the capacitive ripple may dominate. When this occurs, the output ripple will be approximately sinusoidal and 90° phase shifted from the switching action. Given the availability and quality of MLCCs and the expected output voltage of designs using the LMR12007, there is really no need to review any other capacitor technologies. Another benefit of ceramic capacitors is their ability to bypass high frequency noise. A certain amount of switching edge noise will couple through parasitic capacitances in the inductor to the output. A ceramic capacitor will bypass this noise while a tantalum will not. Since the output capacitor is one of the two external components that control the stability of the regulator control loop, most applications will require a minimum at 10 µF of output capacitance. Capacitance can be increased significantly with little detriment to the regulator stability. Like the input capacitor, recommended multilayer ceramic capacitors are X7R or X5R. Again, verify actual capacitance at the desired operating voltage and temperature. Check the RMS current rating of the capacitor. The RMS current rating of the capacitor chosen must also meet thefollowingcondition: r I = I x RMS-OUT O 12 (21) 12 SubmitDocumentationFeedback Copyright©2013,TexasInstrumentsIncorporated ProductFolderLinks:LMR12007

LMR12007 www.ti.com SNVS982–SEPTEMBER2013 CATCHDIODE The catch diode (D1) conducts during the switch off-time. A Schottky diode is recommended for its fast switching timesandlowforwardvoltagedrop.Thecatchdiodeshouldbechosensothatitscurrentratingisgreaterthan: I =I x(1-D) (22) D1 O The reverse breakdown rating of the diode must be at least the maximum input voltage plus appropriate margin. ToimproveefficiencychooseaSchottkydiodewithalowforwardvoltagedrop. BOOSTDIODE A standard diode such as the 1N4148 type is recommended. For V circuits derived from voltages less than BOOST 3.3V, a small-signal Schottky diode is recommended for greater efficiency. A good choice is the BAT54 small signaldiode. BOOSTCAPACITOR A ceramic 0.01µF capacitor with a voltage rating of at least 6.3V is sufficient. The X7R and X5R MLCCs provide thebestperformance. OUTPUTVOLTAGE The output voltage is set using the following equation where R2 is connected between the FB pin and GND, and R1isconnectedbetweenV andtheFBpin.AgoodvalueforR2is10kΩ. O V O R1= - 1 x R2 V REF (23) PCB Layout Considerations When planning layout there are a few things to consider when trying to achieve a clean, regulated output. The mostimportantconsiderationwhencompletingthelayoutistheclosecouplingoftheGNDconnectionsoftheC IN capacitor and the catch diode D1. These ground ends should be close to one another and be connected to the GND plane with at least two through-holes. Place these components as close to the IC as possible. Next in importance is the location of the GND connection of the C capacitor, which should be near the GND OUT connectionsofC andD1. IN There should be a continuous ground plane on the bottom layer of a two-layer board except under the switching nodeisland. TheFBpinisahighimpedancenodeandcareshouldbetakentomaketheFBtraceshorttoavoidnoisepickup and inaccurate regulation. The feedback resistors should be placed as close as possible to the IC, with the GND of R2 placed as close as possible to the GND of the IC. The V trace to R1 should be routed away from the OUT inductorandanyothertracesthatareswitching. High AC currents flow through the V , SW and V traces, so they should be as short and wide as possible. IN OUT However, making the traces wide increases radiated noise, so the designer must make this trade-off. Radiated noisecanbedecreasedbychoosingashieldedinductor. The remaining components should also be placed as close as possible to the IC. Please see Application Note AN-1229 SNVA054 for further considerations and the LMR12007 demo board as an example of a four-layer layout. Copyright©2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LMR12007

LMR12007 SNVS982–SEPTEMBER2013 www.ti.com LMR12007X Circuit Examples D2 VIN VIN BOOST C3 L1 C1 R3 SW VOUT ON D1 C2 EN OFF R1 FB GND R2 Figure24. LMR12007X(1.6MHz) V DerivedfromV BOOST IN 5Vto1.5V/750mA Table1.BillofMaterialsforFigure24 PartID PartValue PartNumber Manufacturer U1 750mABuckRegulator LMR12007X TexasInstruments C1,InputCap 10µF,6.3V,X5R C3216X5ROJ106M TDK C2,OutputCap 10µF,6.3V,X5R C3216X5ROJ106M TDK C3,BoostCap 0.01uF,16V,X7R C1005X7R1C103K TDK D1,CatchDiode 0.3V Schottky1A,10VR MBRM110L ONSemi F D2,BoostDiode 1V @50mADiode 1N4148W Diodes,Inc. F L1 4.7µH,1.7A, VLCF4020T-4R7N1R2 TDK R1 2kΩ,1% CRCW06032001F Vishay R2 10kΩ,1% CRCW06031002F Vishay R3 100kΩ,1% CRCW06031003F Vishay 14 SubmitDocumentationFeedback Copyright©2013,TexasInstrumentsIncorporated ProductFolderLinks:LMR12007

LMR12007 www.ti.com SNVS982–SEPTEMBER2013 D2 VIN VIN BOOST C3 L1 C1 R3 SW VOUT ON D1 C2 EN OFF R1 FB GND R2 Figure25. LMR12007X(1.6MHz) V DerivedfromV BOOST OUT 12Vto3.3V/750mA Table2.BillofMaterialsforFigure25 PartID PartValue PartNumber Manufacturer U1 750mABuckRegulator LMR12007X TexasInstruments C1,InputCap 10µF,25V,X7R C3225X7R1E106M TDK C2,OutputCap 22µF,6.3V,X5R C3216X5ROJ226M TDK C3,BoostCap 0.01µF,16V,X7R C1005X7R1C103K TDK D1,CatchDiode 0.34V Schottky1A,30VR SS1P3L Vishay F D2,BoostDiode 30V,200mASchottky BAT54 DiodesInc. L1 4.7µH,1.7A, VLCF4020T-4R7N1R2 TDK R1 16.5kΩ,1% CRCW06031652F Vishay R2 10.0kΩ,1% CRCW06031002F Vishay R3 100kΩ,1% CRCW06031003F Vishay Copyright©2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LMR12007

LMR12007 SNVS982–SEPTEMBER2013 www.ti.com C4 D3 R4 D2 VIN VIN BOOST C3 L1 C1 R3 SW VOUT ON D1 C2 EN OFF R1 FB GND R2 Figure26. LMR12007X(1.6MHz) V DerivedfromV BOOST SHUNT 18Vto1.5V/750mA Table3.BillofMaterialsforFigure26 PartID PartValue PartNumber Manufacturer U1 750mABuckRegulator LMR12007X TexasInstruments C1,InputCap 10µF,25V,X7R C3225X7R1E106M TDK C2,OutputCap 22µF,6.3V,X5R C3216X5ROJ226M TDK C3,BoostCap 0.01µF,16V,X7R C1005X7R1C103K TDK C4,ShuntCap 0.1µF,6.3V,X5R C1005X5R0J104K TDK D1,CatchDiode 0.4V Schottky1A,30VR SS1P3L Vishay F D2,BoostDiode 1V @50mADiode 1N4148W Diodes,Inc. F D3,ZenerDiode 5.1V250MwSOT BZX84C5V1 Vishay L1 6.8µH,1.6A, SLF7032T-6R8M1R6 TDK R1 2kΩ,1% CRCW06032001F Vishay R2 10kΩ,1% CRCW06031002F Vishay R3 100kΩ,1% CRCW06031003F Vishay R4 4.12kΩ,1% CRCW06034121F Vishay 16 SubmitDocumentationFeedback Copyright©2013,TexasInstrumentsIncorporated ProductFolderLinks:LMR12007

LMR12007 www.ti.com SNVS982–SEPTEMBER2013 D3 D2 VIN VIN BOOST C3 C1 L1 R3 SW VOUT ON D1 C2 EN OFF R1 FB GND R2 Figure27. LMR12007X(1.6MHz) V DerivedfromSeriesZenerDiode(V ) BOOST IN 15Vto1.5V/750mA Table4.BillofMaterialsforFigure27 PartID PartValue PartNumber Manufacturer U1 750mABuckRegulator LMR12007X TexasInstruments C1,InputCap 10µF,25V,X7R C3225X7R1E106M TDK C2,OutputCap 22µF,6.3V,X5R C3216X5ROJ226M TDK C3,BoostCap 0.01µF,16V,X7R C1005X7R1C103K TDK D1,CatchDiode 0.4V Schottky1A,30VR SS1P3L Vishay F D2,BoostDiode 1V @50mADiode 1N4148W Diodes,Inc. F D3,ZenerDiode 11V350MwSOT BZX84C11T Diodes,Inc. L1 6.8µH,1.6A, SLF7032T-6R8M1R6 TDK R1 2kΩ,1% CRCW06032001F Vishay R2 10kΩ,1% CRCW06031002F Vishay R3 100kΩ,1% CRCW06031003F Vishay Copyright©2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LMR12007

LMR12007 SNVS982–SEPTEMBER2013 www.ti.com D2 D3 VIN VIN BOOST C3 L1 C1 R3 SW VOUT ON D1 C2 EN OFF R1 FB GND R2 Figure28. LMR12007X(1.6MHz) V DerivedfromSeriesZenerDiode(V ) BOOST OUT 15Vto9V/750mA Table5.BillofMaterialsforFigure28 PartID PartValue PartNumber Manufacturer U1 750mABuckRegulator LMR12007X TexasInstruments C1,InputCap 10µF,25V,X7R C3225X7R1E106M TDK C2,OutputCap 22µF,16V,X5R C3216X5R1C226M TDK C3,BoostCap 0.01µF,16V,X7R C1005X7R1C103K TDK D1,CatchDiode 0.4V Schottky1A,30VR SS1P3L Vishay F D2,BoostDiode 1V @50mADiode 1N4148W Diodes,Inc. F D3,ZenerDiode 4.3V350mwSOT BZX84C4V3 Diodes,Inc. L1 6.8µH,1.6A, SLF7032T-6R8M1R6 TDK R1 61.9kΩ,1% CRCW06036192F Vishay R2 10kΩ,1% CRCW06031002F Vishay R3 100kΩ,1% CRCW06031003F Vishay 18 SubmitDocumentationFeedback Copyright©2013,TexasInstrumentsIncorporated ProductFolderLinks:LMR12007

LMR12007 www.ti.com SNVS982–SEPTEMBER2013 LMR12007Y Circuit Examples D2 VIN VIN BOOST C3 L1 C1 R3 SW VOUT ON D1 C2 EN OFF R1 FB GND R2 Figure29. LMR12007Y(550kHz) V DerivedfromV BOOST IN 5Vto1.5V/750mA Table6.BillofMaterialsforFigure29 PartID PartValue PartNumber Manufacturer U1 750mABuckRegulator LMR12007Y TexasInstruments C1,InputCap 10µF,6.3V,X5R C3216X5ROJ106M TDK C2,OutputCap 22µF,6.3V,X5R C3216X5ROJ226M TDK C3,BoostCap 0.01µF,16V,X7R C1005X7R1C103K TDK D1,CatchDiode 0.3V Schottky1A,10VR MBRM110L ONSemi F D2,BoostDiode 1V @50mADiode 1N4148W Diodes,Inc. F L1 10µH,1.6A, SLF7032T-100M1R4 TDK R1 2kΩ,1% CRCW06032001F Vishay R2 10kΩ,1% CRCW06031002F Vishay R3 100kΩ,1% CRCW06031003F Vishay Copyright©2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:LMR12007

LMR12007 SNVS982–SEPTEMBER2013 www.ti.com D2 VIN VIN BOOST C3 L1 C1 R3 SW VOUT ON D1 C2 EN OFF R1 FB GND R2 Figure30. LMR12007Y(550kHz) V DerivedfromV BOOST OUT 12Vto3.3V/750mA Table7.BillofMaterialsforFigure30 PartID PartValue PartNumber Manufacturer U1 750mABuckRegulator LMR12007Y TexasInstruments C1,InputCap 10µF,25V,X7R C3225X7R1E106M TDK C2,OutputCap 22µF,6.3V,X5R C3216X5ROJ226M TDK C3,BoostCap 0.01µF,16V,X7R C1005X7R1C103K TDK D1,CatchDiode 0.34V Schottky1A,30VR SS1P3L Vishay F D2,BoostDiode 30V,200mASchottky BAT54 DiodesInc. L1 10µH,1.6A, SLF7032T-100M1R4 TDK R1 16.5kΩ,1% CRCW06031652F Vishay R2 10.0kΩ,1% CRCW06031002F Vishay R3 100kΩ,1% CRCW06031003F Vishay 20 SubmitDocumentationFeedback Copyright©2013,TexasInstrumentsIncorporated ProductFolderLinks:LMR12007

LMR12007 www.ti.com SNVS982–SEPTEMBER2013 C4 D3 R4 D2 VIN VIN BOOST C3 L1 C1 R3 SW VOUT ON D1 C2 EN OFF R1 FB GND R2 Figure31. LMR12007Y(550kHz) V DerivedfromV BOOST SHUNT 18Vto1.5V/750mA Table8.BillofMaterialsforFigure31 PartID PartValue PartNumber Manufacturer U1 750mABuckRegulator LMR12007Y TexasInstruments C1,InputCap 10µF,25V,X7R C3225X7R1E106M TDK C2,OutputCap 22µF,6.3V,X5R C3216X5ROJ226M TDK C3,BoostCap 0.01µF,16V,X7R C1005X7R1C103K TDK C4,ShuntCap 0.1µF,6.3V,X5R C1005X5R0J104K TDK D1,CatchDiode 0.4V Schottky1A,30VR SS1P3L Vishay F D2,BoostDiode 1V @50mADiode 1N4148W Diodes,Inc. F D3,ZenerDiode 5.1V250MwSOT BZX84C5V1 Vishay L1 15µH,1.5A SLF7045T-150M1R5 TDK R1 2kΩ,1% CRCW06032001F Vishay R2 10kΩ,1% CRCW06031002F Vishay R3 100kΩ,1% CRCW06031003F Vishay R4 4.12kΩ,1% CRCW06034121F Vishay Copyright©2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:LMR12007

LMR12007 SNVS982–SEPTEMBER2013 www.ti.com D3 D2 VIN VIN BOOST C3 C1 L1 R3 SW VOUT ON D1 C2 EN OFF R1 FB GND R2 Figure32. LMR12007Y(550kHz) V DerivedfromSeriesZenerDiode(V ) BOOST IN 15Vto1.5V/750mA Table9.BillofMaterialsforFigure32 PartID PartValue PartNumber Manufacturer U1 750mABuckRegulator LMR12007Y TexasInstruments C1,InputCap 10µF,25V,X7R C3225X7R1E106M TDK C2,OutputCap 22µF,6.3V,X5R C3216X5ROJ226M TDK C3,BoostCap 0.01µF,16V,X7R C1005X7R1C103K TDK D1,CatchDiode 0.4V Schottky1A,30VR SS1P3L Vishay F D2,BoostDiode 1V @50mADiode 1N4148W Diodes,Inc. F D3,ZenerDiode 11V350MwSOT BZX84C11T Diodes,Inc. L1 15µH,1.5A, SLF7045T-150M1R5 TDK R1 2kΩ,1% CRCW06032001F Vishay R2 10kΩ,1% CRCW06031002F Vishay R3 100kΩ,1% CRCW06031003F Vishay 22 SubmitDocumentationFeedback Copyright©2013,TexasInstrumentsIncorporated ProductFolderLinks:LMR12007

LMR12007 www.ti.com SNVS982–SEPTEMBER2013 D2 D3 VIN VIN BOOST C3 L1 C1 R3 SW VOUT ON D1 C2 EN OFF R1 FB GND R2 Figure33. LMR12007Y(550kHz) V DerivedfromSeriesZenerDiode(V ) BOOST OUT 15Vto9V/750mA Table10.BillofMaterialsforFigure33 PartID PartValue PartNumber Manufacturer U1 750mABuckRegulator LMR12007Y TexasInstruments C1,InputCap 10µF,25V,X7R C3225X7R1E106M TDK C2,OutputCap 22µF,16V,X5R C3216X5R1C226M TDK C3,BoostCap 0.01µF,16V,X7R C1005X7R1C103K TDK D1,CatchDiode 0.4V Schottky1A,30VR SS1P3L Vishay F D2,BoostDiode 1V @50mADiode 1N4148W Diodes,Inc. F D3,ZenerDiode 4.3V350mwSOT BZX84C4V3 Diodes,Inc. L1 22µH,1.4A, SLF7045T-220M1R3-1PF TDK R1 61.9kΩ,1% CRCW06036192F Vishay R2 10kΩ,1% CRCW06031002F Vishay R3 100kΩ,1% CRCW06031003F Vishay Copyright©2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:LMR12007

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LMR12007XMK ACTIVE SOT-23-THIN DDC 6 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 SP1B & no Sb/Br) LMR12007XMKX ACTIVE SOT-23-THIN DDC 6 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 SP1B & no Sb/Br) LMR12007YMK ACTIVE SOT-23-THIN DDC 6 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 SP2B & no Sb/Br) LMR12007YMKX ACTIVE SOT-23-THIN DDC 6 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 SP2B & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 12-Jun-2018 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LMR12007XMK SOT- DDC 6 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 23-THIN LMR12007XMKX SOT- DDC 6 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 23-THIN LMR12007YMK SOT- DDC 6 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 23-THIN LMR12007YMKX SOT- DDC 6 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 23-THIN PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 12-Jun-2018 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LMR12007XMK SOT-23-THIN DDC 6 1000 210.0 185.0 35.0 LMR12007XMKX SOT-23-THIN DDC 6 3000 210.0 185.0 35.0 LMR12007YMK SOT-23-THIN DDC 6 1000 210.0 185.0 35.0 LMR12007YMKX SOT-23-THIN DDC 6 3000 210.0 185.0 35.0 PackMaterials-Page2

PACKAGE OUTLINE DDC0006A SOT - 1.1 max height SCALE 4.000 SOT 3.05 2.55 1.1 MAX 11..7455 B A 0.1 C PIN 1 INDEX AREA 1 6 4X 0.95 3.05 1.9 2.75 4 3 6X 00..53 00..10 TYP 0.2 C A B 0 -8 TYP C 0.25 0.20 SEATING PLANE 0.12 TYP GAGE PLANE 0.6 TYP 0.3 4214841/A 08/2016 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Reference JEDEC MO-193. www.ti.com

EXAMPLE BOARD LAYOUT DDC0006A SOT - 1.1 max height SOT SYMM 6X (1.1) 1 6X (0.6) 6 SYMM 4X (0.95) 4 3 (R0.05) TYP (2.7) LAND PATTERN EXAMPLE EXPLOSED METAL SHOWN SCALE:15X METAL UNDER SOLDER MASK SOLDER MASK METAL SOLDER MASK OPENING OPENING EXPOSED METAL EXPOSED METAL 0.07 MAX 0.07 MIN ARROUND ARROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDERMASK DETAILS 4214841/A 08/2016 NOTES: (continued) 4. Publication IPC-7351 may have alternate designs. 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN DDC0006A SOT - 1.1 max height SOT SYMM 6X (1.1) 1 6X (0.6) 6 SYMM 4X(0.95) 4 3 (R0.05) TYP (2.7) SOLDER PASTE EXAMPLE BASED ON 0.125 THICK STENCIL SCALE:15X 4214841/A 08/2016 NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 7. Board assembly site may have different recommendations for stencil design. www.ti.com

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated