图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: DSPIC30F3013-30I/SO
  • 制造商: Microchip
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

DSPIC30F3013-30I/SO产品简介:

ICGOO电子元器件商城为您提供DSPIC30F3013-30I/SO由Microchip设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 DSPIC30F3013-30I/SO价格参考。MicrochipDSPIC30F3013-30I/SO封装/规格:嵌入式 - 微控制器, dsPIC 微控制器 IC dsPIC™ 30F 16-位 30 MIP 24KB(8K x 24) 闪存 28-SOIC。您可以下载DSPIC30F3013-30I/SO参考资料、Datasheet数据手册功能说明书,资料中有DSPIC30F3013-30I/SO 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC DSC 16BIT 24KB FLASH 28SOIC数字信号处理器和控制器 - DSP, DSC Sensor

EEPROM容量

1K x 8

产品分类

嵌入式 - 微控制器

I/O数

20

品牌

Microchip Technology

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

嵌入式处理器和控制器,数字信号处理器和控制器 - DSP, DSC,Microchip Technology DSPIC30F3013-30I/SOdsPIC™ 30F

数据手册

http://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en021032http://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en025670http://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en533751http://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en012562http://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en540899

产品型号

DSPIC30F3013-30I/SO

PCN组件/产地

http://www.microchip.com/mymicrochip/NotificationDetails.aspx?id=5514&print=viewhttp://www.microchip.com/mymicrochip/NotificationDetails.aspx?id=5701&print=viewhttp://www.microchip.com/mymicrochip/NotificationDetails.aspx?id=5775&print=view

RAM容量

2K x 8

产品

DSCs

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=2046

产品目录页面

点击此处下载产品Datasheet

产品种类

数字信号处理器和控制器 - DSP, DSC

供应商器件封装

28-SOIC

其它名称

DSPIC30F301330ISO

包装

管件

可编程输入/输出端数量

30

商标

Microchip Technology

处理器系列

dsPIC30F

外设

欠压检测/复位,POR,PWM,WDT

安装风格

SMD/SMT

定时器数量

3 Timer

封装

Tube

封装/外壳

28-SOIC(0.295",7.50mm 宽)

封装/箱体

SOIC-16

工作温度

-40°C ~ 85°C

工作电源电压

2.5 V to 5.5 V

工厂包装数量

27

振荡器类型

内部

接口类型

I2C/SPI/UART

数据RAM大小

2 kB

数据总线宽度

16 bit

数据转换器

A/D 10x12b

最大工作温度

+ 85 C

最大时钟频率

30 MHz

最小工作温度

- 40 C

标准包装

27

核心

dsPIC

核心处理器

dsPIC

核心尺寸

16-位

片上ADC

Yes

电压-电源(Vcc/Vdd)

2.5 V ~ 5.5 V

程序存储器大小

24 kB

程序存储器类型

Flash

程序存储容量

24KB(8K x 24)

类型

dsPIC30

系列/芯体

dsPIC30

输入/输出端数量

30 I/O

连接性

I²C, SPI, UART/USART

速度

30 MIP

配用

/product-detail/zh/DV164005/DV164005-ND/459161

推荐商品

型号:PIC16LF1828-I/SS

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:MC9S12DG128CPV

品牌:NXP USA Inc.

产品名称:集成电路(IC)

获取报价

型号:PIC16F707T-I/PT

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:ST72F324K6T6

品牌:STMicroelectronics

产品名称:集成电路(IC)

获取报价

型号:C8051F852-C-GMR

品牌:Silicon Labs

产品名称:集成电路(IC)

获取报价

型号:ATTINY84-20SSU

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:PIC24F08KM202T-I/SO

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:DS89C430-ENL+

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
DSPIC30F3013-30I/SO 相关产品

MC9S12DG128MPV

品牌:NXP USA Inc.

价格:

CY8C21345-24SXIT

品牌:Cypress Semiconductor Corp

价格:

PIC16F636T-I/SL

品牌:Microchip Technology

价格:

R5F10JBCAFP#V0

品牌:Renesas Electronics America

价格:

AT89C51RC2-3CSUM

品牌:Microchip Technology

价格:¥95.70-¥95.70

PIC16F870T-E/SO

品牌:Microchip Technology

价格:

DSPIC33FJ256GP710-I/PT

品牌:Microchip Technology

价格:

AT91R40807-33AU

品牌:Microchip Technology

价格:

PDF Datasheet 数据手册内容提取

dsPIC30F2011/2012/3012/3013 Data Sheet High-Performance, 16-bit Digital Signal Controllers © 2010 Microchip Technology Inc. DS70139G

Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device Trademarks applications and the like is provided only for your convenience The Microchip name and logo, the Microchip logo, dsPIC, and may be superseded by updates. It is your responsibility to KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, ensure that your application meets with your specifications. PIC32 logo, rfPIC and UNI/O are registered trademarks of MICROCHIP MAKES NO REPRESENTATIONS OR Microchip Technology Incorporated in the U.S.A. and other WARRANTIES OF ANY KIND WHETHER EXPRESS OR countries. IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, INCLUDING BUT NOT LIMITED TO ITS CONDITION, MXDEV, MXLAB, SEEVAL and The Embedded Control QUALITY, PERFORMANCE, MERCHANTABILITY OR Solutions Company are registered trademarks of Microchip FITNESS FOR PURPOSE. Microchip disclaims all liability Technology Incorporated in the U.S.A. arising from this information and its use. Use of Microchip Analog-for-the-Digital Age, Application Maestro, CodeGuard, devices in life support and/or safety applications is entirely at dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, the buyer’s risk, and the buyer agrees to defend, indemnify and ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial hold harmless Microchip from any and all damages, claims, Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified suits, or expenses resulting from such use. No licenses are logo, MPLIB, MPLINK, mTouch, Omniscient Code conveyed, implicitly or otherwise, under any Microchip Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, intellectual property rights. PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 978-1-60932-631-9 Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. DS70139G-page 2 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 High-Performance, 16-bit Digital Signal Controllers Peripheral Features: Note: This data sheet summarizes features of this group ofdsPIC30F devices and is not • High-current sink/source I/O pins: 25mA/25mA intended to be a complete reference • Three 16-bit timers/counters; optionally pair up source. For more information on the CPU, 16-bit timers into 32-bit timer modules peripherals, register descriptions and • 16-bit Capture input functions general device functionality, refer to the • 16-bit Compare/PWM output functions “dsPIC30F Family Reference Manual” • 3-wire SPI modules (supports four Frame modes) (DS70046). For more information on the device instruction set and programming, • I2C™ module supports Multi-Master/Slave mode and 7-bit/10-bit addressing refer to the “16-bit MCU and DSC Programmer’s Reference Manual” • Up to two addressable UART modules with FIFO (DS70157). buffers Analog Features: High-Performance Modified RISC CPU: • 12-bit Analog-to-Digital Converter (ADC) with: • Modified Harvard architecture - 200 ksps conversion rate • C compiler optimized instruction set architecture - Up to 10 input channels • Flexible addressing modes - Conversion available during Sleep and Idle • 83 base instructions • Programmable Low-Voltage Detection (PLVD) • 24-bit wide instructions, 16-bit wide data path • Programmable Brown-out Reset • Up to 24 Kbytes on-chip Flash program space • Up to 2 Kbytes of on-chip data RAM Special Microcontroller Features: • Up to 1 Kbytes of nonvolatile data EEPROM • Enhanced Flash program memory: • 16 x 16-bit working register array - 10,000 erase/write cycle (min.) for • Up to 30 MIPS operation: industrial temperature range, 100K (typical) - DC to 40MHz external clock input • Data EEPROM memory: - 4MHz - 10MHz oscillator input with - 100,000 erase/write cycle (min.) for PLL active (4x, 8x, 16x) industrial temperature range, 1M (typical) • Up to 21 interrupt sources: • Self-reprogrammable under software control - 8 user-selectable priority levels • Power-on Reset (POR), Power-up Timer (PWRT) - 3 external interrupt sources and Oscillator Start-up Timer (OST) - 4 processor trap sources • Flexible Watchdog Timer (WDT) with on-chip low-power RC oscillator for reliable operation DSP Features: • Fail-Safe Clock Monitor operation: • Dual data fetch - Detects clock failure and switches to on-chip low-power RC oscillator • Modulo and Bit-Reversed modes • Programmable code protection • Two 40-bit wide accumulators with optional saturation logic • In-Circuit Serial Programming™ (ICSP™) • 17-bit x 17-bit single-cycle hardware fractional/ • Selectable Power Management modes: integer multiplier - Sleep, Idle and Alternate Clock modes • All DSP instructions are single cycle CMOS Technology: - Multiply-Accumulate (MAC) operation • Single-cycle ±16 shift • Low-power, high-speed Flash technology • Wide operating voltage range (2.5V to 5.5V) • Industrial and Extended temperature ranges • Low-power consumption © 2010 Microchip Technology Inc. DS70139G-page 3

dsPIC30F2011/2012/3012/3013 dsPIC30F2011/2012/3012/3013 Sensor Family Device Pins BPytreosgraImns Mtreumctoiornys SBRyAteMs EEBPyRteOsM T16im-beirt InCpaupt COoPmuWtppM/uStt d A20/D0 1K2s-pbsit UART SPI 2™IC dsPIC30F2011 18 12K 4K 1024 – 3 2 2 8 ch 1 1 1 dsPIC30F3012 18 24K 8K 2048 1024 3 2 2 8 ch 1 1 1 dsPIC30F2012 28 12K 4K 1024 – 3 2 2 10 ch 1 1 1 dsPIC30F3013 28 24K 8K 2048 1024 3 2 2 10 ch 2 1 1 Pin Diagrams 18-Pin PDIP and SOIC MCLR 1 18 AVDD EMUD3/AN0/VREF+/CN2/RB0 2 17 AVSS EMUC3/AN1/VREF-/CN3/RB1 3 21 16 AN6/SCK1/INT0/OCFA/RB6 AN2/SS1/LVDIN/CN4/RB2 4 0101 15 EMUD2/AN7/OC2/IC2/INT2/RB7 AN3/CN5/RB3 5 F3F2 14 VDD OSC1/CLKI 6 3030 13 VSS OSC2/CLKO/RC15 7 CC 12 PGC/EMUC/AN5/U1RX/SDI1/SDA/CN7/RB5 EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13 8 PIPI 11 PGD/EMUD/AN4/U1TX/SDO1/SCL/CN6/RB4 EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14 9 dsds 10 EMUC2/OC1/IC1/INT1/RD0 28-Pin PDIP and SOIC MCLR 1 28 AVDD EMUD3/AN0/VREF+/CN2/RB0 2 27 AVSS EMUC3/AN1/VREF-/CN3/RB1 3 26 AN6/OCFA/RB6 AN2/SS1/LVDIN/CN4/RB2 4 25 EMUD2/AN7/RB7 AN3/CN5/RB3 5 2 24 AN8/OC1/RB8 AN4/CN6/RB4 6 01 23 AN9/OC2/RB9 AN5/CN7/RB5 7 2 22 CN17/RF4 F VSS 8 0 21 CN18/RF5 OSC1/CLKI 9 C3 20 VDD OSC2/CLKO/RC15 10 PI 19 VSS EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13 11 s 18 PGC/EMUC/U1RX/SDI1/SDA/RF2 d EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14 12 17 PGD/EMUD/U1TX/SDO1/SCL/RF3 VDD 13 16 SCK1/INT0/RF6 IC2/INT2/RD9 14 15 EMUC2/IC1/INT1/RD8 28-Pin SPDIP and SOIC MCLR 1 28 AVDD EMUD3/AN0/VREF+/CN2/RB0 2 27 AVSS EMUC3/AN1/VREF-/CN3/RB1 3 26 AN6/OCFA/RB6 AN2/SS1/LVDIN/CN4/RB2 4 25 EMUD2/AN7/RB7 AN3/CN5/RB3 5 3 24 AN8/OC1/RB8 1 AN4/CN6/RB4 6 0 23 AN9/OC2/RB9 3 AN5/CN7/RB5 7 F 22 U2RX/CN17/RF4 VSS 8 30 21 U2TX/CN18/RF5 OSC1/CLKI 9 C 20 VDD OSC2/CLKO/RC15 10 PI 19 VSS s EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13 11 d 18 PGC/EMUC/U1RX/SDI1/SDA/RF2 EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14 12 17 PGD/EMUD/U1TX/SDO1/SCL/RF3 VDD 13 16 SCK1/INT0/RF6 IC2/INT2/RD9 14 15 EMUC2/IC1/INT1/RD8 DS70139G-page 4 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 Pin Diagrams 28-Pin QFN-S(1) 7 B -/CN3/RB1REF+/CN2/RB0REF 0/OCFA/RB6C2/IC2/INT2/R VV TO AN1/AN0/ K1/INAN7/ 3/3/ C2/ EMUCEMUDMCLRAVDDAVSSAN6/SEMUD 8765432 2222222 AN2/SS1/LVDIN/CN4/RB2 1 21 NC AN3/CN5/RB3 2 20 NC NC 3 19 NC NC 4 dsPIC30F2011 18 NC VSS 5 17 VDD OSC1/CLKI 6 16 VSS OSC2/CLKO/RC15 7 15 PGC/EMUC/AN5/U1RX/SDI1/SDA/CN7/RB5 01234 8911111 34DC0C4 C1C1VDNRDNRB 1/R0/R T1/ N6/ NN N C X/CX/C C1/I CL/ EMUD1/SOSC1/T2CK/U1ATEMUC1/SOSCO/T1CK/U1AR EMUC2/OC1/I D/EMUD/AN4/U1TX/SDO1/S G P Note 1: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally. © 2010 Microchip Technology Inc. DS70139G-page 5

dsPIC30F2011/2012/3012/3013 Pin Diagrams 28-Pin QFN-S(1) RB1RB0 V-/CN3/REFV+/CN2/REF B6RB7 N1/N0/ A/RN7/ AA FA MUC3/MUD3/CLRVDDVSSN6/OCMUD2/ EEMAAAE 8765432 2222222 AN2/SS1/LVDIN/CN4/RB2 1 21 AN8/OC1/RB8 AN3/CN5/RB3 2 20 AN9/OC2/RB9 AN4/CN6/RB4 3 19 CN17/RF4 AN5/CN7/RB5 4 dsPIC30F2012 18 CN18/RF5 VSS 5 17 VDD OSC1/CLKI 6 16 VSS OSC2/CLKO/RC15 7 15 PGC/EMUC/U1RX/SDI1/SDA/RF2 01234 8911111 N1/RC13N0/RC14VDDNT2/RD9NT1/RD8NT0/RF6SCL/RF3 CI/T2CK/U1ATX/CO/T1CK/U1ARX/C IC2/IEMUC2/IC1/ISCK1/IMUD/U1TX/SDO1/ SOSOSC D/E D1/1/S PG UC MU EM E Note 1: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally. DS70139G-page 6 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 Pin Diagram 44-Pin QFN(1) 4 B R 4 N6/ RC1C13 CL/C CN0/N1/R D/AN4/U1TX/SDO1/S C1/IC1/INT1/RD0 OSCO/T1CK/U1ARX/OSCI/T2CK/U1ATX/C U O SS EM C2/ C1/D1/ GD/CMUCCCCC DDMUMU PNENNNNNVEE 4443424140393837363534 PGC/EMUC/AN5/U1RX/SDI1/SDA/CN7/RB5 1 33 OSC2/CLKO/RC15 VSS 2 32 OSC1/CLKI NC 3 31 VSS VDD 4 30 VSS NC 5 29 NC NC 6 dsPIC30F3012 28 NC NC 7 27 NC NC 8 26 NC NC 9 25 AN3/CN5/RB3 NC 10 24 NC NC 11 23 AN2/SS1/LVDIN/CN4/RB2 1213141516171819202122 7C6CS DR01CC 2/RBNA/RBNAVSAVDMCL2/RB3/RBNN T F NN N C CC 2/AN7/OC2/IC2/I N6/SCK1/INT0/O UD3/AN0/V+/REFUC3/AN1/V-/REF D A MM MU EE E Note 1: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally. © 2010 Microchip Technology Inc. DS70139G-page 7

dsPIC30F2011/2012/3012/3013 Pin Diagrams 44-Pin QFN(1) 4 C113 RC F3 CN0/N1/R 1/SCL/R U1ARX/1ATX/C PGD/EMUD/U1TX/SDOSCK1/INT0/RF6EMUC2/IC1/INT1/RD8NCNCNCNCIC2/INT2/RD9VDDEMUC1/SOSCO/T1CK/EMUD1/SOSCI/T2CK/U 43210987654 44444333333 PGC/EMUC/U1RX/SDI1/SDA/RF2 1 33 OSC2/CLKO/RC15 VSS 2 32 OSC1/CLKI NC 3 31 VSS VDD 4 30 VSS NC 5 29 NC NC 6 dsPIC30F3013 28 NC U2TX/CN18/RF5 7 27 AN5/CN7/RB5 NC 8 26 AN4/CN6/RB4 U2RX/CN17/RF4 9 25 AN3/CN5/RB3 AN9/OC2/RB9 10 24 NC AN8/OC1/RB8 11 23 AN2/SS1/LVDIN/CN4/RB2 23456789012 11111111222 7C6CS DR01CC 7/RBNA/RBNAVSAVDMCL2/RB3/RBNN N F NN A C CC EMUD2/ AN6/O N0/V+/REFN1/V-/REF D3/AC3/A UU MM EE Note 1: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally. DS70139G-page 8 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 Table of Contents 1.0 Device Overview........................................................................................................................................................................11 2.0 CPU Architecture Overview........................................................................................................................................................19 3.0 Memory Organization.................................................................................................................................................................29 4.0 Address Generator Units............................................................................................................................................................43 5.0 Flash Program Memory..............................................................................................................................................................49 6.0 Data EEPROM Memory.............................................................................................................................................................55 7.0 I/O Ports.....................................................................................................................................................................................59 8.0 Interrupts....................................................................................................................................................................................65 9.0 Timer1 Module...........................................................................................................................................................................73 10.0 Timer2/3 Module........................................................................................................................................................................77 11.0 Input Capture Module.................................................................................................................................................................83 12.0 Output Compare Module............................................................................................................................................................87 13.0 SPI™ Module.............................................................................................................................................................................93 14.0 I2C™ Module.............................................................................................................................................................................97 15.0 Universal Asynchronous Receiver Transmitter (UART) Module..............................................................................................105 16.0 12-bit Analog-to-Digital Converter (ADC) Module....................................................................................................................113 17.0 System Integration...................................................................................................................................................................123 18.0 Instruction Set Summary..........................................................................................................................................................137 19.0 Development Support...............................................................................................................................................................145 20.0 Electrical Characteristics..........................................................................................................................................................149 21.0 Packaging Information..............................................................................................................................................................187 Index..................................................................................................................................................................................................201 The Microchip Web Site.....................................................................................................................................................................207 Customer Change Notification Service..............................................................................................................................................207 Customer Support..............................................................................................................................................................................207 Reader Response..............................................................................................................................................................................208 Product Identification System............................................................................................................................................................209 TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Web site; http://www.microchip.com • Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our web site at www.microchip.com to receive the most current information on all of our products. © 2010 Microchip Technology Inc. DS70139G-page 9

dsPIC30F2011/2012/3012/3013 NOTES: DS70139G-page 10 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 1.0 DEVICE OVERVIEW Note: This data sheet summarizes features of this group ofdsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the “dsPIC30F Family Reference Manual” (DS70046). For more information on the device instruction set and programming, refer to the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157). This data sheet contains information specific to the dsPIC30F2011, dsPIC30F2012, dsPIC30F3012 and dsPIC30F3013 Digital Signal Controllers (DSC). These devices contain extensive Digital Signal Processor (DSP) functionality within a high-performance 16-bit microcontroller (MCU) architecture. The following block diagrams depict the architecture for these devices: • Figure1-1 illustrates the dsPIC30F2011 • Figure1-2 illustrates the dsPIC30F2012 • Figure1-3 illustrates the dsPIC30F3012 • Figure1-4 illustrates the dsPIC30F3013 Following the block diagrams, Table1-1 relates the I/O functions to pinout information. © 2010 Microchip Technology Inc. DS70139G-page 11

dsPIC30F2011/2012/3012/3013 FIGURE 1-1: dsPIC30F2011 BLOCK DIAGRAM Y Data Bus X Data Bus 16 16 16 16 Interrupt Data Latch Data Latch Controller DPaStVa &A cTcaebslse Y Data X Data 24Control Block 8 16 RAM RAM (512 bytes) (512 bytes) Address Address 16 24 Latch Latch 16 16 16 EMUD3/AN0/VREF+/CN2/RB0 24 Y AGU X RAGU EMUC3/AN1/VREF-/CN3/RB1 PCU PCH PCL X WAGU AN2/SS1/LVDIN/CN4/RB2 Program Counter AN3/CN5/RB3 Address Latch Stack Loop PGD/EMUD/AN4/U1TX/SDO1/SCL/CN6/RB4 Control Control Program Memory Logic Logic PGC/EMUC/AN5/U1RX/SDI1/SDA/CN7/RB5 (12 Kbytes) AN6/SCK1/INT0/OCFA/RB6 EMUD2/AN7/OC2/IC2/INT2/RB7 Data Latch Effective Address PORTB 16 ROM Latch 16 24 IR EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13 EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14 16 16 OSC2/CLKO/RC15 16 x 16 W Reg Array Decode PORTC Instruction Decode & 16 16 Control DSP Divide Power-up Engine Unit Timer EMUC2/OC1/IC1/INT1/RD0 OSC1/CLKI Timing Oscillator Generation Start-up Timer POR/BOR ALU<16> Reset MCLR Watchdog 16 16 PORTD Timer Low-Voltage VDD, VSS Detect AVDD, AVSS Input O utput 12-bit ADC Capture Com pare I2C™ Module Module Timers SPI1 UART1 DS70139G-page 12 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 1-2: dsPIC30F2012 BLOCK DIAGRAM Y Data Bus X Data Bus 16 16 16 16 Interrupt Data Latch Data Latch Controller DPaStVa &A cTcaebslse Y Data X Data 24Control Block 8 16 RAM RAM (512 bytes) (512 bytes) Address Address 16 24 Latch Latch 16 16 16 EMUD3/AN0/VREF+/CN2/RB0 24 Y AGU X RAGU EMUC3/AN1/VREF-/CN3/RB1 PCU PCH PCL X WAGU AN2/SS1/LVDIN/CN4/RB2 Program Counter AN3/CN5/RB3 Address Latch Stack Loop AN4/CN6/RB4 Control Control Program Memory Logic Logic AN5/CN7/RB5 (12 Kbytes) AN6/OCFA/RB6 EMUD2/AN7/RB7 Data Latch AN8/OC1/RB8 Effective Address AN9/OC2/RB9 16 PORTB ROM Latch 16 24 IR EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13 16 EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14 16 OSC2/CLKO/RC15 16 x 16 Decode W Reg Array PORTC Instruction Decode & 16 16 Control DSP Divide Power-up Engine Unit Timer OSC1/CLKI Timing Oscillator EMUC2/IC1/INT1/RD8 Generation Start-up Timer IC2/INT2/RD9 POR/BOR ALU<16> Reset PORTD MCLR Watchdog 16 16 Timer Low-Voltage VDD, VSS Detect AVDD, AVSS Input O utput 12-bit ADC Capture Com pare I2C™ Module Module PGC/EMUC/U1RX/SDI1/SDA/RF2 PGD/EMUD/U1TX/SDO1/SCL/RF3 CN17/RF4 CN18/RF5 SCK1/INT0/RF6 Timers SPI1 UART1 PORTF © 2010 Microchip Technology Inc. DS70139G-page 13

dsPIC30F2011/2012/3012/3013 FIGURE 1-3: dsPIC30F3012 BLOCK DIAGRAM Y Data Bus X Data Bus 16 16 16 16 Interrupt Data Latch Data Latch Controller DPaStVa &A cTcaebslse Y Data X Data 24Control Block 8 16 RAM RAM (1 Kbytes) (1 Kbytes) Address Address 16 24 Latch Latch 16 16 16 EMUD3/AN0/VREF+/CN2/RB0 24 Y AGU X RAGU EMUC3/AN1/VREF-/CN3/RB1 PCU PCH PCL X WAGU AN2/SS1/LVDIN/CN4/RB2 Program Counter AN3/CN5/RB3 Address Latch Stack Loop PGD/EMUD/AN4/U1TX/SDO1/SCL/CN6/RB4 Control Control Program Memory Logic Logic PGC/EMUC/AN5/U1RX/SDI1/SDA/CN7/RB5 (24 Kbytes) AN6/SCK1/INT0/OCFA/RB6 EMUD2/AN7/OC2/IC2/INT2/RB7 Data EEPROM (1 Kbytes) Effective Address PORTB Data Latch 16 ROM Latch 16 24 IR EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13 EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14 16 16 OSC2/CLKO/RC15 16 x 16 W Reg Array Decode PORTC Instruction Decode & 16 16 Control DSP Divide Power-up Engine Unit Timer EMUC2/OC1/IC1/INT1/RD0 OSC1/CLKI Timing Oscillator Generation Start-up Timer POR/BOR ALU<16> Reset MCLR Watchdog 16 16 PORTD Timer Low-Voltage VDD, VSS Detect AVDD, AVSS Input O utput 12-bit ADC Capture Com pare I2C™ Module Module Timers SPI1 UART1 DS70139G-page 14 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 1-4: dsPIC30F3013 BLOCK DIAGRAM Y Data Bus X Data Bus 16 16 16 16 Interrupt Data Latch Data Latch Controller DPaStVa &A cTcaebslse Y Data X Data 24Control Block 8 16 RAM RAM (1 Kbytes) (1 Kbytes) Address Address 16 24 Latch Latch 16 16 16 EMUD3/AN0/VREF+/CN2/RB0 24 Y AGU X RAGU EMUC3/AN1/VREF-/CN3/RB1 PCU PCH PCL X WAGU AN2/SS1/LVDIN/CN4/RB2 Address Latch Program Counter AN3/CN5/RB3 Program Memory Stack Loop AN4/CN6/RB4 Control Control (24 Kbytes) Logic Logic AN5/CN7/RB5 AN6/OCFA/RB6 Data EEPROM (1 Kbytes) EMUD2/AN7/RB7 AN8/OC1/RB8 Data Latch Effective Address AN9/OC2/RB9 16 PORTB ROM Latch 16 24 IR EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13 16 EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14 16 OSC2/CLKO/RC15 16 x 16 Decode W Reg Array PORTC Instruction Decode & 16 16 Control DSP Divide Power-up Engine Unit Timer OSC1/CLKI Timing Oscillator EMUC2/IC1/INT1/RD8 Generation Start-up Timer IC2/INT2/RD9 POR/BOR ALU<16> Reset PORTD MCLR Watchdog 16 16 Timer Low-Voltage VDD, VSS Detect AVDD, AVSS Input O utput 12-bit ADC Capture Com pare I2C™ Module Module PGC/EMUC/U1RX/SDI1/SDA/RF2 PGD/EMUD/U1TX/SDO1/SCL/RF3 U2RX/CN17/RF4 U2TX/CN18/RF5 SCK1/INT0/RF6 Timers SPI1 UART1, UART2 PORTF © 2010 Microchip Technology Inc. DS70139G-page 15

dsPIC30F2011/2012/3012/3013 Table1-1 provides a brief description of device I/O pinouts and the functions that may be multiplexed to a port pin. Multiple functions may exist on one port pin. When multiplexing occurs, the peripheral module’s functional requirements may force an override of the data direction of the port pin. TABLE 1-1: PINOUT I/O DESCRIPTIONS Pin Buffer Pin Name Description Type Type AN0 - AN9 I Analog Analog input channels. AVDD P P Positive supply for analog module. This pin must be connected at all times. AVSS P P Ground reference for analog module. This pin must be connected at all times. CLKI I ST/CMOS External clock source input. Always associated with OSC1 pin function. CLKO O — Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function. CN0 - CN7 I ST Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs. EMUD I/O ST ICD Primary Communication Channel data input/output pin. EMUC I/O ST ICD Primary Communication Channel clock input/output pin. EMUD1 I/O ST ICD Secondary Communication Channel data input/output pin. EMUC1 I/O ST ICD Secondary Communication Channel clock input/output pin. EMUD2 I/O ST ICD Tertiary Communication Channel data input/output pin. EMUC2 I/O ST ICD Tertiary Communication Channel clock input/output pin. EMUD3 I/O ST ICD Quaternary Communication Channel data input/output pin. EMUC3 I/O ST ICD Quaternary Communication Channel clock input/output pin. IC1 - IC2 I ST Capture inputs 1 through 2. INT0 I ST External interrupt 0. INT1 I ST External interrupt 1. INT2 I ST External interrupt 2. LVDIN I Analog Low-Voltage Detect Reference Voltage Input pin. MCLR I/P ST Master Clear (Reset) input or programming voltage input. This pin is an active-low Reset to the device. OC1-OC2 O — Compare outputs 1 through 2. OCFA I ST Compare Fault A input. OSC1 I ST/CMOS Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. OSC2 I/O — Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. PGD I/O ST In-Circuit Serial Programming™ data input/output pin. PGC I ST In-Circuit Serial Programming clock input pin. RB0 - RB9 I/O ST PORTB is a bidirectional I/O port. RC13 - RC15 I/O ST PORTC is a bidirectional I/O port. RD0, I/O ST PORTD is a bidirectional I/O port. RD8-RD9 RF2 - RF5 I/O ST PORTF is a bidirectional I/O port. SCK1 I/O ST Synchronous serial clock input/output for SPI1. SDI1 I ST SPI1 Data In. SDO1 O — SPI1 Data Out. SS1 I ST SPI1 Slave Synchronization. Legend: CMOS= CMOS compatible input or output Analog = Analog input ST = Schmitt Trigger input with CMOS levels O = Output I = Input P = Power DS70139G-page 16 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Buffer Pin Name Description Type Type SCL I/O ST Synchronous serial clock input/output for I2C™. SDA I/O ST Synchronous serial data input/output for I2C. SOSCO O — 32 kHz low-power oscillator crystal output. SOSCI I ST/CMOS 32 kHz low-power oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. T1CK I ST Timer1 external clock input. T2CK I ST Timer2 external clock input. U1RX I ST UART1 Receive. U1TX O — UART1 Transmit. U1ARX I ST UART1 Alternate Receive. U1ATX O — UART1 Alternate Transmit. U2RX I ST UART2 Receive. U2TX O — UART2 Transmit. VDD P — Positive supply for logic and I/O pins. VSS P — Ground reference for logic and I/O pins. VREF+ I Analog Analog Voltage Reference (High) input. VREF- I Analog Analog Voltage Reference (Low) input. Legend: CMOS= CMOS compatible input or output Analog = Analog input ST = Schmitt Trigger input with CMOS levels O = Output I = Input P = Power © 2010 Microchip Technology Inc. DS70139G-page 17

dsPIC30F2011/2012/3012/3013 NOTES: DS70139G-page 18 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 2.0 CPU ARCHITECTURE Two ways to access data in program memory are: OVERVIEW • The upper 32 Kbytes of data space memory can be mapped into the lower half (user space) of Note: This data sheet summarizes features of program space at any 16K program word this group ofdsPIC30F devices and is not boundary, defined by the 8-bit Program Space intended to be a complete reference Visibility Page register (PSVPAG). Thus any source. For more information on the CPU, instruction can access program space as if it were peripherals, register descriptions and data space, with a limitation that the access general device functionality, refer to the requires an additional cycle. Only the lower 16 “dsPIC30F Family Reference Manual” bits of each instruction word can be accessed (DS70046). For more information on the using this method. device instruction set and programming, • Linear indirect access of 32K word pages within refer to the “16-bit MCU and DSC program space is also possible using any working Programmer’s Reference Manual” register, via table read and write instructions. (DS70157). Table read and write instructions can be used to access all 24 bits of an instruction word. This section is an overview of the CPU architecture of the dsPIC30F. The core has a 24-bit instruction word. Overhead-free circular buffers (Modulo Addressing) The Program Counter (PC) is 23 bits wide with the are supported in both X and Y address spaces. This is Least Significant bit (LSb) always clear (see primarily intended to remove the loop overhead for Section3.1 “Program Address Space”). The Most DSP algorithms. Significant bit (MSb) is ignored during normal program The X AGU also supports Bit-Reversed Addressing on execution, except for certain specialized instructions. destination effective addresses to greatly simplify input Thus, the PC can address up to 4M instruction words or output data reordering for radix-2 FFT algorithms. of user program space. An instruction prefetch Refer to Section4.0 “Address Generator Units” for mechanism helps maintain throughput. Program loop details on Modulo and Bit-Reversed Addressing. constructs, free from loop count management The core supports Inherent (no operand), Relative, overhead, are supported using the DO and REPEAT Literal, Memory Direct, Register Direct, Register instructions, both of which are interruptible at any point. Indirect, Register Offset and Literal Offset Addressing modes. Instructions are associated with pre-defined 2.1 Core Overview addressing modes, depending upon their functional The working register array consists of 16 x 16-bit requirements. registers, each of which can act as data, address or For most instructions, the core is capable of executing offset registers. One working register (W15) operates a data (or program data) memory read, a working as a Software Stack Pointer for interrupts and calls. register (data) read, a data memory write and a The data space is 64 Kbytes (32K words) and is split program (instruction) memory read per instruction into two blocks, referred to as X and Y data memory. cycle. As a result, 3 operand instructions are Each block has its own independent Address Genera- supported, allowing C=A+B operations to be exe- tion Unit (AGU). Most instructions operate solely cuted in a single cycle. through the X memory, AGU, which provides the A DSP engine has been included to significantly appearance of a single unified data space. The enhance the core arithmetic capability and throughput. Multiply-Accumulate (MAC) class of dual source DSP It features a high-speed 17-bit by 17-bit multiplier, a instructions operate through both the X and Y AGUs, 40-bit ALU, two 40-bit saturating accumulators and a splitting the data address space into two parts (see 40-bit bidirectional barrel shifter. Data in the Section3.2 “Data Address Space”). The X and Y accumulator or any working register can be shifted up data space boundary is device specific and cannot be to 15 bits right, or 16 bits left in a single cycle. The DSP altered by the user. Each data word consists of 2 bytes instructions operate seamlessly with all other and most instructions can address data either as words instructions and have been designed for optimal or bytes. real-time performance. The MAC class of instructions can concurrently fetch two data operands from memory while multiplying two W registers. To enable this concurrent fetching of data operands, the data space has been split for these instructions and linear is for all others. This has been achieved in a transparent and flexible manner, by dedicating certain working registers to each address space for the MAC class of instructions. © 2010 Microchip Technology Inc. DS70139G-page 19

dsPIC30F2011/2012/3012/3013 The core does not support a multi-stage instruction 2.2.1 SOFTWARE STACK POINTER/ pipeline. However, a single-stage instruction prefetch FRAME POINTER mechanism is used, which accesses and partially The dsPIC® DSC devices contain a software stack. decodes instructions a cycle ahead of execution, in W15 is the dedicated Software Stack Pointer (SP), order to maximize available execution time. Most which is automatically modified by exception instructions execute in a single cycle with certain processing and subroutine calls and returns. However, exceptions. W15 can be referenced by any instruction in the same The core features a vectored exception processing manner as all other W registers. This simplifies the structure for traps and interrupts, with 62 independent reading, writing and manipulation of the Stack Pointer vectors. The exceptions consist of up to 8 traps (of (e.g., creating stack frames). which 4 are reserved) and 54 interrupts. Each interrupt Note: In order to protect against misaligned is prioritized based on a user-assigned priority between stack accesses, W15<0> is always clear. 1 and 7 (1 being the lowest priority and 7 being the highest), in conjunction with a predetermined ‘natural W15 is initialized to 0x0800 during a Reset. The user order’. Traps have fixed priorities ranging from 8 to 15. may reprogram the SP during initialization to any location within data space. 2.2 Programmer’s Model W14 has been dedicated as a Stack Frame Pointer, as The programmer’s model is shown in Figure2-1 and defined by the LNK and ULNK instructions. However, consists of 16 x 16-bit working registers (W0 through W14 can be referenced by any instruction in the same W15), 2 x 40-bit accumulators (ACCA and ACCB), manner as all other W registers. STATUS register (SR), Data Table Page register 2.2.2 STATUS REGISTER (TBLPAG), Program Space Visibility Page register (PSVPAG), DO and REPEAT registers (DOSTART, The dsPIC DSC core has a 16-bit STATUS register DOEND, DCOUNT and RCOUNT) and Program Coun- (SR), the LSB of which is referred to as the SR Low ter (PC). The working registers can act as data, byte (SRL) and the MSB as the SR High byte (SRH). address or offset registers. All registers are memory See Figure 2-1 for SR layout. mapped. W0 acts as the W register for file register SRL contains all the MCU ALU operation Status flags addressing. (including the Z bit), as well as the CPU Interrupt Some of these registers have a shadow register asso- Priority Level Status bits, IPL<2:0>, and the Repeat ciated with each of them, as shown in Figure2-1. The Active Status bit, RA. During exception processing, shadow register is used as a temporary holding register SRL is concatenated with the MSB of the PC to form a and can transfer its contents to or from its host register complete word value which is then stacked. upon the occurrence of an event. None of the shadow The upper byte of the STATUS register contains the registers are accessible directly. The following rules DSP Adder/Subtracter Status bits, the DO Loop Active apply for transfer of registers into and out of shadows. bit (DA) and the Digit Carry (DC) Status bit. • PUSH.S and POP.S W0, W1, W2, W3, SR (DC, N, OV, Z and C bits 2.2.3 PROGRAM COUNTER only) are transferred. The program counter is 23 bits wide; bit 0 is always • DO instruction clear. Therefore, the PC can address up to 4M DOSTART, DOEND, DCOUNT shadows are instruction words. pushed on loop start and popped on loop end. When a byte operation is performed on a working reg- ister, only the Least Significant Byte (LSB) of the target register is affected. However, a benefit of memory mapped working registers is that both the Least and Most Significant Bytes (MSB) can be manipulated through byte-wide data memory space accesses. DS70139G-page 20 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 2-1: PROGRAMMER’S MODEL D15 D0 W0/WREG PUSH.S Shadow W1 DO Shadow W2 W3 Legend W4 DSP Operand W5 Registers W6 W7 Working Registers W8 W9 DSP Address Registers W10 W11 W12/DSP Offset W13/DSP Write-Back W14/Frame Pointer W15/Stack Pointer SPLIM Stack Pointer Limit Register AD39 AD31 AD15 AD0 DSP ACCA Accumulators ACCB PC22 PC0 0 Program Counter 7 0 TTBALBPPAAGG Data Table Page Address 7 0 PPSSVVPPAAGG Program Space Visibility Page Address 15 0 RCOUNT REPEAT Loop Counter 15 0 DCOUNT DO Loop Counter 22 0 DOSTART DO Loop Start Address 22 DOEND DO Loop End Address 15 0 CORCON Core Configuration Register OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA N OV Z C STATUS register SRH SRL © 2010 Microchip Technology Inc. DS70139G-page 21

dsPIC30F2011/2012/3012/3013 2.3 Divide Support The divide instructions must be executed within a REPEAT loop. Any other form of execution The dsPIC DSC devices feature a 16/16-bit signed (e.g.,aseries of discrete divide instructions) will not fractional divide operation, as well as 32/16-bit and function correctly because the instruction flow depends 16/16-bit signed and unsigned integer divide opera- on RCOUNT. The divide instruction does not tions, in the form of single instruction iterative divides. automatically set up the RCOUNT value and it must, The following instructions and data sizes are therefore, be explicitly and correctly specified in the supported: REPEAT instruction, as shown in Table2-1 (REPEAT 1. DIVF - 16/16 signed fractional divide executes the target instruction {operand value+1} 2. DIV.sd - 32/16 signed divide times). The REPEAT loop count must be setup for 18 iterations of the DIV/DIVF instruction. Thus, a 3. DIV.ud - 32/16 unsigned divide complete divide operation requires 19 cycles. 4. DIV.s - 16/16 signed divide Note: The divide flow is interruptible; however, 5. DIV.u - 16/16 unsigned divide the user needs to save the context as The 16/16 divides are similar to the 32/16 (same number appropriate. of iterations), but the dividend is either zero-extended or sign-extended during the first iteration. TABLE 2-1: DIVIDE INSTRUCTIONS Instruction Function DIVF Signed fractional divide: Wm/Wn → W0; Rem → W1 DIV.sd Signed divide: (Wm+1:Wm)/Wn → W0; Rem → W1 DIV.s Signed divide: Wm/Wn → W0; Rem → W1 DIV.ud Unsigned divide: (Wm+1:Wm)/Wn → W0; Rem → W1 DIV.u Unsigned divide: Wm/Wn → W0; Rem → W1 DS70139G-page 22 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 2.4 DSP Engine The DSP engine has several options selected through various bits in the CPU Core Configuration register The DSP engine consists of a high-speed 17-bit x (CORCON), which are: 17-bit multiplier, a barrel shifter and a 40-bit 1. Fractional or integer DSP multiply (IF). adder/subtracter (with two target accumulators, round and saturation logic). 2. Signed or unsigned DSP multiply (US). 3. Conventional or convergent rounding (RND). The DSP engine also has the capability to perform 4. Automatic saturation on/off for ACCA (SATA). inherent accumulator-to-accumulator operations, which require no additional data. These instructions are 5. Automatic saturation on/off for ACCB (SATB). ADD, SUB and NEG. 6. Automatic saturation on/off for writes to data memory (SATDW). The dsPIC30F is a single-cycle instruction flow 7. Accumulator Saturation mode selection architecture, therefore, concurrent operation of the (ACCSAT). DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources Note: For CORCON layout, see Table3-3. may be used concurrently by the same instruction A block diagram of the DSP engine is shown in (e.g.,ED, EDAC). See Table2-2. Figure2-2. TABLE 2-2: DSP INSTRUCTION SUMMARY Algebraic Instruction ACC WB? Operation CLR A = 0 Yes ED A = (x – y)2 No EDAC A = A + (x – y)2 No MAC A = A + (x * y) Yes MAC A = A + x2 No MOVSAC No change in A Yes MPY A = x•y No MPY.N A = – x•y No MSC A = A – x• y Yes © 2010 Microchip Technology Inc. DS70139G-page 23

dsPIC30F2011/2012/3012/3013 FIGURE 2-2: DSP ENGINE BLOCK DIAGRAM S a 40 40-bit Accumulator A 40 Round t 16 40-bit Accumulator B u Logic r a Carry/Borrow Out t Saturate e Adder Carry/Borrow In Negate 40 40 40 Barrel 16 Shifter 40 s u B a at D Sign-Extend X s u B a 32 16 at Zero Backfill D Y 32 33 17-bit Multiplier/Scaler 16 16 To/From W Array DS70139G-page 24 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 2.4.1 MULTIPLIER 2.4.2.1 Adder/Subtracter, Overflow and Saturation The 17 x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a The adder/subtracter is a 40-bit adder with an optional scaler to support either 1.31 fractional (Q31) or 32-bit zero input into one side and either true or complement integer results. Unsigned operands are zero-extended data into the other input. In the case of addition, the into the 17th bit of the multiplier input value. Signed carry/borrow input is active high and the other input is operands are sign-extended into the 17th bit of the true data (not complemented), whereas in the case of multiplier input value. The output of the 17 x 17-bit subtraction, the carry/borrow input is active low and the multiplier/scaler is a 33-bit value which is other input is complemented. The adder/subtracter sign-extended to 40 bits. Integer data is inherently generates overflow status bits SA/SB and OA/OB, represented as a signed two’s complement value, which are latched and reflected in the STATUS register: where the MSB is defined as a sign bit. Generally • Overflow from bit 39: This is a catastrophic speaking, the range of an N-bit two’s complement overflow in which the sign of the accumulator is integer is -2N-1 to 2N-1 – 1. For a 16-bit integer, the data destroyed. range is -32768 (0x8000) to 32767 (0x7FFF) including • Overflow into guard bits 32 through 39: This is a ‘0’. For a 32-bit integer, the data range is recoverable overflow. This bit is set whenever all -2,147,483,648 (0x80000000) to 2,147,483,645 the guard bits are not identical to each other. (0x7FFF FFFF). The adder has an additional saturation block which When the multiplier is configured for fractional controls accumulator data saturation if selected. It uses multiplication, the data is represented as a two’s the result of the adder, the overflow Status bits complement fraction, where the MSB is defined as a described above, and the mode control bits SATA/B sign bit and the radix point is implied to lie just after the (CORCON<7:6>) and ACCSAT (CORCON<4>) to sign bit (QX format). The range of an N-bit two’s determine when and to what value to saturate. complement fraction with this implied radix point is -1.0 to (1 – 21-N). For a 16-bit fraction, the Q15 data range Six STATUS register bits have been provided to is -1.0 (0x8000) to 0.999969482 (0x7FFF) including ‘0’ support saturation and overflow. They are: and has a precision of 3.01518x10-5. In Fractional • OA: ACCA overflowed into guard bits mode, the 16x16 multiply operation generates a 1.31 product, which has a precision of 4.65661 x 10-10. • OB: ACCB overflowed into guard bits • SA: ACCA saturated (bit 31 overflow and The same multiplier is used to support the MCU saturation) multiply instructions, which include integer 16-bit or signed, unsigned and mixed sign multiplies. ACCA overflowed into guard bits and saturated The MUL instruction can be directed to use byte or (bit 39 overflow and saturation) word-sized operands. Byte operands direct a 16-bit • SB: ACCB saturated (bit 31 overflow and result. Word operands direct a 32-bit result to the saturation) specified register(s) in the W array. or ACCB overflowed into guard bits and saturated 2.4.2 DATA ACCUMULATORS AND (bit 39 overflow and saturation) ADDER/SUBTRACTER • OAB: Logical OR of OA and OB The data accumulator consists of a 40-bit • SAB: Logical OR of SA and SB adder/subtracter with automatic sign extension logic. It The OA and OB bits are modified each time data can select one of two accumulators (A or B) as its passes through the adder/subtracter. When set, they pre-accumulation source and post-accumulation indicate that the most recent operation has overflowed destination. For the ADD and LAC instructions, the data into the accumulator guard bits (bits 32 through 39). to be accumulated or loaded can be optionally scaled The OA and OB bits can also optionally generate an through the barrel shifter prior to accumulation. arithmetic warning trap when set and the corresponding overflow trap flag enable bit (OVATE, OVBTE) in the INTCON1 register (refer to Section8.0 “Interrupts”) is set. This allows the user to take immediate action, for example, to correct system gain. © 2010 Microchip Technology Inc. DS70139G-page 25

dsPIC30F2011/2012/3012/3013 The SA and SB bits are modified each time data 2.4.2.2 Accumulator ‘Write-Back’ passes through the adder/subtracter but can only be The MAC class of instructions (with the exception of cleared by the user. When set, they indicate that the MPY, MPY.N, ED and EDAC) can optionally write a accumulator has overflowed its maximum range (bit 31 rounded version of the high word (bits 31 through 16) for 32-bit saturation or bit 39 for 40-bit saturation) and of the accumulator that is not targeted by the instruction will be saturated if saturation is enabled. When satura- into data space memory. The write is performed across tion is not enabled, SA and SB default to bit 39 overflow the X bus into combined X and Y address space. The and thus indicate that a catastrophic overflow has following addressing modes are supported: occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits generate an arithmetic warning trap 1. W13, Register Direct: when saturation is disabled. The rounded contents of the non-target accumulator are written into W13 as a 1.15 The overflow and saturation Status bits can optionally fraction. be viewed in the STATUS register (SR) as the logical 2. [W13]+ = 2, Register Indirect with OR of OA and OB (in bit OAB) and the logical OR of SA Post-Increment: and SB (in bit SAB). This allows programmers to check The rounded contents of the non-target one bit in the STATUS register to determine if either accumulator are written into the address pointed accumulator has overflowed, or one bit to determine if to by W13 as a 1.15 fraction. W13 is then either accumulator has saturated. This would be useful incremented by 2 (for a word write). for complex number arithmetic which typically uses both the accumulators. 2.4.2.3 Round Logic The device supports three saturation and overflow The round logic is a combinational block which modes: performs a conventional (biased) or convergent 1. Bit 39 Overflow and Saturation: (unbiased) round function during an accumulator write When bit 39 overflow and saturation occurs, the (store). The Round mode is determined by the state of saturation logic loads the maximally positive 9.31 the RND bit in the CORCON register. It generates a (0x7FFFFFFFFF) or maximally negative 9.31 16-bit, 1.15 data value, which is passed to the data value (0x8000000000) into the target space write saturation logic. If rounding is not indicated accumulator. The SA or SB bit is set and remains by the instruction, a truncated 1.15 data value is stored set until cleared by the user. This is referred to as and the least significant word (lsw) is simply discarded. ‘super saturation’ and provides protection against Conventional rounding takes bit 15 of the accumulator, erroneous data or unexpected algorithm zero-extends it and adds it to the ACCxH word (bits 16 problems (e.g., gain calculations). through 31 of the accumulator). If the ACCxL word 2. Bit 31 Overflow and Saturation: (bits0 through 15 of the accumulator) is between When bit 31 overflow and saturation occurs, the 0x8000 and 0xFFFF (0x8000 included), ACCxH is saturation logic then loads the maximally posi- incremented. If ACCxL is between 0x0000 and 0x7FFF, tive 1.31 value (0x007FFFFFFF) or maximally ACCxH is left unchanged. A consequence of this negative 1.31 value (0x0080000000) into the algorithm is that over a succession of random rounding target accumulator. The SA or SB bit is set and operations, the value tends to be biased slightly remains set until cleared by the user. When this positive. Saturation mode is in effect, the guard bits are Convergent (or unbiased) rounding operates in the not used, so the OA, OB or OAB bits are never same manner as conventional rounding, except when set. ACCxL equals 0x8000. If this is the case, the LSb 3. Bit 39 Catastrophic Overflow: (bit16 of the accumulator) of ACCxH is examined. If it The bit 39 overflow Status bit from the adder is is ‘1’, ACCxH is incremented. If it is ‘0’, ACCxH is not used to set the SA or SB bit which remains set modified. Assuming that bit 16 is effectively random in until cleared by the user. No saturation operation nature, this scheme will remove any rounding bias that is performed and the accumulator is allowed to may accumulate. overflow (destroying its sign). If the COVTE bit in the INTCON1 register is set, a catastrophic The SAC and SAC.R instructions store either a overflow can initiate a trap exception. truncated (SAC) or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus (subject to data saturation, see Section2.4.2.4 “Data Space Write Saturation”). Note that for the MAC class of instructions, the accumulator write-back operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding. DS70139G-page 26 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 2.4.2.4 Data Space Write Saturation 2.4.3 BARREL SHIFTER In addition to adder/subtracter saturation, writes to data The barrel shifter is capable of performing up to 16-bit space may also be saturated but without affecting the arithmetic or logic right shifts, or up to 16-bit left shifts contents of the source accumulator. The data space in a single cycle. The source can be either of the two write saturation logic block accepts a 16-bit, 1.15 DSP accumulators, or the X bus (to support multi-bit fractional value from the round logic block as its input, shifts of register or memory data). together with overflow status from the original source The shifter requires a signed binary value to determine (accumulator) and the 16-bit round adder. These are both the magnitude (number of bits) and direction of the combined and used to select the appropriate 1.15 shift operation. A positive value shifts the operand right. fractional value as output to write to data space A negative value shifts the operand left. A value of ‘0’ memory. does not modify the operand. If the SATDW bit in the CORCON register is set, data The barrel shifter is 40 bits wide, thereby obtaining a (after rounding or truncation) is tested for overflow and 40-bit result for DSP shift operations and a 16-bit result adjusted accordingly. For input data greater than for MCU shift operations. Data from the X bus is 0x007FFF, data written to memory is forced to the presented to the barrel shifter between bit positions 16 maximum positive 1.15 value, 0x7FFF. For input data to 31 for right shifts, and bit positions 0 to 16 for left less than 0xFF8000, data written to memory is forced shifts. to the maximum negative 1.15 value, 0x8000. The MSb of the source (bit 39) is used to determine the sign of the operand being tested. If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions. © 2010 Microchip Technology Inc. DS70139G-page 27

dsPIC30F2011/2012/3012/3013 NOTES: DS70139G-page 28 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 3.0 MEMORY ORGANIZATION Note: This data sheet summarizes features of this group ofdsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the “dsPIC30F Family Reference Manual” (DS70046). For more information on the device instruction set and programming, refer to the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157). 3.1 Program Address Space The program address space is 4M instruction words. The program space memory maps for the dsPIC30F2011/2012/3012/3013 devices is shown in Figure3-1. Program memory is addressable by a 24-bit value from either the 23-bit PC, table instruction Effective Address (EA), or data space EA, when program space is mapped into data space as defined by Table3-1. Note that the program space address is incremented by two between successive program words in order to provide compatibility with data space addressing. User program space access is restricted to the lower 4M instruction word address range (0x000000 to 0x7FFFFE) for all accesses other than TBLRD/TBLWT, which uses TBLPAG<7> to determine user or configu- ration space access. In Table3-1, Program Space Address Construction, bit23 allows access to the Device ID, the User ID and the Configuration bits. Otherwise, bit 23 is always clear. © 2010 Microchip Technology Inc. DS70139G-page 29

dsPIC30F2011/2012/3012/3013 FIGURE 3-1: PROGRAM SPACE MEMORY MAPS dsPIC30F2011/2012 dsPIC30F3012/3013 Reset - GOTO Instruction 000000 Reset - GOTO Instruction 000000 Reset - Target Address 000002 Reset - Target Address 000002 000004 000004 Interrupt Vector Table Interrupt Vector Table Vector Tables Vector Tables 00007E 00007E Reserved 000080 Reserved 000080 000084 Alternate Vector Table Alternate Vector Table y y or or 000084 me 0000FE me 0000FE er MeSpac ProUgrsaemr FMlaesmhory 000100 er MeSpac ProUgrsaemr F Mlaesmhory 000100 Us (4K instructions) Us (8K instructions) 001FFE 003FFE 002000 004000 Reserved (Read ‘0’s) Reserved 7FFBFE (Read ‘0’s) 7FFC00 Data EEPROM (1 Kbyte) 7FFFFE 7FFFFE 800000 800000 Reserved Reserved y y or or m m e e M 8005BE M 8005BE uration Space UNITID (32 instr.) 88000055FCE0 uration Space UNITID (32 instr.) 88000055FCE0 nfig 800600 nfig 800600 o Reserved o Reserved C C F7FFFE F7FFFE Device Configuration F80000 Device Configuration F80000 Registers F8000E Registers F8000E F80010 F80010 Reserved Reserved FEFFFE FEFFFE DEVID (2) FF0000 DEVID (2) FF0000 FFFFFE FFFFFE DS70139G-page 30 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 TABLE 3-1: PROGRAM SPACE ADDRESS CONSTRUCTION Access Program Space Address Access Type Space <23> <22:16> <15> <14:1> <0> Instruction Access User 0 PC<22:1> 0 TBLRD/TBLWT User TBLPAG<7:0> Data EA<15:0> (TBLPAG<7> = 0) TBLRD/TBLWT Configuration TBLPAG<7:0> Data EA<15:0> (TBLPAG<7> = 1) Program Space Visibility User 0 PSVPAG<7:0> Data EA<14:0> FIGURE 3-2: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION 23 bits Using Program 0 Program Counter 0 Counter Select 1 EA Using Program 0 PSVPAG Reg Space Visibility 8 bits 15 bits EA Using 1/0 TBLPAG Reg Table Instruction 8 bits 16 bits User/ Configuration Byte 24-bit EA Space Select Select Note: Program space visibility cannot be used to access bits <23:16> of a word in program memory. © 2010 Microchip Technology Inc. DS70139G-page 31

dsPIC30F2011/2012/3012/3013 3.1.1 DATA ACCESS FROM PROGRAM A set of table instructions are provided to move byte or MEMORY USING TABLE word-sized data to and from program space. See INSTRUCTIONS Figure 3-4 and Figure 3-5. This architecture fetches 24-bit wide program memory. 1. TBLRDL: Table Read Low Consequently, instructions are always aligned. Word: Read the LS Word of the program address; However, as the architecture is modified Harvard, data P<15:0> maps to D<15:0>. can also be present in program space. Byte: Read one of the LSB of the program address; There are two methods by which program space can P<7:0> maps to the destination byte when byte be accessed: via special table instructions, or through select = 0; the remapping of a 16K word program space page into P<15:8> maps to the destination byte when byte the upper half of data space (see Section3.1.2 “Data select = 1. Access from Program Memory Using Program 2. TBLWTL: Table Write Low (refer to Section5.0 Space Visibility”). The TBLRDL and TBLWTL “Flash Program Memory” for details on Flash instructions offer a direct method of reading or writing Programming) the lsw of any address within program space, without going through data space. The TBLRDH and TBLWTH 3. TBLRDH: Table Read High instructions are the only method whereby the upper 8 Word: Read the MS Word of the program address; bits of a program space word can be accessed as data. P<23:16> maps to D<7:0>; D<15:8> will always be = 0. The PC is incremented by two for each successive Byte: Read one of the MSB of the program 24-bit program word. This allows program memory address; addresses to directly map to data space addresses. P<23:16> maps to the destination byte when Program memory can thus be regarded as two 16-bit byte select = 0; word wide address spaces, residing side by side, each The destination byte will always be = 0 when with the same address range. TBLRDL and TBLWTL byte select = 1. access the space which contains the lsw, and TBLRDH 4. TBLWTH: Table Write High (refer to Section5.0 and TBLWTH access the space which contains the “Flash Program Memory” for details on Flash MSB. Programming) Figure3-2 shows how the EA is created for table operations and data space accesses (PSV = 1). Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a data space word. FIGURE 3-3: PROGRAM DATA TABLE ACCESS (lsw) PC Address 23 16 8 0 0x000000 00000000 0x000002 00000000 0x000004 00000000 0x000006 00000000 TBLRDL.B (Wn<0> = 0) TBLRDL.W Program Memory ‘Phantom’ Byte TBLRDL.B (Wn<0> = 1) (read as ‘0’) DS70139G-page 32 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 3-4: PROGRAM DATA TABLE ACCESS (MSB) TBLRDH.W PC Address 23 16 8 0 0x000000 00000000 0x000002 00000000 0x000004 00000000 0x000006 00000000 TBLRDH.B (Wn<0> = 0) Program Memory ‘Phantom’ Byte (read as ‘0’) TBLRDH.B (Wn<0> = 1) 3.1.2 DATA ACCESS FROM PROGRAM Note that by incrementing the PC by 2 for each MEMORY USING PROGRAM SPACE program memory word, the LS 15 bits of data space VISIBILITY addresses directly map to the LS 15 bits in the corresponding program space addresses. The The upper 32 Kbytes of data space may optionally be remaining bits are provided by the Program Space mapped into any 16K word program space page. This Visibility Page register, PSVPAG<7:0>, as shown in provides transparent access of stored constant data Figure3-5. from X data space without the need to use special instructions (i.e., TBLRDL/H, TBLWTL/H instructions). Note: PSV access is temporarily disabled during table reads/writes. Program space access through the data space occurs if the MSb of the data space EA is set and program For instructions that use PSV which are executed space visibility is enabled by setting the PSV bit in the outside a REPEAT loop: Core Control register (CORCON). The functions of • The following instructions require one instruction CORCON are discussed in Section2.4 “DSP cycle in addition to the specified execution time: Engine”. - MAC class of instructions with data operand Data accesses to this area add an additional cycle to prefetch the instruction being executed, since two program - MOV instructions memory fetches are required. - MOV.D instructions Note that the upper half of addressable data space is • All other instructions require two instruction cycles always part of the X data space. Therefore, when a in addition to the specified execution time of the DSP operation uses program space mapping to access instruction. this memory region, Y data space should typically contain state (variable) data for DSP operations, For instructions that use PSV which are executed whereas X data space should typically contain inside a REPEAT loop: coefficient (constant) data. • The following instances require two instruction Although each data space address, 0x8000 and higher, cycles in addition to the specified execution time maps directly into a corresponding program memory of the instruction: address (see Figure3-5), only the lower 16bits of the - Execution in the first iteration 24-bit program word are used to contain the data. The - Execution in the last iteration upper 8 bits should be programmed to force an illegal - Execution prior to exiting the loop due to an instruction to maintain machine robustness. Refer to interrupt the “16-bit MCU and DSC Programmer’s Reference - Execution upon re-entering the loop after an Manual” (DS70157) for details on instruction encoding. interrupt is serviced • Any other iteration of the REPEAT loop allow the instruction accessing data, using PSV, to execute in a single cycle. © 2010 Microchip Technology Inc. DS70139G-page 33

dsPIC30F2011/2012/3012/3013 FIGURE 3-5: DATA SPACE WINDOW INTO PROGRAM SPACE OPERATION Data Space Program Space 0x0000 0x000000 15 PSVPAG(1) EA<15> = 0 0x00 8 Data 16 Space 0x8000 EA 15 23 15 0 Address EA<15> = 1 0x001200 15 Concatenation 23 Upper Half of Data Space is Mapped into Program Space 0xFFFF 0x001FFF Data Read BSET CORCON,#2 ; Set PSV bit MOV #0x0, W0 ; Set PSVPAG register MOV W0, PSVPAG MOV 0x9200, W0 ; Access program memory location ; using a data space access Note1: PSVPAG is an 8-bit register, containing bits <22:15> of the program space address. DS70139G-page 34 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 3.2 Data Address Space When executing any instruction other than one of the MAC class of instructions, the X block consists of the 64 The core has two data spaces. The data spaces can be Kbyte data address space (including all Y addresses). considered either separate (for some DSP When executing one of the MAC class of instructions, instructions), or as one unified linear address range (for the X block consists of the 64 Kbyte data address MCU instructions). The data spaces are accessed space, excluding the Y address block (for data reads using two Address Generation Units (AGUs) and only). In other words, all other instructions regard the separate data paths. entire data memory as one composite address space. The MAC class instructions extract the Yaddress space 3.2.1 DATA SPACE MEMORY MAP from data space and address it using EAs sourced from The data space memory is split into two blocks, X and W10 and W11. The remaining X data space is Y data space. A key element of this architecture is that addressed using W8 and W9. Both address spaces are Y space is a subset of X space, and is fully contained concurrently accessed only with the MAC class within X space. In order to provide an apparent Linear instructions. Addressing space, X and Y spaces have contiguous The data space memory map for the dsPIC30F2011 addresses. and dsPIC30F2012 is shown in Figure3-6. The data space memory map for the dsPIC30F3012 and dsPIC30F3013 is shown in Figure3-7. FIGURE 3-6: dsPIC30F2011/2012 DATA SPACE MEMORY MAP LSB MSB 16 bits Address Address MSB LSB 0x0001 0x0000 2 Kbyte SFR Space SFR Space 0x07FF 0x07FE 0x0801 0x0800 X Data RAM (X) 8 Kbyte 0x09FF 0x09FE Near 1 Kbyte 0x0A01 0x0A00 Data SRAM Space Y Data RAM (Y) Space 0x0BFF 0x0BFE 0x0C01 0x0C00 0x1FFF 0x1FFE 0x8001 0x8000 Optionally X Data Mapped Unimplemented (X) into Program Memory 0xFFFF 0xFFFE © 2010 Microchip Technology Inc. DS70139G-page 35

dsPIC30F2011/2012/3012/3013 FIGURE 3-7: dsPIC30F3012/3013 DATA SPACE MEMORY MAP LSB MSB 16 bits Address Address MSB LSB 0x0001 0x0000 2 Kbyte SFR Space SFR Space 0x07FF 0x07FE 0x0801 0x0800 X Data RAM (X) 8 Kbyte 2 Kbyte 0x0BFF 0x0BFE Near 0x0C01 0x0C00 Data SRAM Space Space Y Data RAM (Y) 0x0FFF 0x0FFE 0x1001 0x1000 0x1FFF 0x1FFE 0x8001 0x8000 Optionally X Data Mapped Unimplemented (X) into Program Memory 0xFFFF 0xFFFE DS70139G-page 36 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 3-8: DATA SPACE FOR MCU AND DSP (MAC CLASS) INSTRUCTIONS EXAMPLE SFR SPACE SFR SPACE E C UNUSED A P S X (Y SPACE) Y SPACE UNUSED E C A P S X E C UNUSED A P S X Non-MAC Class Ops (Read/Write) MAC Class Ops (Read) MAC Class Ops (Write) Indirect EA using any W Indirect EA using W8, W9 Indirect EA using W10, W11 © 2010 Microchip Technology Inc. DS70139G-page 37

dsPIC30F2011/2012/3012/3013 3.2.2 DATA SPACES 3.2.3 DATA SPACE WIDTH The X data space is used by all instructions and sup- The core data width is 16 bits. All internal registers are ports all addressing modes. There are separate read organized as 16-bit wide words. Data space memory is and write data buses. The X read data bus is the return organized in byte addressable, 16-bit wide blocks. data path for all instructions that view data space as combined X and Y address space. It is also the X 3.2.4 DATA ALIGNMENT address space data path for the dual operand read To help maintain backward compatibility with instructions (MAC class). The X write data bus is the PIC®MCU devices and improve data space memory only write path to data space for all instructions. usage efficiency, the dsPIC30F instruction set supports The X data space also supports Modulo Addressing for both word and byte operations. Data is aligned in data all instructions, subject to Addressing mode restric- memory and registers as words, but all data space EAs tions. Bit-Reversed Addressing is only supported for resolve to bytes. Data byte reads read the complete writes to X data space. word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is The Y data space is used in concert with the X data placed onto the LSB of the X data path (no byte space by the MAC class of instructions (CLR, ED, accesses are possible from the Y data path as the MAC EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to class of instruction can only fetch words). That is, data provide two concurrent data read paths. No writes memory and registers are organized as two parallel occur across the Y bus. This class of instructions byte wide entities with shared (word) address decode dedicates two W register pointers, W10 and W11, to but separate write lines. Data byte writes only write to always address Y data space, independent of X data the corresponding side of the array or register which space, whereas W8 and W9 always address X data matches the byte address. space. Note that during accumulator write back, the data address space is considered a combination of X As a consequence of this byte accessibility, all Effective and Y data spaces, so the write occurs across the X Address calculations (including those generated by the bus. Consequently, the write can be to any address in DSP operations which are restricted to word-sized the entire data space. data) are internally scaled to step through word-aligned memory. For example, the core would recognize that The Y data space can only be used for the data Post-Modified Register Indirect Addressing mode prefetch operation associated with the MAC class of [Ws++] results in a value of Ws + 1 for byte operations instructions. It also supports Modulo Addressing for and Ws + 2 for word operations. automated circular buffers. Of course, all other instructions can access the Y data address space All word accesses must be aligned to an even address. through the X data path as part of the composite linear Misaligned word data fetches are not supported, so space. care should be taken when mixing byte and word operations, or translating from 8-bit MCU code. Should The boundary between the X and Y data spaces is a misaligned read or write be attempted, an address defined as shown in Figure3-7 and is not user error trap is generated. If the error occurred on a read, programmable. Should an EA point to data outside its the instruction underway is completed, whereas if it own assigned address space, or to a location outside occurred on a write, the instruction is executed, but the physical memory, an all zero word/byte is returned. For write does not occur. In either case, a trap is then example, although Y address space is visible by all executed, allowing the system and/or user to examine non-MAC instructions using any addressing mode, an the machine state prior to execution of the address attempt by a MAC instruction to fetch data from that fault. space using W8 or W9 (X space pointers) returns0x0000. FIGURE 3-9: DATA ALIGNMENT TABLE 3-2: EFFECT OF INVALID MSB LSB 15 8 7 0 MEMORY ACCESSES 0001 Byte 1 Byte 0 0000 Attempted Operation Data Returned 0003 Byte 3 Byte 2 0002 EA = an unimplemented address 0x0000 W8 or W9 used to access Y data 0x0000 0005 Byte 5 Byte 4 0004 space in a MAC instruction W10 or W11 used to access X 0x0000 data space in a MAC instruction All Effective Addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes or 32K words. DS70139G-page 38 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 All byte loads into any W register are loaded into the FIGURE 3-10: CALL STACK FRAME LSB. The MSB is not modified. 0x0000 15 0 A Sign-Extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users s d can clear the MSB of any W register by executing a waress Zero-Extend (ZE) instruction on the appropriate Todr address. ows er Ad PC<15:0> W15 (before CALL) Although most instructions are capable of operating on Grgh 000000000 PC<22:16> word or byte data sizes, it should be noted that some ck Hi <Free Word> W15 (after CALL) a instructions, including the DSP instructions, operate St only on words. POP : [--W15] PUSH: [W15++] 3.2.5 NEAR DATA SPACE An 8 Kbyte near data space is reserved in X address memory space between 0x0000 and 0x1FFF, which is There is a Stack Pointer Limit register (SPLIM) directly addressable via a 13-bit absolute address field associated with the Stack Pointer. SPLIM is within all memory direct instructions. The remaining X uninitialized at Reset. As is the case for the Stack address space and all of the Y address space is Pointer, SPLIM<0> is forced to ‘0’ because all stack addressable indirectly. Additionally, the whole of X data operations must be word aligned. Whenever an space is addressable using MOV instructions, which Effective Address (EA) is generated using W15 as a support memory direct addressing with a 16-bit source or destination pointer, the address thus address field. generated is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM reg- 3.2.6 SOFTWARE STACK ister are equal, and a push operation is performed, a stack error trap does not occur. The stack error trap The dsPIC DSC devices contain a software stack. W15 occurs on a subsequent push operation. Thus, for is used as the Stack Pointer. example, if it is desirable to cause a stack error trap The Stack Pointer always points to the first available when the stack grows beyond address 0x2000 in RAM, free word and grows from lower addresses towards initialize the SPLIM with the value, 0x1FFE. higher addresses. It pre-decrements for stack pops Similarly, a Stack Pointer underflow (stack error) trap is andpost-increments for stack pushes, as shown in generated when the Stack Pointer address is found to Figure3-10. Note that for a PC push during any CALL be less than 0x0800, thus preventing the stack from instruction, the MSB of the PC is zero-extended before interfering with the Special Function Register (SFR) the push, ensuring that the MSB is always clear. space. Note: A PC push during exception processing A write to the SPLIM register should not be immediately concatenates the SRL register to the MSB followed by an indirect read operation using W15. of the PC prior to the push. © 2010 Microchip Technology Inc. DS70139G-page 39

D TABLE 3-3: CORE REGISTER MAP d S 70 Address s 1 SFR Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State 3 (Home) P 9 G -p W0 0000 W0/WREG 0000 0000 0000 0000 I ag W1 0002 W1 0000 0000 0000 0000 C e 4 W2 0004 W2 0000 0000 0000 0000 3 0 W3 0006 W3 0000 0000 0000 0000 0 W4 0008 W4 0000 0000 0000 0000 F W5 000A W5 0000 0000 0000 0000 2 W6 000C W6 0000 0000 0000 0000 0 W7 000E W7 0000 0000 0000 0000 1 W8 0010 W8 0000 0000 0000 0000 1 W9 0012 W9 0000 0000 0000 0000 / 2 W10 0014 W10 0000 0000 0000 0000 W11 0016 W11 0000 0000 0000 0000 0 W12 0018 W12 0000 0000 0000 0000 1 W13 001A W13 0000 0000 0000 0000 2 W14 001C W14 0000 0000 0000 0000 / 3 W15 001E W15 0000 1000 0000 0000 0 SPLIM 0020 SPLIM 0000 0000 0000 0000 1 ACCAL 0022 ACCAL 0000 0000 0000 0000 2 ACCAH 0024 ACCAH 0000 0000 0000 0000 / ACCAU 0026 Sign Extension (ACCA<39>) ACCAU 0000 0000 0000 0000 3 ACCBL 0028 ACCBL 0000 0000 0000 0000 0 ACCBH 002A ACCBH 0000 0000 0000 0000 1 ACCBU 002C Sign Extension (ACCB<39>) ACCBU 0000 0000 0000 0000 3 PCL 002E PCL 0000 0000 0000 0000 PCH 0030 — — — — — — — — — PCH 0000 0000 0000 0000 TBLPAG 0032 — — — — — — — — TBLPAG 0000 0000 0000 0000 © PSVPAG 0034 — — — — — — — — PSVPAG 0000 0000 0000 0000 2 01 RCOUNT 0036 RCOUNT uuuu uuuu uuuu uuuu 0 M DCOUNT 0038 DCOUNT uuuu uuuu uuuu uuuu icro DOSTARTL 003A DOSTARTL 0 uuuu uuuu uuuu uuu0 ch DOSTARTH 003C — — — — — — — — — DOSTARTH 0000 0000 0uuu uuuu ip T DOENDL 003E DOENDL 0 uuuu uuuu uuuu uuu0 e ch DOENDH 0040 — — — — — — — — — DOENDH 0000 0000 0uuu uuuu n o SR 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA N OV Z C 0000 0000 0000 0000 lo gy Legend: u = uninitialized bit; — = unimplemented bit, read as ‘0’ In Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields. c .

© TABLE 3-3: CORE REGISTER MAP (CONTINUED) 2 010 SFR Name A(Hdodmrees)s Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State M ic CORCON 0044 — — — US EDT DL2 DL1 DL0 SATA SATB SATDW ACCSAT IPL3 PSV RND IF 0000 0000 0010 0000 ro ch MODCON 0046 XMODEN YMODEN — — BWM<3:0> YWM<3:0> XWM<3:0> 0000 0000 0000 0000 ip T XMODSRT 0048 XS<15:1> 0 uuuu uuuu uuuu uuu0 e c XMODEND 004A XE<15:1> 1 uuuu uuuu uuuu uuu1 h no YMODSRT 004C YS<15:1> 0 uuuu uuuu uuuu uuu0 lo g YMODEND 004E YE<15:1> 1 uuuu uuuu uuuu uuu1 y In XBREV 0050 BREN XB<14:0> uuuu uuuu uuuu uuuu c . DISICNT 0052 — — DISICNT<13:0> 0000 0000 0000 0000 Legend: u = uninitialized bit; — = unimplemented bit, read as ‘0’ Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields. d s P I C 3 0 F 2 0 1 1 / 2 0 1 2 / 3 0 1 D S 2 7 0 / 13 3 9 G 0 -p a 1 g e 4 3 1

dsPIC30F2011/2012/3012/3013 NOTES: DS70139G-page 42 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 4.0 ADDRESS GENERATOR UNITS 4.1.1 FILE REGISTER INSTRUCTIONS Most file register instructions use a 13-bit address field Note: This data sheet summarizes features of (f) to directly address data present in the first 8192 this group ofdsPIC30F devices and is not bytes of data memory (near data space). Most file intended to be a complete reference register instructions employ a working register, W0, source. For more information on the CPU, which is denoted as WREG in these instructions. The peripherals, register descriptions and destination is typically either the same file register or general device functionality, refer to the WREG (with the exception of the MUL instruction), “dsPIC30F Family Reference Manual” which writes the result to a register or register pair. The (DS70046). For more information on the MOV instruction allows additional flexibility and can device instruction set and programming, access the entire data space during file register refer to the “16-bit MCU and DSC operation. Programmer’s Reference Manual” (DS70157). 4.1.2 MCU INSTRUCTIONS The dsPIC DSC core contains two independent The three-operand MCU instructions are of the form: address generator units: the X AGU and Y AGU. The Y Operand 3 = Operand 1 <function> Operand 2 AGU supports word-sized data reads for the DSP MAC class of instructions only. The dsPIC DSC AGUs where Operand 1 is always a working register (i.e., the support three types of data addressing: addressing mode can only be register direct), which is referred to as Wb. Operand 2 can be a W register, • Linear Addressing fetched from data memory or a 5-bit literal. The result • Modulo (Circular) Addressing location can be either a W register or an address • Bit-Reversed Addressing location. The following addressing modes are supported by MCU instructions: Linear and Modulo Data Addressing modes can be applied to data space or program space. Bit-Reversed • Register Direct Addressing is only applicable to data space addresses. • Register Indirect • Register Indirect Post-modified 4.1 Instruction Addressing Modes • Register Indirect Pre-modified • 5-bit or 10-bit Literal The addressing modes in Table4-1 form the basis of the addressing modes optimized to support the specific Note: Not all instructions support all the features of individual instructions. The addressing addressing modes given above. Individual modes provided in the MAC class of instructions are instructions may support different subsets of these addressing modes. somewhat different from those in the other instruction types. TABLE 4-1: FUNDAMENTAL ADDRESSING MODES SUPPORTED Addressing Mode Description File Register Direct The address of the File register is specified explicitly. Register Direct The contents of a register are accessed directly. Register Indirect The contents of Wn forms the EA. Register Indirect Post-modified The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value. Register Indirect Pre-modified Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA. Register Indirect with Register Offset The sum of Wn and Wb forms the EA. Register Indirect with Literal Offset The sum of Wn and a literal forms the EA. © 2010 Microchip Technology Inc. DS70139G-page 43

dsPIC30F2011/2012/3012/3013 4.1.3 MOVE AND ACCUMULATOR In summary, the following addressing modes are INSTRUCTIONS supported by the MAC class of instructions: Move instructions and the DSP accumulator class of • Register Indirect instructions provide a greater degree of addressing • Register Indirect Post-modified by 2 flexibility than other instructions. In addition to the • Register Indirect Post-modified by 4 addressing modes supported by most MCU • Register Indirect Post-modified by 6 instructions, move and accumulator instructions also • Register Indirect with Register Offset (Indexed) support Register Indirect with Register Offset 4.1.5 OTHER INSTRUCTIONS Addressing mode, also referred to as Register Indexed mode. Besides the various addressing modes outlined above, some instructions use literal constants of various sizes. Note: For the MOV instructions, the addressing For example, BRA (branch) instructions use 16-bit mode specified in the instruction can differ signed literals to specify the branch destination directly, for the source and destination EA. whereas the DISI instruction uses a 14-bit unsigned However, the 4-bit Wb (register offset) literal field. In some instructions, such as ADD Acc, the field is shared between both source and source of an operand or result is implied by the opcode destination (but typically only used by itself. Certain operations, such as NOP, do not have any one). operands. In summary, the following addressing modes are supported by move and accumulator instructions: 4.2 Modulo Addressing • Register Direct Modulo Addressing is a method of providing an • Register Indirect automated means to support circular data buffers using • Register Indirect Post-modified hardware. The objective is to remove the need for • Register Indirect Pre-modified software to perform data address boundary checks • Register Indirect with Register Offset (Indexed) when executing tightly looped code, as is typical in • Register Indirect with Literal Offset many DSP algorithms. • 8-bit Literal • 16-bit Literal Modulo Addressing can operate in either data or program space (since the data pointer mechanism is Note: Not all instructions support all the essentially the same for both). One circular buffer can addressing modes given above. Individual be supported in each of the X (which also provides the instructions may support different subsets pointers into program space) and Y data spaces. of these addressing modes. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 4.1.4 MAC INSTRUCTIONS for Modulo Addressing since these two registers are The dual source operand DSP instructions (CLR, ED, used as the Stack Frame Pointer and Stack Pointer, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also respectively. referred to as MAC instructions, utilize a simplified set of In general, any particular circular buffer can only be addressing modes to allow the user to effectively configured to operate in one direction, as there are manipulate the data pointers through register indirect certain restrictions on the buffer Start address tables. (forincrementing buffers), or end address The two source operand prefetch registers must belong (fordecrementing buffers) based upon the direction of to the set {W8, W9, W10, W11}. For data reads, W8 the buffer. and W9 are always directed to the X RAGU. W10 and The only exception to the usage restrictions is for W11 are always directed to the Y AGU. The effective buffers that have a power-of-2 length. As these buffers addresses generated (before and after modification) satisfy the Start and the end address criteria, they can must, therefore, be valid addresses within X data space operate in a Bidirectional mode (i.e., address boundary for W8 and W9 and Y data space for W10 and W11. checks are performed on both the lower and upper Note: Register Indirect with Register Offset address boundaries). addressing is only available for W9 (in X space) and W11 (in Y space). DS70139G-page 44 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 4.2.1 START AND END ADDRESS 4.2.2 W ADDRESS REGISTER SELECTION The Modulo Addressing scheme requires that a starting and an ending address be specified and loaded The Modulo and Bit-Reversed Addressing Control intothe16-bit Modulo Buffer Address registers: register, MODCON<15:0>, contains enable flags as XMODSRT, XMODEND, YMODSRT and YMODEND well as a W register field to specify the W address (see Table3-3). registers. The XWM and YWM fields select which registers operate with Modulo Addressing. Note: Y space Modulo Addressing EA IfXWM=15, X RAGU and X WAGU Modulo calculations assume word-sized data Addressing is disabled. Similarly, if YWM = 15, Y AGU (LSb of every EA is always clear). Modulo Addressing is disabled. The length of a circular buffer is not directly specified. It The X Address Space Pointer W register (XWM), to is determined by the difference between the which Modulo Addressing is to be applied, is stored in corresponding Start and end addresses. The maximum MODCON<3:0> (see Table3-3). Modulo Addressing is possible length of the circular buffer is 32K words enabled for X data space when XWM is set to any value (64Kbytes). other than ‘15’ and the XMODEN bit is set at MODCON<15>. The Y Address Space Pointer W register (YWM), to which Modulo Addressing is to be applied, is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than‘15’ and the YMODEN bit is set at MODCON<14>. FIGURE 4-1: MODULO ADDRESSING OPERATION EXAMPLE Byte Address MOV #0x1100,W0 MOV W0,XMODSRT ;set modulo start address MOV #0x1163,W0 MOV W0,MODEND ;set modulo end address 0x1100 MOV #0x8001,W0 MOV W0,MODCON ;enable W1, X AGU for modulo MOV #0x0000,W0 ;W0 holds buffer fill value MOV #0x1110,W1 ;point W1 to buffer DO AGAIN,#0x31 ;fill the 50 buffer locations MOV W0,[W1++] ;fill the next location AGAIN: INC W0,W0 ;increment the fill value 0x1163 Start Addr = 0x1100 End Addr = 0x1163 Length = 0x0032 words © 2010 Microchip Technology Inc. DS70139G-page 45

dsPIC30F2011/2012/3012/3013 4.2.3 MODULO ADDRESSING If the length of a bit-reversed buffer is M = 2N bytes, APPLICABILITY then the last ‘N’ bits of the data buffer Start address must be zeros. Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W XB<14:0> is the bit-reversed address modifier or ‘pivot register. It is important to realize that the address point’ which is typically a constant. In the case of an boundaries check for addresses less than, or greater FFT computation, its value is equal to half of the FFT than the upper (for incrementing buffers), and lower (for data buffer size. decrementing buffers) boundary addresses (not just Note: All bit-reversed EA calculations assume equal to). Address changes may, therefore, jump word-sized data (LSb of every EA is beyond boundaries and still be adjusted correctly. always clear). The XB value is scaled Note: The modulo corrected Effective Address accordingly to generate compatible (byte) is written back to the register only when addresses. Pre-Modify or Post-Modify Addressing When enabled, Bit-Reversed Addressing is only mode is used to compute the EA. When executed for register indirect with pre-increment or an address offset (e.g.,[W7+W2]) is used, post-increment addressing and word-sized data writes. Modulo address correction is performed, It does not function for any other addressing mode or but the contents of the register remain for byte-sized data. Normal addresses are generated unchanged. instead. When Bit-Reversed Addressing is active, the W address pointer is always added to the address 4.3 Bit-Reversed Addressing modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In Bit-Reversed Addressing is intended to simplify data addition, as word-sized data is a requirement, the LSb re-ordering for radix-2 FFT algorithms. It is supported of the EA is ignored (and always clear). by the X AGU for data writes only. Note: Modulo Addressing and Bit-Reversed The modifier, which may be a constant value or register Addressing should not be enabled contents, is regarded as having its bit order reversed. The together. In the event that the user address source and destination are kept in normal order. attempts to do this, Bit-Reversed Address- Thus, the only operand requiring reversal is the modifier. ing assumes priority when active for the X 4.3.1 BIT-REVERSED ADDRESSING WAGU, and X WAGU Modulo Addressing is disabled. However, Modulo Addressing IMPLEMENTATION continues to function in the X RAGU. Bit-Reversed Addressing is enabled when: If Bit-Reversed Addressing has already been enabled • BWM (W register selection) in the MODCON reg- by setting the BREN bit (XBREV<15>), then a write to ister is any value other than ‘15’ (the stack cannot the XBREV register should not be immediately followed be accessed using Bit-Reversed Addressing) by an indirect read operation using the W register that and has been designated as the bit-reversed pointer. • The BREN bit is set in the XBREV register and • The addressing mode used is Register Indirect with Pre-Increment or Post-Increment. DS70139G-page 46 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 4-2: BIT-REVERSED ADDRESS EXAMPLE Sequential Address b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 0 Bit Locations Swapped Left-to-Right Around Center of Binary Value b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1 b2 b3 b4 0 Bit-Reversed Address Pivot Point XB = 0x0008 for a 16-word Bit-Reversed Buffer TABLE 4-2: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY) Normal Address Bit-Reversed Address A3 A2 A1 A0 Decimal A3 A2 A1 A0 Decimal 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 8 0 0 1 0 2 0 1 0 0 4 0 0 1 1 3 1 1 0 0 12 0 1 0 0 4 0 0 1 0 2 0 1 0 1 5 1 0 1 0 10 0 1 1 0 6 0 1 1 0 6 0 1 1 1 7 1 1 1 0 14 1 0 0 0 8 0 0 0 1 1 1 0 0 1 9 1 0 0 1 9 1 0 1 0 10 0 1 0 1 5 1 0 1 1 11 1 1 0 1 13 1 1 0 0 12 0 0 1 1 3 1 1 0 1 13 1 0 1 1 11 1 1 1 0 14 0 1 1 1 7 1 1 1 1 15 1 1 1 1 15 TABLE 4-3: BIT-REVERSED ADDRESS MODIFIER VALUES FOR XBREV REGISTER Buffer Size (Words) XB<14:0> Bit-Reversed Address Modifier Value 1024 0x0200 512 0x0100 256 0x0080 128 0x0040 64 0x0020 32 0x0010 16 0x0008 8 0x0004 4 0x0002 2 0x0001 © 2010 Microchip Technology Inc. DS70139G-page 47

dsPIC30F2011/2012/3012/3013 NOTES: DS70139G-page 48 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 5.0 FLASH PROGRAM MEMORY 5.2 Run-Time Self-Programming (RTSP) Note: This data sheet summarizes features of this group ofdsPIC30F devices and is not RTSP is accomplished using TBLRD (table read) and intended to be a complete reference TBLWT (table write) instructions. source. For more information on the CPU, With RTSP, the user may erase program memory, 32 peripherals, register descriptions and instructions (96 bytes) at a time and can write program general device functionality, refer to the memory data, 32 instructions (96 bytes) at a time. “dsPIC30F Family Reference Manual” (DS70046). For more information on the 5.3 Table Instruction Operation device instruction set and programming, Summary refer to the “16-bit MCU and DSC Programmer’s Reference Manual” The TBLRDL and the TBLWTL instructions are used to (DS70157). read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in The dsPIC30F family of devices contains internal Word or Byte mode. program Flash memory for executing user code. There are two methods by which the user can program this The TBLRDH and TBLWTH instructions are used to read memory: or write to bits<23:16> of program memory. TBLRDH and TBLWTH can access program memory in Word or 1. Run-Time Self-Programming (RTSP) Byte mode. 2. In-Circuit Serial Programming™ (ICSP™) A 24-bit program memory address is formed using bits<7:0> of the TBLPAG register and the Effective 5.1 In-Circuit Serial Programming Address (EA) from a W register specified in the table (ICSP) instruction, as shown in Figure5-1. dsPIC30F devices can be serially programmed while in the end application circuit. This is simply done with two lines for Programming Clock and Programming Data (which are named PGC and PGD respectively), and three other lines for Power (VDD), Ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. FIGURE 5-1: ADDRESSING FOR TABLE AND NVM REGISTERS 24 bits Using Program 0 Program Counter 0 Counter NVMADR Reg EA Using NVMADR 1/0 NVMADRU Reg Addressing 8 bits 16 bits Working Reg EA Using 1/0 TBLPAG Reg Table Instruction 8 bits 16 bits Byte User/Configuration Select Space Select 24-bit EA © 2010 Microchip Technology Inc. DS70139G-page 49

dsPIC30F2011/2012/3012/3013 5.4 RTSP Operation 5.5 Control Registers The dsPIC30F Flash program memory is organized The four SFRs used to read and write the program into rows and panels. Each row consists of 32 Flash memory are: instructions or 96 bytes. Each panel consists of 128 • NVMCON rows or 4K x 24 instructions. RTSP allows the user to • NVMADR erase one row (32 instructions) at a time and to • NVMADRU program four instructions at one time. RTSP may be • NVMKEY used to program multiple program memory panels, but the table pointer must be changed at each panel 5.5.1 NVMCON REGISTER boundary. The NVMCON register controls which blocks are to be Each panel of program memory contains write latches erased, which memory type is to be programmed, and that hold 32 instructions of programming data. Prior to start of the programming cycle. the actual programming operation, the write data must be loaded into the panel write latches. The data to be 5.5.2 NVMADR REGISTER programmed into the panel is loaded in sequential The NVMADR register is used to hold the lower two order into the write latches; instruction 0, instruction 1, bytes of the Effective Address. The NVMADR register etc. The instruction words loaded must always be from captures the EA<15:0> of the last table instruction that a 32 address boundary. has been executed and selects the row to write. The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions 5.5.3 NVMADRU REGISTER to load the write latches. Programming is performed by The NVMADRU register is used to hold the upper byte setting the special bits in the NVMCON register. 32 of the Effective Address. The NVMADRU register TBLWTL and four TBLWTH instructions are required to captures the EA<23:16> of the last table instruction load the 32 instructions. If multiple panel programming that has been executed. is required, the Table Pointer needs to be changed and the next set of multiple write latches written. 5.5.4 NVMKEY REGISTER All of the table write operations are single-word writes NVMKEY is a write-only register that is used for write (2 instruction cycles), because only the table latches protection. To start a programming or an erase are written. A programming cycle is required for sequence, the user must consecutively write 0x55 and programming each row. 0xAA to the NVMKEY register. Refer to Section5.6 The Flash Program Memory is readable, writable and “Programming Operations” for further details. erasable during normal operation over the entire VDD Note: The user can also directly write to the range. NVMADR and NVMADRU registers to specify a program memory address for erasing or programming. DS70139G-page 50 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 5.6 Programming Operations 4. Write 32 instruction words of data from data RAM “image” into the program Flash write A complete programming sequence is necessary for latches. programming or erasing the internal Flash in RTSP 5. Program 32 instruction words into program mode. A programming operation is nominally 2 msec in Flash. duration and the processor stalls (waits) until the a) Set up NVMCON register for multi-word, operation is finished. Setting the WR bit program Flash, program, and set WREN (NVMCON<15>) starts the operation and the WR bit is bit. automatically cleared when the operation is finished. b) Write 0x55 to NVMKEY. 5.6.1 PROGRAMMING ALGORITHM FOR c) Write 0xAA to NVMKEY. PROGRAM FLASH d) Set the WR bit. This begins program cycle. The user can erase or program one row of program e) CPU stalls for duration of the program cycle. Flash memory at a time. The general process is: f) The WR bit is cleared by the hardware 1. Read one row of program Flash (32 instruction when program cycle ends. words) and store into data RAM as a data 6. Repeat steps 1 through 5 as needed to program “image”. desired amount of program Flash memory. 2. Update the data image with the desired new 5.6.2 ERASING A ROW OF PROGRAM data. MEMORY 3. Erase program Flash row. a) Set up NVMCON register for multi-word, Example5-1 shows a code sequence that can be used program Flash, erase, and set WREN bit. to erase a row (32 instructions) of program memory. b) Write address of row to be erased into NVMADRU/NVMDR. c) Write 0x55 to NVMKEY. d) Write 0xAA to NVMKEY. e) Set the WR bit. This begins erase cycle. f) CPU stalls for the duration of the erase cycle. g) The WR bit is cleared when erase cycle ends. EXAMPLE 5-1: ERASING A ROW OF PROGRAM MEMORY ; Setup NVMCON for erase operation, multi word write ; program memory selected, and writes enabled MOV #0x4041,W0 ; MOV W0 NVMCON ; Init NVMCON SFR , ; Init pointer to row to be ERASED MOV #tblpage(PROG_ADDR),W0 ; MOV W0 NVMADRU ; Initialize PM Page Boundary SFR , MOV #tbloffset(PROG_ADDR),W0 ; Intialize in-page EA[15:0] pointer MOV W0, NVMADR ; Initialize NVMADR SFR DISI #5 ; Block all interrupts with priority <7 for ; next 5 instructions MOV #0x55,W0 MOV W0 NVMKEY ; Write the 0x55 key , MOV #0xAA,W1 ; MOV W1 NVMKEY ; Write the 0xAA key , BSET NVMCON,#WR ; Start the erase sequence NOP ; Insert two NOPs after the erase NOP ; command is asserted © 2010 Microchip Technology Inc. DS70139G-page 51

dsPIC30F2011/2012/3012/3013 5.6.3 LOADING WRITE LATCHES 5.6.4 INITIATING THE PROGRAMMING SEQUENCE Example5-2 shows a sequence of instructions that can be used to load the 96 bytes of write latches. 32 For protection, the write initiate sequence for NVMKEY TBLWTL and 32 TBLWTH instructions are needed to must be used to allow any erase or program operation load the write latches selected by the Table Pointer. to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPs as shown in Example5-3. EXAMPLE 5-2: LOADING WRITE LATCHES ; Set up a pointer to the first program memory location to be written ; program memory selected, and writes enabled MOV #0x0000,W0 ; MOV W0 TBLPAG ; Initialize PM Page Boundary SFR , MOV #0x6000,W0 ; An example program memory address ; Perform the TBLWT instructions to write the latches ; 0th_program_word MOV #LOW_WORD_0,W2 ; MOV #HIGH_BYTE_0,W3 ; TBLWTL W2 [W0] ; Write PM low word into program latch , TBLWTH W3 [W0++] ; Write PM high byte into program latch , ; 1st_program_word MOV #LOW_WORD_1,W2 ; MOV #HIGH_BYTE_1,W3 ; TBLWTL W2 [W0] ; Write PM low word into program latch , TBLWTH W3 [W0++] ; Write PM high byte into program latch , ; 2nd_program_word MOV #LOW_WORD_2,W2 ; MOV #HIGH_BYTE_2,W3 ; TBLWTL W2 [W0] ; Write PM low word into program latch , TBLWTH W3 [W0++] ; Write PM high byte into program latch , • • • ; 31st_program_word MOV #LOW_WORD_31,W2 ; MOV #HIGH_BYTE_31,W3 ; TBLWTL W2 [W0] ; Write PM low word into program latch , TBLWTH W3 [W0++] ; Write PM high byte into program latch , Note: In Example5-2, the contents of the upper byte of W3 has no effect. EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE DISI #5 ; Block all interrupts with priority <7 for ; next 5 instructions MOV #0x55,W0 ; MOV W0 NVMKEY ; Write the 0x55 key , MOV #0xAA,W1 ; MOV W1 NVMKEY ; Write the 0xAA key , BSET NVMCON,#WR ; Start the erase sequence NOP ; Insert two NOPs after the erase NOP ; command is asserted DS70139G-page 52 © 2010 Microchip Technology Inc.

TABLE 5-1: NVM REGISTER MAP © 2 0 File Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All RESETS 1 0 M NVMCON 0760 WR WREN WRERR — — — — TWRI — PROGOP<6:0> 0000 0000 0000 0000 icro NVMADR 0762 NVMADR<15:0> uuuu uuuu uuuu uuuu ch NVMADRU 0764 — — — — — — — — NVMADR<23:16> 0000 0000 uuuu uuuu ip T NVMKEY 0766 — — — — — — — — KEY<7:0> 0000 0000 0000 0000 e c Legend: u = uninitialized bit; — = unimplemented bit, read as ‘0’ h no Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields. lo g y In c . d s P I C 3 0 F 2 0 1 1 / 2 0 1 2 / 3 0 1 D S 2 7 0 / 13 3 9 G 0 -p a 1 g e 5 3 3

dsPIC30F2011/2012/3012/3013 NOTES: DS70139G-page 54 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 6.0 DATA EEPROM MEMORY A program or erase operation on the data EEPROM does not stop the instruction flow. The user is Note: This data sheet summarizes features of responsible for waiting for the appropriate duration of this group ofdsPIC30F devices and is not time before initiating another data EEPROM write/ intended to be a complete reference erase operation. Attempting to read the data EEPROM source. For more information on the CPU, while a programming or erase operation is in progress peripherals, register descriptions and results in unspecified data. general device functionality, refer to the Control bit WR initiates write operations similar to “dsPIC30F Family Reference Manual” program Flash writes. This bit cannot be cleared, only (DS70046). For more information on the set, in software. They are cleared in hardware at the device instruction set and programming, completion of the write operation. The inability to clear refer to the “16-bit MCU and DSC the WR bit in software prevents the accidental or Programmer’s Reference Manual” premature termination of a write operation. (DS70157). The WREN bit, when set, allows a write operation. On The data EEPROM memory is readable and writable power-up, the WREN bit is clear. The WRERR bit is set during normal operation over the entire VDD range. The when a write operation is interrupted by a MCLR Reset data EEPROM memory is directly mapped in the or a WDT Time-out Reset during normal operation. In program memory address space. these situations, following Reset, the user can check the WRERR bit and rewrite the location. The address The four SFRs used to read and write the program register NVMADR remains unchanged. Flash memory are used to access data EEPROM memory, as well. As described in Section5.5 “Control Note: Interrupt flag bit NVMIF in the IFS0 Registers”, these registers are: register is set when write is complete. It • NVMCON must be cleared in software. • NVMADR 6.1 Reading the Data EEPROM • NVMADRU • NVMKEY A TBLRD instruction reads a word at the current The EEPROM data memory allows read and write of program word address. This example uses W0 as a single words and 16-word blocks. When interfacing to pointer to data EEPROM. The result is placed in data memory, NVMADR, in conjunction with the register W4 as shown in Example6-1. NVMADRU register, are used to address the EEPROM location being accessed. TBLRDL and EXAMPLE 6-1: DATA EEPROM READ TBLWTL instructions are used to read and write data MOV #LOW_ADDR_WORD,W0 ; Init Pointer EEPROM. The dsPIC30F devices have up to 8 Kbytes MOV #HIGH_ADDR_WORD,W1 (4K words) of data EEPROM with an address range MOV W1 TBLPAG from 0x7FF000 to 0x7FFFFE. , TBLRDL [ W0 ], W4 ; read data EEPROM A word write operation should be preceded by an erase of the corresponding memory location(s). The write typically requires 2 ms to complete, but the write time varies with voltage and temperature. © 2010 Microchip Technology Inc. DS70139G-page 55

dsPIC30F2011/2012/3012/3013 6.2 Erasing Data EEPROM 6.2.1 ERASING A BLOCK OF DATA EEPROM In order to erase a block of data EEPROM, the NVMADRU and NVMADR registers must initially point to the block of memory to be erased. Configure NVMCON for erasing a block of data EEPROM and set the WR and WREN bits in the NVMCON register. Setting the WR bit initiates the erase, as shown in Example6-2. EXAMPLE 6-2: DATA EEPROM BLOCK ERASE ; Select data EEPROM block, WR, WREN bits MOV #0x4045,W0 MOV W0 NVMCON ; Initialize NVMCON SFR , ; Start erase cycle by setting WR after writing key sequence DISI #5 ; Block all interrupts with priority <7 for ; next 5 instructions MOV #0x55,W0 ; MOV W0 NVMKEY ; Write the 0x55 key , MOV #0xAA,W1 ; MOV W1 NVMKEY ; Write the 0xAA key , BSET NVMCON,#WR ; Initiate erase sequence NOP NOP ; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle ; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete 6.2.2 ERASING A WORD OF DATA EEPROM The NVMADRU and NVMADR registers must point to the block. Select WR a block of data Flash and set the WR and WREN bits in the NVMCON register. Setting the WR bit initiates the erase, as shown in Example6-3. EXAMPLE 6-3: DATA EEPROM WORD ERASE ; Select data EEPROM word, WR, WREN bits MOV #0x4044,W0 MOV W0 NVMCON , ; Start erase cycle by setting WR after writing key sequence DISI #5 ; Block all interrupts with priority <7 for ; next 5 instructions MOV #0x55,W0 ; MOV W0 NVMKEY ; Write the 0x55 key , MOV #0xAA,W1 ; MOV W1 NVMKEY ; Write the 0xAA key , BSET NVMCON,#WR ; Initiate erase sequence NOP NOP ; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle ; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete DS70139G-page 56 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 6.3 Writing to the Data EEPROM The write does not initiate if the above sequence is not exactly followed (write 0x55 to NVMKEY, write 0xAA to To write an EEPROM data location, the following NVMCON, then set WR bit) for each word. It is strongly sequence must be followed: recommended that interrupts be disabled during this 1. Erase data EEPROM word. codesegment. a) Select word, data EEPROM erase, and set Additionally, the WREN bit in NVMCON must be set to WREN bit in NVMCON register. enable writes. This mechanism prevents accidental b) Write address of word to be erased into writes to data EEPROM due to unexpected code NVMADR. execution. The WREN bit should be kept clear at all c) Enable NVM interrupt (optional). times except when updating the EEPROM. The WREN bit is not cleared byhardware. d) Write 0x55 to NVMKEY. e) Write 0xAA to NVMKEY. After a write sequence has been initiated, clearing the WREN bit does not affect the current write cycle. The f) Set the WR bit. This begins erase cycle. WR bit is inhibited from being set unless the WREN bit g) Either poll NVMIF bit or wait for NVMIF is set. The WREN bit must be set on a previous interrupt. instruction. Both WR and WREN cannot be set with the h) The WR bit is cleared when the erase cycle same instruction. ends. At the completion of the write cycle, the WR bit is 2. Write data word into data EEPROM write cleared in hardware and the Nonvolatile Memory Write latches. Complete Interrupt Flag bit (NVMIF) is set. The user 3. Program 1 data word into data EEPROM. may either enable this interrupt or poll this bit. NVMIF a) Select word, data EEPROM program, and must be cleared by software. set WREN bit in NVMCON register. 6.3.1 WRITING A WORD OF DATA b) Enable NVM write done interrupt (optional). EEPROM c) Write 0x55 to NVMKEY. d) Write 0xAA to NVMKEY. Once the user has erased the word to be programmed, then a table write instruction is used to write one write e) Set the WR bit. This begins program cycle. latch, as shown in Example6-4. f) Either poll NVMIF bit or wait for NVM interrupt. 6.3.2 WRITING A BLOCK OF DATA g) The WR bit is cleared when the write cycle EEPROM ends. To write a block of data EEPROM, write to all sixteen latches first, then set the NVMCON register and program the block. EXAMPLE 6-4: DATA EEPROM WORD WRITE ; Point to data memory MOV #LOW_ADDR_WORD,W0 ; Init pointer MOV #HIGH_ADDR_WORD,W1 MOV W1 TBLPAG , MOV #LOW(WORD),W2 ; Get data TBLWTL W2 [ W0] ; Write data , ; The NVMADR captures last table access address ; Select data EEPROM for 1 word op MOV #0x4004,W0 MOV W0 NVMCON , ; Operate key to allow write operation DISI #5 ; Block all interrupts with priority <7 for ; next 5 instructions MOV #0x55,W0 MOV W0 NVMKEY ; Write the 0x55 key , MOV #0xAA,W1 MOV W1 NVMKEY ; Write the 0xAA key , BSET NVMCON,#WR ; Initiate program sequence NOP NOP ; Write cycle will complete in 2mS. CPU is not stalled for the Data Write Cycle ; User can poll WR bit, use NVMIF or Timer IRQ to determine write complete © 2010 Microchip Technology Inc. DS70139G-page 57

dsPIC30F2011/2012/3012/3013 EXAMPLE 6-5: DATA EEPROM BLOCK WRITE MOV #LOW_ADDR_WORD,W0 ; Init pointer MOV #HIGH_ADDR_WORD,W1 MOV W1 TBLPAG , MOV #data1,W2 ; Get 1st data TBLWTL W2 [ W0]++ ; write data , MOV #data2,W2 ; Get 2nd data TBLWTL W2 [ W0]++ ; write data , MOV #data3,W2 ; Get 3rd data TBLWTL W2 [ W0]++ ; write data , MOV #data4,W2 ; Get 4th data TBLWTL W2 [ W0]++ ; write data , MOV #data5,W2 ; Get 5th data TBLWTL W2 [ W0]++ ; write data , MOV #data6,W2 ; Get 6th data TBLWTL W2 [ W0]++ ; write data , MOV #data7,W2 ; Get 7th data TBLWTL W2 [ W0]++ ; write data , MOV #data8,W2 ; Get 8th data TBLWTL W2 [ W0]++ ; write data , MOV #data9,W2 ; Get 9th data TBLWTL W2 [ W0]++ ; write data , MOV #data10,W2 ; Get 10th data TBLWTL W2 [ W0]++ ; write data , MOV #data11,W2 ; Get 11th data TBLWTL W2 [ W0]++ ; write data , MOV #data12,W2 ; Get 12th data TBLWTL W2 [ W0]++ ; write data , MOV #data13,W2 ; Get 13th data TBLWTL W2 [ W0]++ ; write data , MOV #data14,W2 ; Get 14th data TBLWTL W2 [ W0]++ ; write data , MOV #data15,W2 ; Get 15th data TBLWTL W2 [ W0]++ ; write data , MOV #data16,W2 ; Get 16th data TBLWTL W2 [ W0]++ ; write data. The NVMADR captures last table access address. , MOV #0x400A,W0 ; Select data EEPROM for multi word op MOV W0 NVMCON ; Operate Key to allow program operation , DISI #5 ; Block all interrupts with priority <7 for ; next 5 instructions MOV #0x55,W0 MOV W0 NVMKEY ; Write the 0x55 key , MOV #0xAA,W1 MOV W1 NVMKEY ; Write the 0xAA key , BSET NVMCON,#WR ; Start write cycle NOP NOP 6.4 Write Verify 6.5 Protection Against Spurious Write Depending on the application, good programming There are conditions when the device may not want to practice may dictate that the value written to the mem- write to the data EEPROM memory. To protect against ory should be verified against the original value. This spurious EEPROM writes, various mechanisms have should be used in applications where excessive writes been built-in. On power-up, the WREN bit is cleared; can stress bits near the specification limit. also, the Power-up Timer prevents EEPROMwrite. The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction. DS70139G-page 58 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 7.0 I/O PORTS Writes to the latch, write the latch (LATx). Reads from the port (PORTx), read the port pins and writes to the Note: This data sheet summarizes features of port pins, write the latch (LATx). this group ofdsPIC30F devices and is not Any bit and its associated data and Control registers intended to be a complete reference that are not valid for a particular device are disabled. source. For more information on the CPU, That means the corresponding LATx and TRISx peripherals, register descriptions and registers and the port pin read as zeros. general device functionality, refer to the “dsPIC30F Family Reference Manual” When a pin is shared with another peripheral or (DS70046). function that is defined as an input only, it is nevertheless regarded as a dedicated port because All of the device pins (except VDD, VSS, MCLR and there is no other competing source of outputs. OSC1/CLKI) are shared between the peripherals and A parallel I/O (PIO) port that shares a pin with a the parallel I/O ports. peripheral is, in general, subservient to the peripheral. All I/O input ports feature Schmitt Trigger inputs for The peripheral’s output buffer data and control signals improved noise immunity. are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port 7.1 Parallel I/O (PIO) Ports has ownership of the output data and control signals of the I/O pad cell. Figure7-1 illustrates how ports are When a peripheral is enabled and the peripheral is shared with other peripherals and the associated I/O actively driving an associated pin, the use of the pin as cell (pad) to which they are connected. a general purpose output pin is disabled. The I/O pin The format of the registers for the shared ports, can be read, but the output driver for the parallel port bit (PORTB, PORTC, PORTD and PORTF) are shown in is disabled. If a peripheral is enabled, but the peripheral Table7-1 through Table7-6. is not actively driving a pin, that pin can be driven by a port. Note: The actual bits in use vary between devices. All port pins have three registers directly associated with the operation of the port pin. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a ‘1’, then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. FIGURE 7-1: BLOCK DIAGRAM OF A SHARED PORT STRUCTURE Peripheral Module Output Multiplexers Peripheral Input Data Peripheral Module Enable I/O Cell Peripheral Output Enable 1 Output Enable Peripheral Output Data 0 1 PIO Module Output Data 0 Read TRIS Data Bus D Q I/O Pad WR TRIS CK TRIS Latch D Q WR LAT + WR Port CK Data Latch Read LAT Input Data Read Port © 2010 Microchip Technology Inc. DS70139G-page 59

dsPIC30F2011/2012/3012/3013 7.2 Configuring Analog Port Pins 7.2.1 I/O PORT WRITE/READ TIMING The use of the ADPCFG and TRIS registers control the One instruction cycle is required between a port operation of the A/D port pins. The port pins that are direction change or port write operation and a read desired as analog inputs must have their operation of the same port. Typically this instruction corresponding TRIS bit set (input). If the TRIS bit is would be a NOP. cleared (output), the digital output level (VOH or VOL) is converted. EXAMPLE 7-1: PORT WRITE/READ EXAMPLE When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level). MOV #0xF0, W0 ; Configure PORTB<7:4> Pins configured as digital inputs will not convert an ; as inputs MOV W0, TRISB ; and PORTB<3:0> as outputs analog input. Analog levels on any pin that is defined as NOP ; additional instruction a digital input (including the ANx pins) may cause the cycle input buffer to consume the current that exceeds btss PORTB, #7 ; bit test RB7 and skip if device specifications. set DS70139G-page 60 © 2010 Microchip Technology Inc.

© TABLE 7-1: PORTB REGISTER MAP FOR dsPIC30F2011/3012 2 0 10 M NSaFmRe Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State icro TRISB 02C6 — — — — — — — — TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 0000 0000 1111 1111 ch PORTB 02C8 — — — — — — — — RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 0000 0000 0000 0000 ip T LATB 02CB — — — — — — — — LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 0000 0000 0000 0000 e c Legend: — = unimplemented bit, read as ‘0’ h n o log TABLE 7-2: PORTB REGISTER MAP FOR dsPIC30F2012/3013 y In c SFR . Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State Name TRISB 02C6 — — — — — — TRISB9 TRISB8 TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 0000 0011 1111 1111 PORTB 02C8 — — — — — — RB9 RB8 RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 0000 0000 0000 0000 d LATB 02CB — — — — — — LATB9 LATB8 LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 0000 0000 0000 0000 s Legend: — = unimplemented bit, read as ‘0’ P TABLE 7-3: PORTC REGISTER MAP FOR dsPIC30F2011/2012/3012/3013 I C SFR Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State Name 3 TRISC 02CC TRISC15 TRISC14 TRISC13 — — — — — — — — — — — — — 1110 0000 0000 0000 0 PORTC 02CE RC15 RC14 RC13 — — — — — — — — — — — — — 0000 0000 0000 0000 F LATC 02D0 LATC15 LATC14 LATC13 — — — — — — — — — — — — — 0000 0000 0000 0000 2 Legend: — = unimplemented bit, read as ‘0’ 0 1 TABLE 7-4: PORTD REGISTER MAP FOR dsPIC30F2011/3012 1 / SFR Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State 2 Name 0 TRISD 02D2 — — — — — — — — — — — — — — — TRISD0 0000 0000 0000 0001 1 PORTD 02D4 — — — — — — — — — — — — — — — RD0 0000 0000 0000 0000 2 LATD 02D6 — — — — — — — — — — — — — — — LATD0 0000 0000 0000 0000 / Legend: — = unimplemented bit, read as ‘0’ 3 0 1 D S 2 7 0 / 13 3 9 G 0 -p a 1 g e 6 3 1

© TABLE 7-5: PORTD REGISTER MAP FOR dsPIC30F2012/3013 2 0 1 SFR 0 Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State M Name icro TRISD 02D2 — — — — — — TRISD9 TRISD8 — — — — — — — — 0000 0011 0000 0000 c h PORTD 02D4 — — — — — — RD9 RD8 — — — — — — — — 0000 0000 0000 0000 ip T LATD 02D6 — — — — — — LATD9 LATD8 — — — — — — — — 0000 0000 0000 0000 e ch Legend: — = unimplemented bit, read as ‘0’ n o lo TABLE 7-6: PORTF REGISTER MAP FOR dsPIC30F2012/3013 g y Inc. NSaFmRe Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State TRISF 02DE — — — — — — — — — TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 — — 0000 0000 0111 1100 PORTF 02E0 — — — — — — — — — RF6 RF5 RF4 RF3 RF2 — — 0000 0000 0000 0000 LATF 02E2 — — — — — — — — — LATF6 LATF5 LATF4 LATF3 LATF2 — — 0000 0000 0000 0000 d Legend: — = unimplemented bit, read as ‘0’ s Note: The dsPIC30F2011/3012 devices do not have TRISF, PORTF, or LATF. P I C 3 0 F 2 0 1 1 / 2 0 1 2 / 3 0 1 D S 2 7 0 / 13 3 9 G 0 -p a 1 g e 6 3 2

dsPIC30F2011/2012/3012/3013 7.3 Input Change Notification Module The input change notification module provides the dsPIC30F devices the ability to generate interrupt requests to the processor, in response to a change of state on selected input pins. This module is capable of detecting input change of states even in Sleep mode, when the clocks are disabled. There are up to 10 external signals (CN0 through CN7, CN17 and CN18) that may be selected (enabled) for generating an interrupt request on a change of state. TABLE 7-7: INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F2011/3012 (BITS 7-0) SFR Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State Name CNEN1 00C0 CN7IE CN6IE CN5IE CN4IE CN3IE CN2IE CN1IE CN0IE 0000 0000 0000 0000 CNEN2 00C2 — — — — — — — — 0000 0000 0000 0000 CNPU1 00C4 CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000 0000 0000 0000 CNPU2 00C6 — — — — — — — — 0000 0000 0000 0000 Legend: — = unimplemented bit, read as ‘0’ TABLE 7-8: INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F2012/3013 (BITS 7-0) SFR Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State Name CNEN1 00C0 CN7IE CN6IE CN5IE CN4IE CN3IE CN2IE CN1IE CN0IE 0000 0000 0000 0000 CNEN2 00C2 — — — — — CN18IE CN17IE — 0000 0000 0000 0000 CNPU1 00C4 CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000 0000 0000 0000 CNPU2 00C6 — — — — — CN18PUE CN17PUE — 0000 0000 0000 0000 Legend: — = unimplemented bit, read as ‘0’ Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields. © 2010 Microchip Technology Inc. DS70139G-page 63

dsPIC30F2011/2012/3012/3013 NOTES: DS70139G-page 64 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 8.0 INTERRUPTS • INTCON1<15:0>, INTCON2<15:0> Global interrupt control functions are derived from Note: This data sheet summarizes features of these two registers. INTCON1 contains the this group ofdsPIC30F devices and is not control and status flags for the processor intended to be a complete reference exceptions. The INTCON2 register controls the source. For more information on the CPU, external interrupt request signal behavior and the peripherals, register descriptions and use of the alternate vector table. general device functionality, refer to the Note: Interrupt flag bits get set when an interrupt “dsPIC30F Family Reference Manual” condition occurs, regardless of the state of (DS70046). For more information on the its corresponding enable bit. User device instruction set and programming, software should ensure the appropriate refer to the “16-bit MCU and DSC interrupt flag bits are clear prior to Programmer’s Reference Manual” enabling an interrupt. (DS70157). All interrupt sources can be user assigned to one of 7 The dsPIC30F sensor family has up to 21 interrupt priority levels, 1 through 7, through the IPCx registers. sources and 4 processor exceptions (traps) which must Each interrupt source is associated with an interrupt be arbitrated based on a priority scheme. vector, as shown in Table8-1. Levels 7 and 1 represent The CPU is responsible for reading the Interrupt Vector the highest and lowest maskable priorities, respec- Table (IVT) and transferring the address contained in tively. the interrupt vector to the program counter. The Note: Assigning a priority level of ‘0’ to an interrupt vector is transferred from the program data interrupt source is equivalent to disabling bus into the program counter via a 24-bit wide that interrupt. multiplexer on the input of the program counter. If the NSTDIS bit (INTCON1<15>) is set, nesting of The Interrupt Vector Table (IVT) and Alternate Interrupt interrupts is prevented. Thus, if an interrupt is currently Vector Table (AIVT) are placed near the beginning of being serviced, processing of a new interrupt is program memory (0x000004). The IVT and AIVT are prevented even if the new interrupt is of higher priority shown in Figure8-1. than the one currently being serviced. The interrupt controller is responsible for pre-processing the interrupts and processor Note: The IPL bits become read-only whenever exceptions before they are presented to the processor the NSTDIS bit has been set to ‘1’. core. The peripheral interrupts and traps are enabled, Certain interrupts have specialized control bits for prioritized and controlled using centralized Special features like edge or level triggered interrupts, Function Registers (SFRs): interrupt-on-change, etc. Control of these features • IFS0<15:0>, IFS1<15:0>, IFS2<15:0> remains within the peripheral module which generates All interrupt request flags are maintained in these the interrupt. three registers. The flags are set by their The DISI instruction can be used to disable the respective peripherals or external signals and processing of interrupts of priorities 6 and lower for a they are cleared via software. certain number of instructions, during which the DISI bit • IEC0<15:0>, IEC1<15:0>, IEC2<15:0> (INTCON2<14>) remains set. All interrupt enable control bits are maintained in When an interrupt is serviced, the PC is loaded with the these three registers. These control bits are used address stored in the vector location in program to individually enable interrupts from the memory that corresponds to the interrupt. There are 63 peripherals or external signals. different vectors within the IVT (refer to Table8-1). • IPC0<15:0> through IPC10<7:0> These vectors are contained in locations 0x000004 The user assignable priority level associated with through 0x0000FE of program memory (refer to each of these 41 interrupts is held centrally in Table8-1). These locations contain 24-bit addresses, these eleven registers. and in order to preserve robustness, an address error • IPL<3:0> trap takes place if the PC attempts to fetch any of these The current CPU priority level is explicitly stored words during normal execution. This prevents in the IPL bits. IPL<3> is present in the CORCON execution of random data as a result of accidentally register, whereas IPL<2:0> are present in the decrementing a PC into vector space, accidentally STATUS register (SR) in the processor core. mapping a data space address into vector space, or the PC rolling over to 0x000000 after reaching the end of implemented program memory space. Execution of a GOTO instruction to this vector space also generates an address error trap. © 2010 Microchip Technology Inc. DS70139G-page 65

dsPIC30F2011/2012/3012/3013 8.1 Interrupt Priority TABLE 8-1: INTERRUPT VECTOR TABLE The user-assignable interrupt priority bits (IP<2:0>) for Interrupt Vector Interrupt Source each individual interrupt source are located in the Number Number LS3bits of each nibble within the IPCx register(s). Bit Highest Natural Order Priority 3 of each nibble is not used and is read as a ‘0’. These 0 8 INT0 – External Interrupt 0 bits define the priority level assigned to a particular interrupt by the user. 1 9 IC1 – Input Capture 1 2 10 OC1 – Output Compare 1 Note: The user-assignable priority levels start at 0 as the lowest priority and level 7 as the 3 11 T1 – Timer 1 highest priority. 4 12 IC2 – Input Capture 2 Natural Order Priority is determined by the position of 5 13 OC2 – Output Compare 2 an interrupt in the vector table, and only affects 6 14 T2 – Timer2 interrupt operation when multiple interrupts with the 7 15 T3 – Timer3 same user-assigned priority become pending at the 8 16 SPI1 same time. 9 17 U1RX – UART1 Receiver Table8-1 lists the interrupt numbers and interrupt sources for the dsPIC30F2011/2012/3012/3013 10 18 U1TX – UART1 Transmitter devices and their associated vector numbers. 11 19 ADC – ADC Convert Done Note1: The natural order priority scheme has 0 12 20 NVM – NVM Write Complete as the highest priority and 53 as the 13 21 SI2C – I2C™ Slave Interrupt lowest priority. 14 22 MI2C – I2C Master Interrupt 2: The natural order priority number is the 15 23 Input Change Interrupt same as the INT number. 16 24 INT1 – External Interrupt 1 The ability for the user to assign every interrupt to one 17-22 25-30 Reserved of seven priority levels means that the user can assign 23 31 INT2 – External Interrupt 2 a very high overall priority level to an interrupt with a low natural order priority. For example, the PLVD 24 32 U2RX(1) – UART2 Receiver (LowVoltage Detect) can be given a priority of 7. The 25 33 U2TX(1) – UART2 Transmitter INT0 (External Interrupt 0) may be assigned to priority 26-41 34-49 Reserved level 1, thus giving it a very low effective priority. 42 50 LVD – Low-Voltage Detect 43-53 51-61 Reserved Lowest Natural Order Priority Note 1: Only the dsPIC30F3013 has UART2 and the U2RX, U2TX interrupts. These locations are reserved for the dsPIC30F2011/2012/3012. DS70139G-page 66 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 8.2 Reset Sequence 8.3 Traps A Reset is not a true exception because the interrupt Traps can be considered as non-maskable interrupts controller is not involved in the Reset process. The indicating a software or hardware error, which adhere processor initializes its registers in response to a Reset to a predefined priority as shown in Figure8-1. They which forces the PC to zero. The processor then begins are intended to provide the user a means to correct program execution at location 0x000000. A GOTO erroneous operation during debug and when operating instruction is stored in the first program memory within the application. location immediately followed by the address target for Note: If the user does not intend to take the GOTO instruction. The processor executes the GOTO corrective action in the event of a trap to the specified address and then begins operation at error condition, these vectors must be the specified target (start) address. loaded with the address of a default 8.2.1 RESET SOURCES handler that contains the RESET instruc- tion. If, on the other hand, one of the vec- In addition to external Reset and Power-on Reset tors containing an invalid address is (POR), there are six sources of error conditions which called, an address error trap is generated. ‘trap’ to the Reset vector. Note that many of these trap conditions can only be • Watchdog Time-out: detected when they occur. Consequently, the The watchdog has timed out, indicating that the questionable instruction is allowed to complete prior to processor is no longer executing the correct flow trap exception processing. If the user chooses to of code. recover from the error, the result of the erroneous • Uninitialized W Register Trap: action that caused the trap may have to be corrected. An attempt to use an uninitialized W register as There are eight fixed priority levels for traps: Level 8 an Address Pointer causes a Reset. through Level 15, which implies that the IPL3 is always • Illegal Instruction Trap: set during processing of a trap. Attempted execution of any unused opcodes results in an illegal instruction trap. Note that a If the user is not currently executing a trap, and he sets fetch of an illegal instruction does not result in an the IPL<3:0> bits to a value of ‘0111’ (Level 7), then all illegal instruction trap if that instruction is flushed interrupts are disabled, but traps can still be processed. prior to execution due to a flow change. 8.3.1 TRAP SOURCES • Brown-out Reset (BOR): A momentary dip in the power supply to the The following traps are provided with increasing device has been detected which may result in priority. However, since all traps can be nested, priority malfunction. has little effect. • Trap Lockout: Math Error Trap: Occurrence of multiple trap conditions simultaneously causes a Reset. The math error trap executes under the following four circumstances: 1. If an attempt is made to divide by zero, the divide operation is aborted on a cycle boundary and the trap is taken. 2. If enabled, a math error trap is taken when an arithmetic operation on either accumulator A or B causes an overflow from bit 31 and the accumulator guard bits are not utilized. 3. If enabled, a math error trap is taken when an arithmetic operation on either accumulator A or B causes a catastrophic overflow from bit 39 and all saturation is disabled. 4. If the shift amount specified in a shift instruction is greater than the maximum allowed shift amount, a trap occurs. © 2010 Microchip Technology Inc. DS70139G-page 67

dsPIC30F2011/2012/3012/3013 Address Error Trap: Stack Error Trap: This trap is initiated when any of the following This trap is initiated under the following conditions: circumstances occurs: • The Stack Pointer is loaded with a value which is 1. A misaligned data word access is attempted. greater than the (user programmable) limit value 2. A data fetch from our unimplemented data written into the SPLIM register (stack overflow). memory location is attempted. • The Stack Pointer is loaded with a value which is 3. A data access of an unimplemented program less than 0x0800 (simple stack underflow). memory location is attempted. Oscillator Fail Trap: 4. An instruction fetch from vector space is attempted. This trap is initiated if the external oscillator fails and operation becomes reliant on an internal RC backup. Note: In the MAC class of instructions, wherein the data space is split into X and Y data 8.3.2 HARD AND SOFT TRAPS space, unimplemented X space includes all of Y space, and unimplemented Y It is possible that multiple traps can become active space includes all of X space. within the same cycle (e.g., a misaligned word stack write to an overflowed address). In such a case, the 5. Execution of a “BRA #literal” instruction or a fixed priority shown in Figure8-2 is implemented, “GOTO #literal” instruction, where literal which may require the user to check if other traps are is an unimplemented program memory address. pending, in order to completely correct the Fault. 6. Executing instructions after modifying the PC to Soft traps include exceptions of priority level 8 through point the unimplemented program memory level 11, inclusive. The arithmetic error trap (level 11) addresses. The PC may be modified by loading falls into this category of traps. a value into the stack and executing a RETURN Hard traps include exceptions of priority level 12 instruction. through level 15, inclusive. The address error (level 12), stack error (level 13) and oscillator error (level 14) traps fall into this category. Each hard trap that occurs must be acknowledged before code execution of any type can continue. If a lower priority hard trap occurs while a higher priority trap is pending, acknowledged, or is being processed, a hard trap conflict occurs. The device is automatically Reset in a hard trap conflict condition. The TRAPR Status bit (RCON<15>) is set when the Reset occurs, so that the condition may be detected in software. DS70139G-page 68 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 8-1: TRAP VECTORS FIGURE 8-2: INTERRUPT STACK FRAME Reset - GOTO Instruction 0x000000 0x0000 15 0 Reset - GOTO Address 0x000002 Reserved 0x000004 Oscillator Fail Trap Vector s d Address Error Trap Vector ars DecreasingPriority IVT SMtaactRRRhkeee EEsssreeerrrrrroovvvrreee TTdddrr aVVVappeee cccVVtttoooeerrrccttoorr ck Grows TowHigher Addres S R L < FIPPrCeLe<3 1 W 5Po:C0r>d<>22:16> WW1155 ((baefteforr Ce ACLALL)L) Interrupt 0 Vector 0x000014 Sta Interrupt 1 Vector POP :[--W15] — PUSH:[W15++] — — Interrupt 52 Vector Interrupt 53 Vector 0x00007E Reserved 0x000080 Note1: The user can always lower the priority Reserved 0x000082 level by writing a new value into SR. The Reserved 0x000084 Interrupt Service Routine must clear the Oscillator Fail Trap Vector interrupt flag bits in the IFSx register Stack Error Trap Vector Address Error Trap Vector before lowering the processor interrupt Math Error Trap Vector priority, in order to avoid recursive AIVT Reserved Vector interrupts. Reserved Vector 2: The IPL3 bit (CORCON<3>) is always Reserved Vector clear when interrupts are being Interrupt 0 Vector 0x000094 processed. It is set only during execution Interrupt 1 Vector — of traps. — The RETFIE (return from interrupt) instruction unstacks — the program counter and STATUS registers to return Interrupt 52 Vector Interrupt 53 Vector 0x0000FE the processor to its state prior to the interrupt sequence. 8.4 Interrupt Sequence 8.5 Alternate Vector Table All interrupt event flags are sampled in the beginning of In program memory, the Interrupt Vector Table (IVT) is each instruction cycle by the IFSx registers. A pending followed by the Alternate Interrupt Vector Table (AIVT), Interrupt Request (IRQ) is indicated by the flag bit as shown in Figure8-1. Access to the alternate vector being equal to a ‘1’ in an IFSx register. The IRQ causes table is provided by the ALTIVT bit in the INTCON2 register. If the ALTIVT bit is set, all interrupt and an interrupt to occur if the corresponding bit in the exception processes use the alternate vectors instead Interrupt Enable (IECx) register is set. For the of the default vectors. The alternate vectors are remainder of the instruction cycle, the priorities of all organized in the same manner as the default vectors. pending interrupt requests are evaluated. The AIVT supports emulation and debugging efforts by If there is a pending IRQ with a priority level greater providing a means to switch between an application than the current processor priority level in the IPL bits, and a support environment without requiring the the processor is interrupted. interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation The processor then stacks the current program counter of different software algorithms at run time. and the low byte of the processor STATUS register (SRL), as shown in Figure8-2. The low byte of the If the AIVT is not required, the program memory STATUS register contains the processor priority level at allocated to the AIVT may be used for other purposes. the time prior to the beginning of the interrupt cycle. AIVT is not a protected section and may be freely The processor then loads the priority level for this programmed by the user. interrupt into the STATUS register. This action disables all lower priority interrupts until the completion of the Interrupt Service Routine (ISR). © 2010 Microchip Technology Inc. DS70139G-page 69

dsPIC30F2011/2012/3012/3013 8.6 Fast Context Saving 8.7 External Interrupt Requests A context saving option is available using shadow The interrupt controller supports three external registers. Shadow registers are provided for the DC, N, interrupt request signals, INT0-INT2. These inputs are OV, Z and C bits in SR, and the registers W0 through edge sensitive; they require a low-to-high or a W3. The shadows are only one level deep. The shadow high-to-low transition to generate an interrupt request. registers are accessible using the PUSH.S and POP.S The INTCON2 register has three bits, INT0EP-INT2EP, instructions only. that select the polarity of the edge detection circuitry. When the processor vectors to an interrupt, the PUSH.S instruction can be used to store the current 8.8 Wake-up from Sleep and Idle value of the aforementioned registers into their respective shadow registers. The interrupt controller may be used to wake-up the processor from either Sleep or Idle modes, if Sleep or If an ISR of a certain priority uses the PUSH.S and Idle mode is active when the interrupt is generated. POP.S instructions for fast context saving, then a higher priority ISR should not include the same instruc- If an enabled interrupt request of sufficient priority is tions. Users must save the key registers in software received by the interrupt controller, then the standard during a lower priority interrupt if the higher priority ISR interrupt request is presented to the processor. At the uses fast context saving. same time, the processor wakes up from Sleep or Idle and begins execution of the ISR needed to process the interrupt request. DS70139G-page 70 © 2010 Microchip Technology Inc.

© TABLE 8-2: dsPIC30F2011/2012/3012 INTERRUPT CONTROLLER REGISTER MAP 2 0 10 M NSaFmRe ADR Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State icro INTCON1 0080 NSTDIS — — — — OVATE OVBTE COVTE — — — MATHERR ADDRERR STKERR OSCFAIL — 0000 0000 0000 0000 c h INTCON2 0082 ALTIVT DISI — — — — — — — — — — — INT2EP INT1EP INT0EP 0000 0000 0000 0000 ip T IFS0 0084 CNIF MI2CIF SI2CIF NVMIF ADIF U1TXIF U1RXIF SPI1IF T3IF T2IF OC2IF IC2IF T1IF OC1IF IC1IF INT0IF 0000 0000 0000 0000 e c h IFS1 0086 — — — — — — — — INT2IF — — — — — — INT1IF 0000 0000 0000 0000 n o lo IFS2 0088 — — — — — LVDIF — — — — — — — — — 0000 0000 0000 0000 g y In IEC0 008C CNIE MI2CIE SI2CIE NVMIE ADIE U1TXIE U1RXIE SPI1IE T3IE T2IE OC2IE IC2IE T1IE OC1IE IC1IE INT0IE 0000 0000 0000 0000 c. IEC1 008E — — — — — — — — INT2IE — — — — — — INT1IE 0000 0000 0000 0000 IEC2 0090 — — — — — LVDIE — — — — — — — — — — 0000 0000 0000 0000 IPC0 0094 — T1IP<2:0> — OC1IP<2:0> — IC1IP<2:0> — INT0IP<2:0> 0100 0100 0100 0100 IPC1 0096 — T31P<2:0> — T2IP<2:0> — OC2IP<2:0> — IC2IP<2:0> 0100 0100 0100 0100 d IPC2 0098 — ADIP<2:0> — U1TXIP<2:0> — U1RXIP<2:0> — SPI1IP<2:0> 0100 0100 0100 0100 s IPC3 009A — CNIP<2:0> — MI2CIP<2:0> — SI2CIP<2:0> — NVMIP<2:0> 0100 0100 0100 0100 P IPC4 009C — — — — — — — — — — — — — INT1IP<2:0> 0000 0000 0000 0100 I C IPC5 009E — INT2IP<2:0> — — — — — — — — — — — — 0100 0000 0000 0000 3 IPC6 00A0 — — — — — — — — — 1 0 0 — 1 0 0 0000 0000 0100 0100 0 IPC7 00A2 — — — — — — — — — — — — — — — — 0000 0000 0000 0000 F IPC8 00A4 — — — — — — — — — — — — — — — — 0000 0000 0000 0000 2 IPC9 00A6 — — — — — — — — — — — — — — — — 0000 0000 0000 0000 0 IPC10 00A8 — — — — — LVDIP<2:0> — — — — — — — — 0000 0100 0000 0000 1 Legend: u = uninitialized bit; — = unimplemented bit, read as ‘0’ 1 Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields. / 2 0 1 2 / 3 0 1 D S 2 7 0 / 13 3 9 G 0 -p a 1 g e 7 3 1

D TABLE 8-3: dsPIC30F3013 INTERRUPT CONTROLLER REGISTER MAP d S 70 SFR s 1 ADR Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State 3 Name P 9 G -p INTCON1 0080 NSTDIS — — — — OVATE OVBTE COVTE — — — MATHERR ADDRERR STKERR OSCFAIL — 0000 0000 0000 0000 I a C ge INTCON2 0082 ALTIVT DISI — — — — — — — — — — — INT2EP INT1EP INT0EP 0000 0000 0000 0000 72 IFS0 0084 CNIF MI2CIF SI2CIF NVMIF ADIF U1TXIF U1RXIF SPI1IF T3IF T2IF OC2IF IC2IF T1IF OC1IF IC1IF INT0IF 0000 0000 0000 0000 3 0 IFS1 0086 — — — — — — U2TXIF U2RXIF INT2IF — — — — — — INT1IF 0000 0000 0000 0000 F IFS2 0088 — — — — — LVDIF — — — — — — — — — — 0000 0000 0000 0000 2 IEC0 008C CNIE MI2CIE SI2CIE NVMIE ADIE U1TXIE U1RXIE SPI1IE T3IE T2IE OC2IE IC2IE T1IE OC1IE IC1IE INT0IE 0000 0000 0000 0000 0 IEC1 008E — — — — — U2TXIE U2RXIE INT2IE — — — — — — INT1IE 0000 0000 0000 0000 1 IEC2 0090 — — — — — LVDIE — — — — — — — — — — 0000 0000 0000 0000 1 IPC0 0094 — T1IP<2:0> — OC1IP<2:0> — IC1IP<2:0> — INT0IP<2:0> 0100 0100 0100 0100 / IPC1 0096 — T31P<2:0> — T2IP<2:0> — OC2IP<2:0> — IC2IP<2:0> 0100 0100 0100 0100 2 IPC2 0098 — ADIP<2:0> — U1TXIP<2:0> — U1RXIP<2:0> — SPI1IP<2:0> 0100 0100 0100 0100 0 1 IPC3 009A — CNIP<2:0> — MI2CIP<2:0> — SI2CIP<2:0> — NVMIP<2:0> 0100 0100 0100 0100 2 IPC4 009C — — — — — — — — — — — — — INT1IP<2:0> 0000 0000 0000 0100 / IPC5 009E — INT2IP<2:0> — — — — — — — — — 0100 0000 0000 0000 3 IPC6 00A0 — — — — — — — — — U2TXIP<2:0> — U2RXIP<2:0> 0000 0000 0100 0100 0 IPC7 00A2 — — — — — — — — — — — — — — — — 0000 0000 0000 0000 1 IPC8 00A4 — — — — — — — — — — — — — — — — 0000 0000 0000 0000 2 IPC9 00A6 — — — — — — — — — — — — — — — — 0000 0000 0000 0000 / 3 IPC10 00A8 — — — — — LVDIP<2:0> — — — — — — — — 0000 0100 0000 0000 0 Legend: u = uninitialized bit; — = unimplemented bit, read as ‘0’ 1 Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields. 3 © 2 0 1 0 M ic ro c h ip T e c h n o lo g y In c .

dsPIC30F2011/2012/3012/3013 9.0 TIMER1 MODULE These operating modes are determined by setting the appropriate bit(s) in the 16-bit SFR, T1CON. Figure9-1 Note: This data sheet summarizes features of presents a block diagram of the 16-bit timer module. this group ofdsPIC30F devices and is not 16-bit Timer Mode: In the 16-bit Timer mode, the timer intended to be a complete reference increments on every instruction cycle up to a match source. For more information on the CPU, value preloaded into the Period register PR1, then peripherals, register descriptions and resets to ‘0’ and continues to count. general device functionality, refer to the “dsPIC30F Family Reference Manual” When the CPU goes into the Idle mode, the timer stops (DS70046). incrementing unless the TSIDL (T1CON<13>) bit=0. If TSIDL = 1, the timer module logic resumes the incre- This section describes the 16-bit general purpose menting sequence on termination of CPU Idle mode. Timer1 module and associated operational modes. 16-bit Synchronous Counter Mode: In the 16-bit Figure9-1 depicts the simplified block diagram of the Synchronous Counter mode, the timer increments on 16-bit Timer1 module. The following sections provide the rising edge of the applied external clock signal detailed descriptions including setup and Control which is synchronized with the internal phase clocks. registers, along with associated block diagrams for the The timer counts up to a match value preloaded in PR1, operational modes of the timers. then resets to ‘0’ and continues. The Timer1 module is a 16-bit timer that serves as the When the CPU goes into the Idle mode, the timer stops time counter for the real-time clock or operates as a incrementing unless the respective TSIDL bit = 0. If free-running interval timer/counter. The 16-bit timer has TSIDL = 1, the timer module logic resumes the the following modes: incrementing sequence upon termination of the CPU • 16-bit Timer Idle mode. • 16-bit Synchronous Counter 16-bit Asynchronous Counter Mode: In the 16-bit • 16-bit Asynchronous Counter Asynchronous Counter mode, the timer increments on These operational characteristics are supported: every rising edge of the applied external clock signal. The timer counts up to a match value preloaded in PR1, • Timer gate operation then resets to ‘0’ and continues. • Selectable prescaler settings When the timer is configured for the Asynchronous • Timer operation during CPU Idle and Sleep mode of operation and the CPU goes into the Idle modes mode, the timer stops incrementing if TSIDL = 1. • Interrupt on 16-bit Period register match or falling edge of external gate signal FIGURE 9-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM PR1 Equal Comparator x 16 TSYNC 1 Sync TMR1 Reset 0 0 T1IF Event Flag 1 Q D TGATE E Q CK S AT C G TGATE T T TCKPS<1:0> TON 2 SOSCO/ T1CK 1 x Gate Prescaler LPOSCEN Sync 0 1 1, 8, 64, 256 SOSCI TCY 0 0 © 2010 Microchip Technology Inc. DS70139G-page 73

dsPIC30F2011/2012/3012/3013 9.1 Timer Gate Operation When the Gated Time Accumulation mode is enabled, an interrupt is also generated on the falling edge of the The 16-bit timer can be placed in the Gated Time gate signal (at the end of the accumulation cycle). Accumulation mode. This mode allows the internal TCY to increment the respective timer when the gate input Enabling an interrupt is accomplished via the signal (T1CK pin) is asserted high. Control bit, respective timer interrupt enable bit, T1IE. The timer TGATE(T1CON<6>), must be set to enable this mode. interrupt enable bit is located in the IEC0 Control The timer must be enabled (TON = 1) and the timer register in the interrupt controller. clock source set to internal (TCS = 0). 9.5 Real-Time Clock When the CPU goes into Idle mode, the timer stops Timer1, when operating in Real-Time Clock (RTC) incrementing unless TSIDL = 0. If TSIDL = 1, the timer mode, provides time of day and event time-stamping resumes the incrementing sequence upon termination capabilities. Key operational features of the RTC are: of the CPU Idle mode. • Operation from 32kHz LP oscillator 9.2 Timer Prescaler • 8-bit prescaler The input clock (FOSC/4 or external clock) to the 16-bit • Low power Timer has a prescale option of 1:1, 1:8, 1:64 and 1:256, • Real-Time Clock interrupts selected by control bits, TCKPS<1:0> (T1CON<5:4>). These operating modes are determined by setting the The prescaler counter is cleared when any of the appropriate bit(s) in the T1CON register. following occurs: FIGURE 9-2: RECOMMENDED • A write to the TMR1 register COMPONENTS FOR • A write to the T1CON register TIMER1 LP OSCILLATOR • A device Reset, such as a POR and BOR RTC However, if the timer is disabled (TON = 0), then the C1 timer prescaler cannot be reset since the prescaler clock is halted. SOSCI The TMR1 register is not cleared when the T1CON 32.768 kHz dsPIC30FXXXX register is written. It is cleared by writing to the TMR1 XTAL register. SOSCO 9.3 Timer Operation During Sleep Mode C2 R The timer operates during CPU Sleep mode, if: C1 = C2 = 18 pF; R = 100K • The timer module is enabled (TON = 1), and 9.5.1 RTC OSCILLATOR OPERATION • The timer clock source is selected as external (TCS = 1), and When the TON = 1, TCS = 1 and TGATE = 0, the timer increments on the rising edge of the 32 kHz LP oscilla- • The TSYNC bit (T1CON<2>) is asserted to a logic tor output signal, up to the value specified in the Period ‘0’ which defines the external clock source as register and is then reset to ‘0’. asynchronous. The TSYNC bit must be asserted to a logic ‘0’ When all three conditions are true, the timer continues (Asynchronous mode) for correct operation. to count up to the Period register and be reset to 0x0000. Enabling the LPOSCEN bit (OSCCON<1>) disables the normal Timer and Counter modes and enables a When a match between the timer and the Period timer carry-out wake-up event. register occurs, an interrupt can be generated if the respective timer interrupt enable bit is asserted. When the CPU enters Sleep mode, the RTC continues to operate, provided the 32kHz external crystal 9.4 Timer Interrupt oscillator is active and the control bits have not been changed. The TSIDL bit should be cleared to ‘0’ in The 16-bit timer has the ability to generate an order for RTC to continue operation in Idle mode. interrupt-on-period match. When the timer count matches the Period register, the T1IF bit is asserted and 9.5.2 RTC INTERRUPTS an interrupt is generated, if enabled. The T1IF bit must be cleared in software. The timer interrupt flag, T1IF, is When an interrupt event occurs, the respective interrupt located in the IFS0 Control register in the interrupt flag, T1IF, is asserted and an interrupt is generated if controller. enabled. The T1IF bit must be cleared in software. The respective Timer interrupt flag, T1IF, is located in the IFS0 register in the interrupt controller. DS70139G-page 74 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 Enabling an interrupt is accomplished via the respective timer interrupt enable bit, T1IE. The timer interrupt enable bit is located in the IEC0 Control register in the interrupt controller. © 2010 Microchip Technology Inc. DS70139G-page 75

D TABLE 9-1: TIMER1 REGISTER MAP d S 701 SFR Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State s 3 P 9 G TMR1 0100 Timer1 Register uuuu uuuu uuuu uuuu -pa PR1 0102 Period Register 1 1111 1111 1111 1111 IC g e T1CON 0104 TON — TSIDL — — — — — — TGATE TCKPS1 TCKPS0 — TSYNC TCS — 0000 0000 0000 0000 7 3 6 Legend: u = uninitialized bit; — = unimplemented bit, read as ‘0’ 0 Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields. F 2 0 1 1 / 2 0 1 2 / 3 0 1 2 / 3 0 1 3 © 2 0 1 0 M ic ro c h ip T e c h n o lo g y In c .

dsPIC30F2011/2012/3012/3013 10.0 TIMER2/3 MODULE For 32-bit timer/counter operation, Timer2 is the ls word and Timer3 is the ms word of the 32-bit timer. Note: This data sheet summarizes features of Note: For 32-bit timer operation, T3CON control this group ofdsPIC30F devices and is not bits are ignored. Only T2CON control bits intended to be a complete reference are used for setup and control. Timer2 source. For more information on the CPU, clock and gate inputs are utilized for the peripherals, register descriptions and 32-bit timer module, but an interrupt is general device functionality, refer to the generated with the Timer3 interrupt flag “dsPIC30F Family Reference Manual (T3IF) and the interrupt is enabled with the “(DS70046). Timer3 interrupt enable bit (T3IE). This section describes the 32-bit general purpose 16-bit Timer Mode: In the 16-bit mode, Timer2 and Timer module (Timer2/3) and associated Operational Timer3 can be configured as two independent 16-bit modes. Figure10-1 depicts the simplified block timers. Each timer can be set up in either 16-bit Timer diagram of the 32-bit Timer2/3 module. Figure10-2 mode or 16-bit Synchronous Counter mode. See and Figure10-3 show Timer2/3 configured as two Section9.0 “Timer1 Module” for details on these two independent 16-bit timers, Timer2 and Timer3, operating modes. respectively. The only functional difference between Timer2 and The Timer2/3 module is a 32-bit timer (which can be Timer3 is that Timer2 provides synchronization of the configured as two 16-bit timers) with selectable clock prescaler output. This is useful for high frequency operating modes. These timers are utilized by other external clock inputs. peripheral modules, such as: 32-bit Timer Mode: In the 32-bit Timer mode, the timer • Input Capture increments on every instruction cycle, up to a match • Output Compare/Simple PWM value preloaded into the combined 32-bit Period The following sections provide a detailed description, register PR3/PR2, then resets to ‘0’ and continues to including setup and Control registers, along with count. associated block diagrams for the operational modes of For synchronous 32-bit reads of the Timer2/Timer3 the timers. pair, reading the ls word (TMR2 register) causes the ms The 32-bit timer has the following modes: word to be read and latched into a 16-bit holding register, termed TMR3HLD. • Two independent 16-bit timers (Timer2 and Timer3) with all 16-bit operating modes (except For synchronous 32-bit writes, the holding register Asynchronous Counter mode) (TMR3HLD) must first be written to. When followed by a write to the TMR2 register, the contents of TMR3HLD • Single 32-bit timer operation is transferred and latched into the MSB of the 32-bit • Single 32-bit synchronous counter timer (TMR3). Further, the following operational characteristics are 32-bit Synchronous Counter Mode: In the 32-bit supported: Synchronous Counter mode, the timer increments on • ADC event trigger the rising edge of the applied external clock signal • Timer gate operation which is synchronized with the internal phase clocks. • Selectable prescaler settings The timer counts up to a match value preloaded in the combined 32-bit period register, PR3/PR2, then resets • Timer operation during Idle and Sleep modes to ‘0’ and continues. • Interrupt on a 32-bit period register match When the timer is configured for the Synchronous These operating modes are determined by setting the Counter mode of operation and the CPU goes into the appropriate bit(s) in the 16-bit T2CON and T3CON Idle mode, the timer stops incrementing unless the SFRs. TSIDL bit (T2CON<13>) = 0. If TSIDL = 1, the timer module logic resumes the incrementing sequence upon termination of the CPU Idle mode. © 2010 Microchip Technology Inc. DS70139G-page 77

dsPIC30F2011/2012/3012/3013 FIGURE 10-1: 32-BIT TIMER2/3 BLOCK DIAGRAM Data Bus<15:0> TMR3HLD 16 16 Write TMR2 Read TMR2 16 Reset TMR3 TMR2 Sync MSB LSB ADC Event Trigger Comparator x 32 Equal PR3 PR2 0 T3IF Event Flag 1 Q D TGATE (T2CON<6>) Q CK TGATE (T2CON<6>) E S AT C G T T TCKPS<1:0> TON 2 T2CK 1 x Gate Prescaler Sync 0 1 1, 8, 64, 256 TCY 0 0 Note: Timer Configuration bit T32 (T2CON<3>) must be set to ‘1’ for a 32-bit timer/counter operation. All control bits are respective to the T2CON register. DS70139G-page 78 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 10-2: 16-BIT TIMER2 BLOCK DIAGRAM PR2 Equal Comparator x 16 TMR2 Sync Reset 0 T2IF Event Flag 1 Q D TGATE Q CK TGATE E SAT CG TT TCKPS<1:0> TON 2 T2CK 1 x Gate Prescaler Sync 0 1 1, 8, 64, 256 TCY 0 0 FIGURE 10-3: 16-BIT TIMER3 BLOCK DIAGRAM PR3 ADC Event Trigger Equal Comparator x 16 TMR3 Reset 0 T3IF Event Flag 1 Q D TGATE Q CK TGATE E S AT C G T T TCKPS<1:0> TON 2 T3CK Sync 1 x Prescaler 0 1 1, 8, 64, 256 TCY 0 0 © 2010 Microchip Technology Inc. DS70139G-page 79

dsPIC30F2011/2012/3012/3013 10.1 Timer Gate Operation 10.4 Timer Operation During Sleep Mode The 32-bit timer can be placed in the Gated Time Accumulation mode. This mode allows the internal TCY The timer does not operate during CPU Sleep mode to increment the respective timer when the gate input because the internal clocks are disabled. signal (T2CK pin) is asserted high. Control bit, TGATE (T2CON<6>), must be set to enable this mode. When 10.5 Timer Interrupt in this mode, Timer2 is the originating clock source. The TGATE setting is ignored for Timer3. The timer The 32-bit timer module can generate an must be enabled (TON = 1) and the timer clock source interrupt-on-period match or on the falling edge of the set to internal (TCS = 0). external gate signal. When the 32-bit timer count matches the respective 32-bit period register, or the The falling edge of the external signal terminates the falling edge of the external “gate” signal is detected, the count operation but does not reset the timer. The user T3IF bit (IFS0<7>) is asserted and an interrupt is must reset the timer in order to start counting from zero. generated if enabled. In this mode, the T3IF interrupt flag is used as the source of the interrupt. The T3IF bit 10.2 ADC Event Trigger must be cleared in software. When a match occurs between the 32-bit timer Enabling an interrupt is accomplished via the (TMR3/TMR2) and the 32-bit combined period register respective timer interrupt enable bit, T3IE (IEC0<7>). (PR3/PR2), or between the 16-bit timer TMR3 and the 16-bit period register PR3, a special ADC trigger event signal is generated by Timer3. 10.3 Timer Prescaler The input clock (FOSC/4 or external clock) to the timer has a prescale option of 1:1, 1:8, 1:64, and 1:256, selected by control bits, TCKPS<1:0> (T2CON<5:4> and T3CON<5:4>). For the 32-bit timer operation, the originating clock source is Timer2. The prescaler operation for Timer3 is not applicable in this mode. The prescaler counter is cleared when any of the following occurs: • A write to the TMR2/TMR3 register • A write to the T2CON/T3CON register • A device Reset, such as a POR and BOR However, if the timer is disabled (TON = 0), the Timer 2 prescaler cannot be reset since the prescaler clock is halted. TMR2/TMR3 is not cleared when T2CON/T3CON is written. DS70139G-page 80 © 2010 Microchip Technology Inc.

© TABLE 10-1: TIMER2/3 REGISTER MAP 2 0 1 SFR Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State 0 M TMR2 0106 Timer2 Register uuuu uuuu uuuu uuuu ic ro TMR3HLD 0108 Timer3 Holding Register (for 32-bit timer operations only) uuuu uuuu uuuu uuuu c hip TMR3 010A Timer3 Register uuuu uuuu uuuu uuuu T PR2 010C Period Register 2 1111 1111 1111 1111 e c h PR3 010E Period Register 3 1111 1111 1111 1111 n olo T2CON 0110 TON — TSIDL — — — — — — TGATE TCKPS1 TCKPS0 T32 — TCS — 0000 0000 0000 0000 g y T3CON 0112 TON — TSIDL — — — — — — TGATE TCKPS1 TCKPS0 — — TCS — 0000 0000 0000 0000 In c Legend: u = uninitialized bit; — = unimplemented bit, read as ‘0’ . Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields. d s P I C 3 0 F 2 0 1 1 / 2 0 1 2 / 3 0 1 D S 2 7 0 / 13 3 9 G 0 -p a 1 g e 8 3 1

dsPIC30F2011/2012/3012/3013 NOTES: DS70139G-page 82 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 11.0 INPUT CAPTURE MODULE These operating modes are determined by setting the appropriate bits in the IC1CON and IC2CON registers. Note: This data sheet summarizes features of The dsPIC30F2011/2012/3012/3013 devices have two this group ofdsPIC30F devices and is not capture channels. intended to be a complete reference source. For more information on the CPU, 11.1 Simple Capture Event Mode peripherals, register descriptions and general device functionality, refer to the The simple capture events in the dsPIC30F product “dsPIC30F Family Reference Manual” family are: (DS70046). • Capture every falling edge • Capture every rising edge This section describes the input capture module and associated operational modes. The features provided • Capture every 4th rising edge by this module are useful in applications requiring • Capture every 16th rising edge frequency (period) and pulse measurement. • Capture every rising and falling edge Figure11-1 depicts a block diagram of the input These simple Input Capture modes are configured by capture module. Input capture is useful for such modes setting the appropriate bits, ICM<2:0> (ICxCON<2:0>). as: 11.1.1 CAPTURE PRESCALER • Frequency/Period/Pulse Measurements • Additional Sources of External Interrupts There are four input capture prescaler settings specified by bits ICM<2:0> (ICxCON<2:0>). Whenever Important operational features of the input capture the capture channel is turned off, the prescaler counter module are: is cleared. In addition, any Reset clears the prescaler • Simple Capture Event mode counter. • Timer2 and Timer3 mode selection • Interrupt on input capture event FIGURE 11-1: INPUT CAPTURE MODE BLOCK DIAGRAM(1) From GP Timer Module T2_CNT T3_CNT 16 16 ICTMR ICx pin 1 0 Prescaler Clock Edge FIFO 1, 4, 16 Synchronizer Detection R/W Logic Logic 3 ICM<2:0> ICxBUF Mode Select ICBNE, ICOV ICI<1:0> Interrupt ICxCON Logic Data Bus SSeett FFllaagg IICCxxIIFF Note 1: Where ‘x’ is shown, reference is made to the registers or bits associated to the respective input capture channel (1 or 2). © 2010 Microchip Technology Inc. DS70139G-page 83

dsPIC30F2011/2012/3012/3013 11.1.2 CAPTURE BUFFER OPERATION 11.2 Input Capture Operation During Sleep and Idle Modes Each capture channel has an associated FIFO buffer which is four 16-bit words deep. There are two status An input capture event generates a device wake-up or flags which provide status on the FIFO buffer: interrupt, if enabled, if the device is in CPU Idle or Sleep • ICBNE – Input Capture Buffer Not Empty mode. • ICOV – Input Capture Overflow Independent of the timer being enabled, the input The ICBNE is set on the first input capture event and capture module wakes up from the CPU Sleep or Idle remains set until all capture events have been read mode when a capture event occurs if ICM<2:0> = 111 from the FIFO. As each word is read from the FIFO, the and the interrupt enable bit is asserted. The same remaining words are advanced by one position within wake-up can generate an interrupt if the conditions for the buffer. processing the interrupt have been satisfied. Thewake-up feature is useful as a method of adding In the event that the FIFO is full with four capture extra external pin interrupts. events, and a fifth capture event occurs prior to a read of the FIFO, an overflow condition occurs and the ICOV 11.2.1 INPUT CAPTURE IN CPU SLEEP bit is set to a logic ‘1’. The fifth capture event is lost and MODE is not stored in the FIFO. No additional events are captured until all four events have been read from the CPU Sleep mode allows input capture module buffer. operation with reduced functionality. In the CPU Sleep mode, the ICI<1:0> bits are not applicable and the input If a FIFO read is performed after the last read and no capture module can only function as an external new capture event has been received, the read will interrupt source. yield indeterminate results. The capture module must be configured for interrupt 11.1.3 TIMER2 AND TIMER3 SELECTION only on rising edge (ICM<2:0> = 111) in order for the MODE input capture module to be used while the device is in Sleep mode. The prescale settings of 4:1 or 16:1 are The input capture module consists of up to 8 input not applicable in this mode. capture channels. Each channel can select between one of two timers for the time base, Timer2 or Timer3. 11.2.2 INPUT CAPTURE IN CPU IDLE Selection of the timer resource is accomplished MODE through SFR bit, ICTMR (ICxCON<7>). Timer3 is the CPU Idle mode allows input capture module operation default timer resource available for the input capture with full functionality. In the CPU Idle mode, the Interrupt module. mode selected by the ICI<1:0> bits is applicable, as well 11.1.4 HALL SENSOR MODE as the 4:1 and 16:1 capture prescale settings which are defined by control bits ICM<2:0>. This mode requires When the input capture module is set for capture on the selected timer to be enabled. Moreover, the ICSIDL every edge, rising and falling, ICM<2:0> = 001, the bit must be asserted to a logic ‘0’. following operations are performed by the input capture If the input capture module is defined as logic: ICM<2:0>=111 in CPU Idle mode, the input capture • The input capture interrupt flag is set on every pin serves only as an external interrupt pin. edge, rising and falling. • The interrupt on Capture mode setting bits, 11.3 Input Capture Interrupts ICI<1:0>, is ignored since every capture generates an interrupt. The input capture channels have the ability to generate an interrupt based on the selected number of capture • A capture overflow condition is not generated in events. The selection number is set by control this mode. bits,ICI<1:0> (ICxCON<6:5>). Each channel provides an interrupt flag (ICxIF) bit. The respective capture channel interrupt flag is located in the corresponding IFSx register. Enabling an interrupt is accomplished via the respective capture channel interrupt enable (ICxIE) bit. The capture interrupt enable bit is located in the corresponding IEC Control register. DS70139G-page 84 © 2010 Microchip Technology Inc.

© TABLE 11-1: INPUT CAPTURE REGISTER MAP 2 0 1 SFR Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State 0 M IC1BUF 0140 Input 1 Capture Register uuuu uuuu uuuu uuuu ic ro IC1CON 0142 — — ICSIDL — — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0000 0000 0000 0000 c hip IC2BUF 0144 Input 2 Capture Register uuuu uuuu uuuu uuuu T IC2CON 0146 — — ICSIDL — — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0000 0000 0000 0000 e c h Legend: u = uninitialized bit; — = unimplemented bit, read as ‘0’ n olo Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields. g y In c . d s P I C 3 0 F 2 0 1 1 / 2 0 1 2 / 3 0 1 D S 2 7 0 / 13 3 9 G 0 -p a 1 g e 8 3 5

dsPIC30F2011/2012/3012/3013 NOTES: DS70139G-page 86 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 12.0 OUTPUT COMPARE MODULE The key operational features of the output compare module include: Note: This data sheet summarizes features of • Timer2 and Timer3 Selection mode this group ofdsPIC30F devices and is not • Simple Output Compare Match mode intended to be a complete reference source. For more information on the CPU, • Dual Output Compare Match mode peripherals, register descriptions and • Simple PWM mode general device functionality, refer to the • Output Compare During Sleep and Idle modes “dsPIC30F Family Reference Manual” • Interrupt on Output Compare/PWM Event (DS70046). These operating modes are determined by setting the This section describes the output compare module and appropriate bits in the 16-bit OC1CON and OC2CON associated operational modes. The features provided registers. The dsPIC30F2011/2012/3012/3013 devices by this module are useful in applications requiring have 2 compare channels. operational modes, such as: OCxRS and OCxR in Figure12-1 represent the Dual • Generation of Variable Width Output Pulses Compare registers. In the Dual Compare mode, the • Power Factor Correction OCxR register is used for the first compare and OCxRS is used for the second compare. Figure12-1 depicts a block diagram of the output compare module. FIGURE 12-1: OUTPUT COMPARE MODE BLOCK DIAGRAM(1) Set Flag bit OCxIF OCxRS OCxR Output S Q Logic R OCx Output 3 Enable OCM<2:0> Mode Select Comparator OCTSEL OCFA 0 1 0 1 (for x = 1, 2, 3 or 4) From GP Timer Module TMR2<15:0 TMR3<15:0> T2P2_MATCH T3P3_MATCH Note 1: Where ‘x’ is shown, reference is made to the registers associated with the respective output compare channel (1 or 2). © 2010 Microchip Technology Inc. DS70139G-page 87

dsPIC30F2011/2012/3012/3013 12.1 Timer2 and Timer3 Selection Mode 12.3.2 CONTINUOUS PULSE MODE Each output compare channel can select between one For the user to configure the module for the generation of two 16-bit timers, Timer2 or Timer3. of a continuous stream of output pulses, the following steps are required: The selection of the timers is controlled by the OCTSEL bit (OCxCON<3>). Timer2 is the default timer resource • Determine instruction cycle time TCY. for the output compare module. • Calculate desired pulse value based on TCY. • Calculate timer to start pulse width from timer start 12.2 Simple Output Compare Match value of 0x0000. Mode • Write pulse width start and stop times into OCxR and OCxRS (x denotes channel 1 to N) Compare When control bits OCM<2:0> (OCxCON<2:0>) = 001, registers, respectively. 010 or 011, the selected output compare channel is • Set Timer Period register to value equal to or configured for one of three simple Output Compare greater than value in OCxRS Compare register. Match modes: • Set OCM<2:0> = 101. • Compare forces I/O pin low • Enable timer, TON bit (TxCON<15>) = 1. • Compare forces I/O pin high • Compare toggles I/O pin 12.4 Simple PWM Mode The OCxR register is used in these modes. The OCxR When control bits OCM<2:0> (OCxCON<2:0>) = 110 register is loaded with a value and is compared to the or 111, the selected output compare channel is selected incrementing timer count. When a compare configured for the PWM mode of operation. When occurs, one of these Compare Match modes occurs. If configured for the PWM mode of operation, OCxR is the counter resets to zero before reaching the value in the main latch (read-only) and OCxRS is the secondary OCxR, the state of the OCx pin remains unchanged. latch. This enables glitchless PWM transitions. 12.3 Dual Output Compare Match Mode The user must perform the following steps in order to configure the output compare module for PWM When control bits OCM<2:0> (OCxCON<2:0>) = 100 operation: or 101, the selected output compare channel is 1. Set the PWM period by writing to the appropriate configured for one of two Dual Output Compare modes, period register. which are: 2. Set the PWM duty cycle by writing to the OCxRS • Single Output Pulse mode register. • Continuous Output Pulse mode 3. Configure the output compare module for PWM operation. 12.3.1 SINGLE PULSE MODE 4. Set the TMRx prescale value and enable the For the user to configure the module for the generation Timer, TON bit (TxCON<15>) = 1. of a single output pulse, the following steps are required (assuming timer is off): 12.4.1 INPUT PIN FAULT PROTECTION FOR PWM • Determine instruction cycle time TCY. • Calculate desired pulse width value based on TCY. When control bits OCM<2:0> (OCxCON<2:0>) = 111, • Calculate time to start pulse from timer start value the selected output compare channel is again of 0x0000. configured for the PWM mode of operation with the additional feature of input Fault protection. While in this • Write pulse width start and stop times into OCxR mode, if a logic ‘0’ is detected on the OCFA/B pin, the and OCxRS Compare registers (x denotes respective PWM output pin is placed in the high channel 1 to N). impedance input state. The OCFLT bit (OCxCON<4>) • Set Timer Period register to value equal to or indicates whether a Fault condition has occurred. This greater than value in OCxRS Compare register. state is maintained until both of the following events • Set OCM<2:0> = 100. have occurred: • Enable timer, TON bit (TxCON<15>) = 1. • The external Fault condition has been removed. To initiate another single pulse, issue another write to • The PWM mode has been re-enabled by writing set OCM<2:0> = 100. to the appropriate control bits. DS70139G-page 88 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 12.4.2 PWM PERIOD When the selected TMRx is equal to its respective period register, PRx, the following four events occur on The PWM period is specified by writing to the PRx the next increment cycle: register. The PWM period can be calculated using Equation12-1. • TMRx is cleared. • The OCx pin is set. EQUATION 12-1: - Exception 1: If PWM duty cycle is 0x0000, the OCx pin remains low. PWM period = [(PRx) + 1] • 4 • Tosc • - Exception 2: If duty cycle is greater than PRx, (TMRx prescale value) the pin remains high. • The PWM duty cycle is latched from OCxRS into PWM frequency is defined as 1/[PWM period]. OCxR. • The corresponding timer interrupt flag is set. See Figure12-2 for key PWM period comparisons. Timer3 is referred to in Figure12-2 for clarity. FIGURE 12-2: PWM OUTPUT TIMING Period Duty Cycle TMR3 = PR3 TMR3 = PR3 T3IF = 1 T3IF = 1 (Interrupt Flag) (Interrupt Flag) OCxR = OCxRS OCxR = OCxRS TMR3 = Duty Cycle TMR3 = Duty Cycle (OCxR) (OCxR) © 2010 Microchip Technology Inc. DS70139G-page 89

dsPIC30F2011/2012/3012/3013 12.5 Output Compare Operation During 12.7 Output Compare Interrupts CPU Sleep Mode The output compare channels have the ability to When the CPU enters Sleep mode, all internal clocks generate an interrupt on a compare match, for are stopped. Therefore, when the CPU enters the whichever Match mode has been selected. Sleep state, the output compare channel drives the pin For all modes except the PWM mode, when a compare to the active state that was observed prior to entering event occurs, the respective interrupt flag (OCxIF) is the CPU Sleep state. asserted and an interrupt is generated if enabled. The For example, if the pin was high when the CPU entered OCxIF bit is located in the corresponding IFS register the Sleep state, the pin remains high. Likewise, if the and must be cleared in software. The interrupt is pin was low when the CPU entered the Sleep state, the enabled via the respective compare interrupt enable pin remains low. In either case, the output compare (OCxIE) bit located in the corresponding IEC Control module resumes operation when the device wakes up. register. For the PWM mode, when an event occurs, the 12.6 Output Compare Operation During respective timer interrupt flag (T2IF or T3IF) is asserted CPU Idle Mode and an interrupt is generated if enabled. The IF bit is located in the IFS0 register and must be cleared in When the CPU enters the Idle mode, the output software. The interrupt is enabled via the respective compare module can operate with full functionality. timer interrupt enable bit (T2IE or T3IE) located in the The output compare channel operates during the CPU IEC0 Control register. The output compare interrupt Idle mode if the OCSIDL bit (OCxCON<13>) is at logic flag is never set during the PWM mode of operation. ‘0’ and the selected time base (Timer2 or Timer3) is enabled and the TSIDL bit of the selected timer is set to logic ‘0’. DS70139G-page 90 © 2010 Microchip Technology Inc.

© TABLE 12-1: OUTPUT COMPARE REGISTER MAP 2 0 1 SFR Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State 0 M OC1RS 0180 Output Compare 1 Secondary Register 0000 0000 0000 0000 ic ro OC1R 0182 Output Compare 1 Main Register 0000 0000 0000 0000 c hip OC1CON 0184 — — OCSIDL — — — — — — — — OCFLT OCTSEL OCM<2:0> 0000 0000 0000 0000 T OC2RS 0186 Output Compare 2 Secondary Register 0000 0000 0000 0000 e c h OC2R 0188 Output Compare 2 Main Register 0000 0000 0000 0000 n olo OC2CON 018A — — OCSIDL — — — — — — — — OCFLT OCTSEL OCM<2:0> 0000 0000 0000 0000 g y Legend: — = unimplemented bit, read as ‘0’ Inc Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields. . d s P I C 3 0 F 2 0 1 1 / 2 0 1 2 / 3 0 1 D S 2 7 0 / 13 3 9 G 0 -p a 1 g e 9 3 1

dsPIC30F2011/2012/3012/3013 NOTES: DS70139G-page 92 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 13.0 SPI™ MODULE In Master mode operation, SCK1 is a clock output. In Slave mode, it is a clock input. Note: This data sheet summarizes features of A series of eight (8) or sixteen (16) clock pulses shift this group ofdsPIC30F devices and is not out bits from the SPI1SR to SDO1 pin and intended to be a complete reference simultaneously shift in data from SDI1 pin. An interrupt source. For more information on the CPU, is generated when the transfer is complete and the peripherals, register descriptions and interrupt flag bit (SPI1IF) is set. This interrupt can be general device functionality, refer to the disabled through the interrupt enable bit, SPI1IE. “dsPIC30F Family Reference Manual” The receive operation is double-buffered. When a (DS70046). complete byte is received, it is transferred from SPI1SR The Serial Peripheral Interface (SPI™) module is a to SPI1BUF. synchronous serial interface. It is useful for If the receive buffer is full when new data is being communicating with other peripheral devices, such as transferred from SPI1SR to SPI1BUF, the module will EEPROMs, shift registers, display drivers and A/D set the SPIROV bit indicating an overflow condition. converters, or other microcontrollers. It is compatible The transfer of the data from SPI1SR to SPI1BUF is not with Motorola's SPI and SIOP interfaces. The completed and the new data is lost. The module will not dsPIC30F2011/2012/3012/3013 devices feature one respond to SCL transitions while SPIROV is ‘1’, effec- SPI module, SPI1. tively disabling the module until SPI1BUF is read by 13.1 Operating Function Description user software. Transmit writes are also double-buffered. The user Figure13-1 is a simplified block diagram of the SPI writes to SPI1BUF. When the master or slave transfer module, which consists of a 16-bit shift register, is completed, the contents of the shift register SPI1SR, used for shifting data in and out, and a buffer (SPI1SR) are moved to the receive buffer. If any register, SPI1BUF. Control register SPI1CON (not transmit data has been written to the buffer register, the shown) configures the module. Additionally, status contents of the transmit buffer are moved to SPI1SR. register SPI1STAT (not shown) indicates various status The received data is thus placed in SPI1BUF and the conditions. transmit data in SPI1SR is ready for the next transfer. Note: See “dsPIC30F Family Reference Note: Both the transmit buffer (SPI1TXB) and Manual” (DS70046) for detailed the receive buffer (SPI1RXB) are mapped information on the control and status to the same register address, SPI1BUF. registers. Four I/O pins comprise the serial interface: • SDI1 (serial data input) • SDO1 (serial data output) • SCK1 (shift clock input or output) • SS1 (active-low slave select). © 2010 Microchip Technology Inc. DS70139G-page 93

dsPIC30F2011/2012/3012/3013 FIGURE 13-1: SPI BLOCK DIAGRAM Internal Data Bus Read Write SPIxBUF SPIxBUF Receive Transmit SPI1SR SDI1 bit 0 SDO1 Shift Clock SS & FSYNC Clock Edge Control Select Control SS1 Secondary Primary Prescaler Prescaler FCY 1:1 – 1:8 1, 4, 16, 64 SCK1 Enable Master Clock Figure13-2 depicts the a master/slave connection 13.1.2 SDO1 DISABLE between two processors. In Master mode, the clock is A control bit, DISSDO, is provided to the SPI1CON generated by prescaling the system clock. Data is register to allow the SDO1 output to be disabled. This transmitted as soon as a value is written to SPI1BUF. will allow the SPI module to be connected in an input The interrupt is generated at the middle of the transfer only configuration. SDO1 can also be used for general of the last bit. purpose I/O. In Slave mode, data is transmitted and received as external clock pulses appear on SCK. Again, the 13.2 Framed SPI Support interrupt is generated when the last bit is latched. If SS1 control is enabled, then transmission and The module supports a basic framed SPI protocol in reception are enabled only when SS1 = low. The SDO1 Master or Slave mode. The control bit, FRMEN, output will be disabled in SS1 mode with SS1 high. enables framed SPI support and causes the SS1 pin to perform the Frame Synchronization Pulse (FSYNC) The clock provided to the module is (FOSC/4). This function. The control bit, SPIFSD, determines whether clock is then prescaled by the primary (PPRE<1:0>) the SS1 pin is an input or an output (i.e., whether the and the secondary (SPRE<2:0>) prescale factors. The module receives or generates the Frame CKE bit determines whether transmit occurs on Synchronization Pulse). The frame pulse is an transition from active clock state to Idle clock state, or active-high pulse for a single SPI clock cycle. When vice versa. The CKP bit selects the Idle state (high or Frame Synchronization is enabled, the data low) for the clock. transmission starts only on the subsequent transmit 13.1.1 WORD AND BYTE edge of the SPI clock. COMMUNICATION A control bit, MODE16 (SPI1CON<10>), allows the module to communicate in either 16-bit or 8-bit mode. 16-bit operation is identical to 8-bit operation except that the number of bits transmitted is 16 instead of 8. The user software must disable the module prior to changing the MODE16 bit. The SPI module is reset when the MODE16 bit is changed by the user. A basic difference between 8-bit and 16-bit operation is that the data is transmitted out of bit 7 of the SPI1SR for 8-bit operation, and data is transmitted out of bit 15 of the SPI1SR for 16-bit operation. In both modes, data is shifted into bit 0 of the SPI1SR. DS70139G-page 94 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 13-2: SPI MASTER/SLAVE CONNECTION SPI Master SPI Slave SDO1 SDI1 Serial Input Buffer Serial Input Buffer (SPI1BUF) (SPI1BUF) SDI1 SDO1 Shift Register Shift Register (SPI1SR) (SPI1SR) MSb LSb MSb LSb Serial Clock SCK1 SCK1 PROCESSOR 1 PROCESSOR 2 13.3 Slave Select Synchronization 13.5 SPI Operation During CPU Idle Mode The SS1 pin allows a Synchronous Slave mode. The SPI must be configured in SPI Slave mode with SS1 When the device enters Idle mode, all clock sources pin control enabled (SSEN = 1). When the SS1 pin is remain functional. The SPISIDL bit (SPI1STAT<13>) low, transmission and reception are enabled and the selects if the SPI module will stop or continue on idle. If SDOx pin is driven. When SS1 pin goes high, the SPISIDL = 0, the module will continue to operate when SDOx pin is no longer driven. Also, the SPI module is the CPU enters Idle mode. If SPISIDL = 1, the module resynchronized, and all counters/control circuitry are will stop when the CPU enters Idle mode. reset. Therefore, when the SS1 pin is asserted low again, transmission/reception will begin at the MSb even if SS1 had been de-asserted in the middle of a transmit/receive. 13.4 SPI Operation During CPU Sleep Mode During Sleep mode, the SPI module is shut down. If the CPU enters Sleep mode while an SPI transaction is in progress, then the transmission and reception is aborted. The transmitter and receiver will stop in Sleep mode. However, register contents are not affected by entering or exiting Sleep mode. © 2010 Microchip Technology Inc. DS70139G-page 95

D TABLE 13-1: SPI1 REGISTER MAP d S 70 SFR s 1 Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State 3 Name P 9 G -p SPI1STAT 0220 SPIEN — SPISIDL — — — — — — SPIROV — — — — SPITBF SPIRBF 0000 0000 0000 0000 I a C g SPI1CON 0222 — FRMEN SPIFSD — DISSDO MODE16 SMP CKE SSEN CKP MSTEN SPRE2 SPRE1 SPRE0 PPRE1 PPRE0 0000 0000 0000 0000 e 9 SPI1BUF 0224 Transmit and Receive Buffer 0000 0000 0000 0000 3 6 Legend: — = unimplemented bit, read as ‘0’ 0 Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields. F 2 0 1 1 / 2 0 1 2 / 3 0 1 2 / 3 0 1 3 © 2 0 1 0 M ic ro c h ip T e c h n o lo g y In c .

dsPIC30F2011/2012/3012/3013 14.0 I2C™ MODULE 14.1.1 VARIOUS I2C MODES The following types of I2C operation are supported: Note: This data sheet summarizes features of this group ofdsPIC30F devices and is not • I2C slave operation with 7-bit addressing intended to be a complete reference • I2C slave operation with 10-bit addressing source. For more information on the CPU, • I2C master operation with 7-bit or 10-bit addressing peripherals, register descriptions and See the I2C programmer’s model (Figure14-1). general device functionality, refer to the “dsPIC30F Family Reference Manual” 14.1.2 PIN CONFIGURATION IN I2C MODE (DS70046). I2C has a 2-pin interface; the SCL pin is clock and the The Inter-Integrated Circuit (I2CTM) module provides SDA pin is data. complete hardware support for both Slave and Multi-Master modes of the I2C serial communication 14.1.3 I2C REGISTERS standard, with a 16-bit interface. I2CCON and I2CSTAT are control and status registers, This module offers the following key features: respectively. The I2CCON register is readable and • I2C interface supporting both master and slave writable. The lower 6 bits of I2CSTAT are read-only. The remaining bits of the I2CSTAT are read/write. operation. • I2C Slave mode supports 7-bit and 10-bit I2CRSR is the shift register used for shifting data, addressing. whereas I2CRCV is the buffer register to which data • I2C Master mode supports 7-bit and 10-bit bytes are written, or from which data bytes are read. I2CRCV is the receive buffer as shown in Figure14-1. addressing. I2CTRN is the transmit register to which bytes are • I2C port allows bidirectional transfers between written during a transmit operation, as shown in master and slaves. Figure14-2. • Serial clock synchronization for I2C port can be The I2CADD register holds the slave address. A Status used as a handshake mechanism to suspend and bit, ADD10, indicates 10-bit Address mode. The resume serial transfer (SCLREL control). I2CBRG acts as the Baud Rate Generator reload • I2C supports multi-master operation; detects bus value. collision and will arbitrate accordingly. In receive operations, I2CRSR and I2CRCV together 14.1 Operating Function Description form a double-buffered receiver. When I2CRSR receives a complete byte, it is transferred to I2CRCV The hardware fully implements all the master and slave and an interrupt pulse is generated. During functions of the I2C Standard and Fast mode transmission, the I2CTRN is not double-buffered. specifications, as well as 7 and 10-bit addressing. Note: Following a Restart condition in 10-bit Thus, the I2C module can operate either as a slave or mode, the user only needs to match the a master on an I2C bus. first 7-bit address. FIGURE 14-1: PROGRAMMER’S MODEL I2CRCV (8 bits) Bit 7 Bit 0 I2CTRN (8 bits) Bit 7 Bit 0 I2CBRG (9 bits) Bit 8 Bit 0 I2CCON (16 bits) Bit 15 Bit 0 I2CSTAT (16 bits) Bit 15 Bit 0 I2CADD (10 bits) Bit 9 Bit 0 © 2010 Microchip Technology Inc. DS70139G-page 97

dsPIC30F2011/2012/3012/3013 FIGURE 14-2: I2C™ BLOCK DIAGRAM Internal Data Bus I2CRCV Read Shift SCL Clock I2CRSR LSB SDA Addr_Match Match Detect Write I2CADD Read Start and Stop bit Detect Write T Start, Restart, A Stop bit Generate ST C I2 Read c gi o L Collision ol Detect ntr o Write C N O C C Acknowledge 2 I Read Generation Clock Stretching Write I2CTRN LSB Shift Read Clock Reload Control Write BRG Down I2CBRG Counter Read FCY DS70139G-page 98 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 14.2 I2C Module Addresses 14.3.2 SLAVE RECEPTION The I2CADD register contains the Slave mode If the R_W bit received is a ‘0’ during an address addresses. The register is a 10-bit register. match, then Receive mode is initiated. Incoming bits are sampled on the rising edge of SCL. After 8 bits are If the A10M bit (I2CCON<10>) is ‘0’, the address is received, if I2CRCV is not full or I2COV is not set, interpreted by the module as a 7-bit address. When an I2CRSR is transferred to I2CRCV. ACK is sent on the address is received, it is compared to the 7 LSb of the ninth clock. I2CADD register. If the RBF flag is set, indicating that I2CRCV is still If the A10M bit is ‘1’, the address is assumed to be a holding data from a previous operation (RBF = 1), then 10-bit address. When an address is received, it will be ACK is not sent; however, the interrupt pulse is compared with the binary value ‘11110 A9 A8’ (where generated. In the case of an overflow, the contents of A9 and A8 are two Most Significant bits of I2CADD). If the I2CRSR are not loaded into the I2CRCV. that value matches, the next address will be compared with the Least Significant 8 bits of I2CADD, as specified Note: The I2CRCV will be loaded if the I2COV in the 10-bit addressing protocol. bit = 1 and the RBF flag = 0. In this case, The 7-bit I2C Slave Addresses supported by the a read of the I2CRCV was performed but dsPIC30F are shown in Table14-1. the user did not clear the state of the I2COV bit before the next receive TABLE 14-1: 7-BIT I2C™ SLAVE occurred. The acknowledgement is not ADDRESSES sent (ACK = 1) and the I2CRCV is updated. 0x00 General call address or start byte 0x01-0x03 Reserved 14.4 I2C 10-bit Slave Mode Operation 0x04-0x07 Hs-mode Master codes 0x04-0x77 Valid 7-bit addresses In 10-bit mode, the basic receive and transmit 0x78-0x7b Valid 10-bit addresses (lower 7 operations are the same as in the 7-bit mode. However, bits) the criteria for address match is more complex. 0x7c-0x7f Reserved The I2C specification dictates that a slave must be addressed for a write operation with two address bytes 14.3 I2C 7-bit Slave Mode Operation following a Start bit. The A10M bit is a control bit that signifies that the Once enabled (I2CEN = 1), the slave module will wait address in I2CADD is a 10-bit address rather than a 7-bit for a Start bit to occur (i.e., the I2C module is ‘Idle’). address. The address detection protocol for the first byte Following the detection of a Start bit, 8 bits are shifted of a message address is identical for 7-bit and 10-bit into I2CRSR and the address is compared against messages, but the bits being compared are different. I2CADD. In 7-bit mode (A10M = 0), bits I2CADD<6:0> are compared against I2CRSR<7:1> and I2CRSR<0> I2CADD holds the entire 10-bit address. Upon is the R_W bit. All incoming bits are sampled on the ris- receiving an address following a Start bit, I2CRSR ing edge of SCL. <7:3> is compared against a literal ‘11110’ (the default 10-bit address) and I2CRSR<2:1> are compared If an address match occurs, an acknowledgement will against I2CADD<9:8>. If a match occurs and if be sent, and the slave event interrupt flag (SI2CIF) is R_W=0, the interrupt pulse is sent. The ADD10 bit will set on the falling edge of the ninth (ACK) bit. The be cleared to indicate a partial address match. If a address match does not affect the contents of the match fails or R_W = 1, the ADD10 bit is cleared and I2CRCV buffer or the RBF bit. the module returns to the Idle state. 14.3.1 SLAVE TRANSMISSION The low byte of the address is then received and compared with I2CADD<7:0>. If an address match If the R_W bit received is a ‘1’, then the serial port will occurs, the interrupt pulse is generated and the ADD10 go into Transmit mode. It will send ACK on the ninth bit bit is set, indicating a complete 10-bit address match. If and then hold SCL to ‘0’ until the CPU responds by an address match did not occur, the ADD10 bit is writing to I2CTRN. SCL is released by setting the cleared and the module returns to the Idle state. SCLREL bit, and 8 bits of data are shifted out. Data bits are shifted out on the falling edge of SCL, such that SDA is valid during SCL high. The interrupt pulse is sent on the falling edge of the ninth clock pulse, regardless of the status of the ACK received from the master. © 2010 Microchip Technology Inc. DS70139G-page 99

dsPIC30F2011/2012/3012/3013 14.4.1 10-BIT MODE SLAVE Clock stretching takes place following the ninth clock of TRANSMISSION the receive sequence. On the falling edge of the ninth clock at the end of the ACK sequence, if the RBF bit is Once a slave is addressed in this fashion with the full set, the SCLREL bit is automatically cleared, forcing 10-bit address (we will refer to this state as the SCL output to be held low. The user’s ISR must set “PRIOR_ADDR_MATCH”), the master can begin the SCLREL bit before reception is allowed to continue. sending data bytes for a slave reception operation. By holding the SCL line low, the user has time to service the ISR and read the contents of the I2CRCV 14.4.2 10-BIT MODE SLAVE RECEPTION before the master device can initiate another receive Once addressed, the master can generate a Repeated sequence. This will prevent buffer overruns from Start, reset the high byte of the address and set the occurring. R_W bit without generating a Stop bit, thus initiating a slave transmit operation. Note1: If the user reads the contents of the I2CRCV, clearing the RBF bit before the 14.5 Automatic Clock Stretch falling edge of the ninth clock, the SCLREL bit will not be cleared and clock In the Slave modes, the module can synchronize buffer stretching will not occur. reads and write to the master device by clock stretching. 2: The SCLREL bit can be set in software 14.5.1 TRANSMIT CLOCK STRETCHING regardless of the state of the RBF bit. The user should be careful to clear the RBF Both 10-bit and 7-bit Transmit modes implement clock bit in the ISR before the next receive stretching by asserting the SCLREL bit after the falling sequence in order to prevent an overflow edge of the ninth clock, if the TBF bit is cleared, condition. indicating the buffer is empty. In Slave Transmit modes, clock stretching is always 14.5.4 CLOCK STRETCHING DURING performed irrespective of the STREN bit. 10-BIT ADDRESSING (STREN = 1) Clock synchronization takes place following the ninth Clock stretching takes place automatically during the clock of the transmit sequence. If the device samples addressing sequence. Because this module has a an ACK on the falling edge of the ninth clock and if the register for the entire address, it is not necessary for TBF bit is still clear, then the SCLREL bit is the protocol to wait for the address to be updated. automatically cleared. The SCLREL being cleared to ‘0’ will assert the SCL line low. The user’s ISR must set After the address phase is complete, clock stretching the SCLREL bit before transmission is allowed to will occur on each data receive or transmit sequence as continue. By holding the SCL line low, the user has time was described earlier. to service the ISR and load the contents of the I2CTRN before the master device can initiate another transmit 14.6 Software Controlled Clock sequence. Stretching (STREN = 1) Note1: If the user loads the contents of I2CTRN, When the STREN bit is ‘1’, the SCLREL bit may be setting the TBF bit before the falling edge cleared by software to allow software to control the of the ninth clock, the SCLREL bit will not clock stretching. The logic will synchronize writes to the be cleared and clock stretching will not SCLREL bit with the SCL clock. Clearing the SCLREL occur. bit will not assert the SCL output until the module 2: The SCLREL bit can be set in software, detects a falling edge on the SCL output and SCL is regardless of the state of the TBF bit. sampled low. If the SCLREL bit is cleared by the user while the SCL line has been sampled low, the SCL 14.5.2 RECEIVE CLOCK STRETCHING output will be asserted (held low). The SCL output will remain low until the SCLREL bit is set, and all other The STREN bit in the I2CCON register can be used to devices on the I2C bus have de-asserted SCL. This enable clock stretching in Slave Receive mode. When ensures that a write to the SCLREL bit will not violate the STREN bit is set, the SCL pin will be held low at the the minimum high time requirement for SCL. end of each data receive sequence. If the STREN bit is ‘0’, a software write to the SCLREL 14.5.3 CLOCK STRETCHING DURING bit will be disregarded and have no effect on the 7-BIT ADDRESSING (STREN = 1) SCLREL bit. When the STREN bit is set in Slave Receive mode, the SCL line is held low when the buffer register is full. The method for stretching the SCL output is the same for both 7 and 10-bit addressing modes. DS70139G-page 100 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 14.7 Interrupts 14.11 I2C Master Support The I2C module generates two interrupt flags, MI2CIF As a master device, six operations are supported: (I2C Master Interrupt Flag) and SI2CIF (I2C Slave • Assert a Start condition on SDA and SCL. Interrupt Flag). The MI2CIF interrupt flag is activated • Assert a Restart condition on SDA and SCL. on completion of a master message event. The SI2CIF interrupt flag is activated on detection of a message • Write to the I2CTRN register initiating directed to the slave. transmission of data/address. • Generate a Stop condition on SDA and SCL. 14.8 Slope Control • Configure the I2C port to receive data. • Generate an ACK condition at the end of a The I2C standard requires slope control on the SDA received byte of data. and SCL signals for Fast mode (400 kHz). The control bit, DISSLW, enables the user to disable slew rate 14.12 I2C Master Operation control if desired. It is necessary to disable the slew rate control for 1 MHz mode. The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is 14.9 IPMI Support ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also The control bit, IPMIEN, enables the module to support the beginning of the next serial transfer, the I2C bus will Intelligent Peripheral Management Interface (IPMI). not be released. When this bit is set, the module accepts and acts upon all addresses. In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The 14.10 General Call Address Support first byte transmitted contains the slave address of the receiving device (7 bits) and the data direction bit. In The general call address can address all devices. this case, the data direction bit (R_W) is logic ‘0’. Serial When this address is used, all devices should, in data is transmitted 8 bits at a time. After each byte is theory, respond with an acknowledgement. transmitted, an ACK bit is received. Start and Stop conditions are output to indicate the beginning and the The general call address is one of eight addresses reserved for specific purposes by the I2C protocol. It end of a serial transfer. consists of all ‘0’s with R_W = 0. In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device The general call address is recognized when the (7bits) and the data direction bit. In this case, the data General Call Enable (GCEN) bit is set direction bit (R_W) is logic ‘1’. Thus, the first byte (I2CCON<7>=1). Following a Start bit detection, 8 bits transmitted is a 7-bit slave address, followed by a ‘1’ to are shifted into I2CRSR and the address is compared indicate receive bit. Serial data is received via SDA with I2CADD, and is also compared with the general while SCL outputs the serial clock. Serial data is call address which is fixed in hardware. received 8bits at a time. After each byte is received, an If a general call address match occurs, the I2CRSR is ACK bit is transmitted. Start and Stop conditions transferred to the I2CRCV after the eighth clock, the RBF indicate the beginning and end of transmission. flag is set and on the falling edge of the ninth bit (ACK bit), the master event interrupt flag (MI2CIF) is set. 14.12.1 I2C MASTER TRANSMISSION When the interrupt is serviced, the source for the Transmission of a data byte, a 7-bit address, or the sec- interrupt can be checked by reading the contents of the ond half of a 10-bit address, is accomplished by simply I2CRCV to determine if the address was device writing a value to I2CTRN register. The user should specific or a general call address. only write to I2CTRN when the module is in a WAIT state. This action will set the Buffer Full Flag (TBF) and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. The Transmit Status Flag, TRSTAT (I2CSTAT<14>), indicates that a master transmit is in progress. © 2010 Microchip Technology Inc. DS70139G-page 101

dsPIC30F2011/2012/3012/3013 14.12.2 I2C MASTER RECEPTION If a transmit was in progress when the bus collision occurred, the transmission is halted, the TBF flag is Master mode reception is enabled by programming the Receive Enable bit, RCEN (I2CCON<3>). The I2C cleared, the SDA and SCL lines are de-asserted and a value can now be written to I2CTRN. When the user module must be Idle before the RCEN bit is set, services the I2C master event Interrupt Service otherwise the RCEN bit will be disregarded. The Baud Routine, if the I2C bus is free (i.e., the P bit is set), the Rate Generator begins counting and on each rollover, user can resume communication by asserting a Start the state of the SCL pin ACK and data are shifted into condition. the I2CRSR on the rising edge of each clock. If a Start, Restart, Stop or Acknowledge condition was 14.12.3 BAUD RATE GENERATOR in progress when the bus collision occurred, the In I2C Master mode, the reload value for the BRG is condition is aborted, the SDA and SCL lines are de-asserted, and the respective control bits in the located in the I2CBRG register. When the BRG is I2CCON register are cleared to ‘0’. When the user loaded with this value, the BRG counts down to ‘0’ and services the bus collision Interrupt Service Routine, stops until another reload has taken place. If clock and if the I2C bus is free, the user can resume arbitration is taking place, for instance, the BRG is communication by asserting a Start condition. reloaded when the SCL pin is sampled high. As per the I2C standard, FSCK may be 100 kHz or The master will continue to monitor the SDA and SCL pins, and if a Stop condition occurs, the MI2CIF bit will 400kHz. However, the user can specify any baud rate be set. up to 1 MHz. I2CBRG values of ‘0’ or ‘1’ are illegal. A write to the I2CTRN will start the transmission of data EQUATION 14-1: SERIAL CLOCK RATE at the first data bit regardless of where the transmitter left off when bus collision occurred. I2CBRG = ( FCY – FCY ) – 1 In a multi-master environment, the interrupt generation FSCL 1,111,111 on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I2C bus can be taken when the P bit is set in the I2CSTAT 14.12.4 CLOCK ARBITRATION register, or the bus is Idle and the S and P bits are cleared. Clock arbitration occurs when the master de-asserts the SCL pin (SCL allowed to float high) during any 14.13 I2C Module Operation During CPU receive, transmit, or Restart/Stop condition. When the SCL pin is allowed to float high, the Baud Rate Sleep and Idle Modes Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is 14.13.1 I2C OPERATION DURING CPU sampled high, the Baud Rate Generator is reloaded SLEEP MODE with the contents of I2CBRG and begins counting. This When the device enters Sleep mode, all clock sources ensures that the SCL high time will always be at least to the module are shut down and stay at logic‘0’. If one BRG rollover count in the event that the clock is Sleep occurs in the middle of a transmission and the held low by an external device. state machine is partially into a transmission as the clocks stop, then the transmission is aborted. Similarly, 14.12.5 MULTI-MASTER COMMUNICATION, if Sleep occurs in the middle of a reception, then the BUS COLLISION, AND BUS reception is aborted. ARBITRATION Multi-master operation support is achieved by bus 14.13.2 I2C OPERATION DURING CPU IDLE arbitration. When the master outputs address/data bits MODE onto the SDA pin, arbitration takes place when the For the I2C, the I2CSIDL bit selects if the module will master outputs a ‘1’ on SDA by letting SDA float high stop on Idle or continue on Idle. If I2CSIDL = 0, the while another master asserts a ‘0’. When the SCL pin module will continue operation on assertion of the Idle floats high, data should be stable. If the expected data mode. If I2CSIDL = 1, the module will stop on Idle. on SDA is a ‘1’ and the data sampled on the SDA pin=0, then a bus collision has taken place. The master will set the MI2CIF pulse and reset the master portion of the I2C port to its Idle state. DS70139G-page 102 © 2010 Microchip Technology Inc.

© TABLE 14-2: I2C REGISTER MAP 2 0 1 SFR Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State 0 M I2CRCV 0200 — — — — — — — — Receive Register 0000 0000 0000 0000 ic ro I2CTRN 0202 — — — — — — — — Transmit Register 0000 0000 1111 1111 c hip I2CBRG 0204 — — — — — — — Baud Rate Generator 0000 0000 0000 0000 T I2CCON 0206 I2CEN — I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 0001 0000 0000 0000 e c h I2CSTAT 0208 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D_A P S R_W RBF TBF 0000 0000 0000 0000 n olo I2CADD 020A — — — — — — Address Register 0000 0000 0000 0000 g y Legend: — = unimplemented bit, read as ‘0’ Inc Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields. . d s P I C 3 0 F 2 0 1 1 / 2 0 1 2 / 3 0 1 D S 7 2 0 1 / 39 3 G -p 0 a g 1 e 1 3 0 3

dsPIC30F2011/2012/3012/3013 NOTES: DS70139G-page 104 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 15.0 UNIVERSAL ASYNCHRONOUS 15.1 UART Module Overview RECEIVER TRANSMITTER The key features of the UART module are: (UART) MODULE • Full-duplex, 8 or 9-bit data communication Note: This data sheet summarizes features of • Even, odd or no parity options (for 8-bit data) this group ofdsPIC30F devices and is not • One or two Stop bits intended to be a complete reference • Fully integrated Baud Rate Generator with 16-bit source. For more information on the CPU, prescaler peripherals, register descriptions and • Baud rates range from 38 bps to 1.875 Mbps at a general device functionality, refer to the 30 MHz instruction rate “dsPIC30F Family Reference Manual” • 4-word deep transmit data buffer (DS70046). • 4-word deep receive data buffer This section describes the Universal Asynchronous • Parity, framing and buffer overrun error detection Receiver/Transmitter Communications module. The • Support for interrupt only on address detect dsPIC30F2011/2012/3012 processors have one UART (9th bit = 1) module (UART1). The dsPIC30F3013 processor has • Separate transmit and receive interrupts two UART modules (UART1 and UART2). • Loopback mode for diagnostic support • Alternate receive and transmit pins for UART1 FIGURE 15-1: UART TRANSMITTER BLOCK DIAGRAM Internal Data Bus Control and Status bits Write Write UTX8 UxTXREG Low Byte Transmit Control – Control TSR – Control Buffer – Generate Flags – Generate Interrupt Load TSR UxTXIF UTXBRK Data Transmit Shift Register (UxTSR) ‘0’ (Start) UxTX ‘1’ (Stop) Parity GePnaerritaytor 16 Divider 1fr6oxm B Baauudd C Rloactek Generator Control Signals Note: x = 1 or 2. © 2010 Microchip Technology Inc. DS70139G-page 105

dsPIC30F2011/2012/3012/3013 FIGURE 15-2: UART RECEIVER BLOCK DIAGRAM Internal Data Bus 16 Read Write Read Read Write UxMODE UxSTA URX8 UxRXREG Low Byte Receive Buffer Control – Generate Flags – Generate Interrupt – Shift Data Characters LPBACK 8-9 From UxTX 1 Load RSR to Buffer Control R R UxRX Receive Shift Register Signals ER ER 0 (UxRSR) P F · Start bit Detect · Parity Check · Stop bit Detect 16 Divider · Shift Clock Generation · Wake Logic 16x Baud Clock from Baud Rate Generator UxRXIF DS70139G-page 106 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 15.2 Enabling and Setting Up UART 15.3 Transmitting Data 15.2.1 ENABLING THE UART 15.3.1 TRANSMITTING IN 8-BIT DATA MODE The UART module is enabled by setting the UARTEN bit in the UxMODE register (where x = 1 or 2). Once The following steps must be performed to transmit 8-bit enabled, the UxTX and UxRX pins are configured as an data: output and an input respectively, overriding the TRIS 1. Set up the UART: and LAT register bit settings for the corresponding I/O First, the data length, parity and number of Stop port pins. The UxTX pin is at logic ‘1’ when no bits must be selected. Then, the transmit and transmission is taking place. receive interrupt enable and priority bits are setup in the UxMODE and UxSTA registers. 15.2.2 DISABLING THE UART Also, the appropriate baud rate value must be The UART module is disabled by clearing the UARTEN written to the UxBRG register. bit in the UxMODE register. This is the default state 2. Enable the UART by setting the UARTEN bit after any Reset. If the UART is disabled, all I/O pins (UxMODE<15>). operate as port pins under the control of the LAT and 3. Set the UTXEN bit (UxSTA<10>), thereby TRIS bits of the corresponding port pins. enabling a transmission. Disabling the UART module resets the buffers to empty 4. Write the byte to be transmitted to the lower byte states. Any data characters in the buffers are lost and of UxTXREG. The value will be transferred to the the baud rate counter is reset. Transmit Shift register (UxTSR) immediately All error and status flags associated with the UART and the serial bit stream will start shifting out module are reset when the module is disabled. The during the next rising edge of the baud clock. URXDA, OERR, FERR, PERR, UTXEN, UTXBRK and Alternatively, the data byte may be written while UTXBF bits are cleared, whereas RIDLE and TRMT UTXEN = 0, following which, the user may set are set. Other control bits, including ADDEN, UTXEN. This will cause the serial bit stream to URXISEL<1:0>, UTXISEL, as well as the UxMODE begin immediately because the baud clock will and UxBRG registers, are not affected. start from a cleared state. Clearing the UARTEN bit while the UART is active will 5. A transmit interrupt will be generated, abort all pending transmissions and receptions and depending on the value of the interrupt control reset the module as defined above. Re-enabling the bit UTXISEL (UxSTA<15>). UART will restart the UART in the same configuration. 15.3.2 TRANSMITTING IN 9-BIT DATA 15.2.3 ALTERNATE I/O MODE The alternate I/O function is enabled by setting the The sequence of steps involved in the transmission ALTIO bit (UxMODE<10>). If ALTIO = 1, the UxATX of9-bit data is similar to 8-bit transmission, except that and UxARX pins (alternate transmit and alternate a 16-bit data word (of which the upper 7 bits are always receive pins, respectively) are used by the UART clear) must be written to the UxTXREG register. module instead of the UxTX and UxRX pins. If ALTIO= 0, the UxTX and UxRX pins are used by the 15.3.3 TRANSMIT BUFFER (UXTXB) UART module. The transmit buffer is 9 bits wide and 4 characters deep. Including the Transmit Shift register (UxTSR), the user 15.2.4 SETTING UP DATA, PARITY AND effectively has a 5-deep FIFO (First-In, First- Out) buffer. STOP BIT SELECTIONS The UTXBF bit (UxSTA<9>) indicates whether the Control bits PDSEL<1:0> in the UxMODE register are transmit buffer is full. used to select the data length and parity used in the If a user attempts to write to a full buffer, the new data transmission. The data length may either be 8 bits with will not be accepted into the FIFO and no data shift will even, odd or no parity, or 9 bits with no parity. occur within the buffer. This enables recovery from a The STSEL bit determines whether one or two Stop bits buffer overrun condition. will be used during data transmission. The FIFO is reset during any device Reset, but is not The default (power-on) setting of the UART is 8 bits, no affected when the device enters or wakes up from a parity and 1 Stop bit (typically represented as 8, N, 1). Power Saving mode. © 2010 Microchip Technology Inc. DS70139G-page 107

dsPIC30F2011/2012/3012/3013 15.3.4 TRANSMIT INTERRUPT 15.4.2 RECEIVE BUFFER (UXRXB) The transmit interrupt flag (U1TXIF or U2TXIF) is The receive buffer is 4 words deep. Including the located in the corresponding interrupt flag register. Receive Shift register (UxRSR), the user effectively has a 5-word deep FIFO buffer. The transmitter generates an edge to set the UxTXIF bit. The condition for generating the interrupt depends URXDA (UxSTA<0>) = 1 indicates that the receive on the UTXISEL control bit: buffer has data available. URXDA = 0 implies that the buffer is empty. If a user attempts to read an empty a) If UTXISEL = 0, an interrupt is generated when buffer, the old values in the buffer will be read and no a word is transferred from the transmit buffer to data shift will occur within the FIFO. the Transmit Shift register (UxTSR). This means that the transmit buffer has at least one empty The FIFO is reset during any device Reset. It is not word. affected when the device enters or wakes up from a b) If UTXISEL = 1, an interrupt is generated when Power Saving mode. a word is transferred from the transmit buffer to 15.4.3 RECEIVE INTERRUPT the Transmit Shift register (UxTSR) and the transmit buffer is empty. The receive interrupt flag (U1RXIF or U2RXIF) can be read from the corresponding interrupt flag register. The Switching between the two Interrupt modes during interrupt flag is set by an edge generated by the operation is possible and sometimes offers more receiver. The condition for setting the receive interrupt flexibility. flag depends on the settings specified by 15.3.5 TRANSMIT BREAK theURXISEL<1:0> (UxSTA<7:6>) control bits. Setting the UTXBRK bit (UxSTA<11>) will cause the a) If URXISEL<1:0> = 00 or 01, an interrupt is UxTX line to be driven to logic ‘0’. The UTXBRK bit generated every time a data word is transferred overrides all transmission activity. Therefore, the user from the Receive Shift register (UxRSR) to the should generally wait for the transmitter to be Idle receive buffer. There may be one or more before setting UTXBRK. characters in the receive buffer. b) If URXISEL<1:0> = 10, an interrupt is generated To send a Break character, the UTXBRK bit must be set when a word is transferred from the Receive Shift by software and must remain set for a minimum of 13 register (UxRSR) to the receive buffer, which as a baud clock cycles. The UTXBRK bit is then cleared by result of the transfer, contains 3 characters. software to generate Stop bits. The user must wait for a duration of at least one or two baud clock cycles in c) If URXISEL<1:0> = 11, an interrupt is set when order to ensure a valid Stop bit(s) before reloading the a word is transferred from the Receive Shift UxTXB, or starting other transmitter activity. register (UxRSR) to the receive buffer, which as Transmission of a Break character does not generate a a result of the transfer, contains 4 characters transmit interrupt. (i.e., becomes full). Switching between the Interrupt modes during 15.4 Receiving Data operation is possible, though generally not advisable during normal operation. 15.4.1 RECEIVING IN 8-BIT OR 9-BIT DATA MODE 15.5 Reception Error Handling The following steps must be performed while receiving 8-bit or 9-bit data: 15.5.1 RECEIVE BUFFER OVERRUN ERROR (OERR BIT) 1. Set up the UART (see Section15.3.1 “Transmitting in 8-bit data mode”). The OERR bit (UxSTA<1>) is set if all of the following 2. Enable the UART (see Section15.3.1 conditions occur: “Transmitting in 8-bit data mode”). a) The receive buffer is full. 3. A receive interrupt will be generated when one b) The Receive Shift register is full, but unable to or more data words have been received, depend- transfer the character to the receive buffer. ing on the receive interrupt settings specified by c) The Stop bit of the character in the UxRSR is the URXISEL bits (UxSTA<7:6>). detected, indicating that the UxRSR needs to 4. Read the OERR bit to determine if an overrun error transfer the character to the buffer. has occurred. The OERR bit must be reset in soft- Once OERR is set, no further data is shifted in UxRSR ware. (until the OERR bit is cleared in software or a Reset 5. Read the received data from UxRXREG. The act occurs). The data held in UxRSR and UxRXREG of reading UxRXREG will move the next word to remains valid. the top of the receive FIFO, and the PERR and FERR values will be updated. DS70139G-page 108 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 15.5.2 FRAMING ERROR (FERR) 15.7 Loopback Mode The FERR bit (UxSTA<2>) is set if a ‘0’ is detected Setting the LPBACK bit enables this special mode in instead of a Stop bit. If two Stop bits are selected, both which the UxTX pin is internally connected to the UxRX Stop bits must be ‘1’, otherwise FERR will be set. The pin. When configured for the Loopback mode, the read-only FERR bit is buffered along with the received UxRX pin is disconnected from the internal UART data. It is cleared on any Reset. receive logic. However, the UxTX pin still functions as in a normal operation. 15.5.3 PARITY ERROR (PERR) To select this mode: The PERR bit (UxSTA<3>) is set if the parity of the received word is incorrect. This error bit is applicable a) Configure UART for desired mode of operation. only if a Parity mode (odd or even) is selected. The b) Set LPBACK = 1 to enable Loopback mode. read-only PERR bit is buffered along with the received c) Enable transmission as defined in Section15.3 data bytes. It is cleared on any Reset. “Transmitting Data”. 15.5.4 IDLE STATUS 15.8 Baud Rate Generator When the receiver is active (i.e., between the initial The UART has a 16-bit Baud Rate Generator to allow detection of the Start bit and the completion of the Stop maximum flexibility in baud rate generation. The Baud bit), the RIDLE bit (UxSTA<4>) is ‘0’. Between the com- Rate Generator register (UxBRG) is readable and pletion of the Stop bit and detection of the next Start bit, writable. The baud rate is computed as follows: the RIDLE bit is ‘1’, indicating that the UART is Idle. BRG = 16-bit value held in UxBRG register 15.5.5 RECEIVE BREAK (0 through 65535) The receiver will count and expect a certain number of FCY = Instruction Clock Rate (1/TCY) bit times based on the values programmed in the PDSEL The baud rate is given by Equation15-1. (UxMODE<2:1>) and STSEL (UxMODE<0>) bits. If the break is longer than 13 bit times, the reception is EQUATION 15-1: BAUD RATE considered complete after the number of bit times specified by PDSEL and STSEL. The URXDA bit is set, Baud Rate = FCY / (16*(BRG+1)) FERR is set, zeros are loaded into the receive FIFO, interrupts are generated if appropriate and the RIDLE bit is set. Therefore, the maximum baud rate possible is: When the module receives a long break signal and the FCY /16 (if BRG = 0), receiver has detected the Start bit, the data bits and the and the minimum baud rate possible is: invalid Stop bit (which sets the FERR), the receiver FCY / (16* 65536). must wait for a valid Stop bit before looking for the next Start bit. It cannot assume that the break condition on With a full 16-bit Baud Rate Generator at 30 MIPS the line is the next Start bit. operation, the minimum baud rate achievable is 28.5bps. Break is regarded as a character containing all ‘0’s with the FERR bit set. The Break character is loaded into 15.9 Auto-Baud Support the buffer. No further reception can occur until a Stop bit is received. Note that RIDLE goes high when the Stop To allow the system to determine baud rates of bit has not yet been received. received characters, the input can be optionally linked to a selected capture input (IC1 for UART1 and IC2 for 15.6 Address Detect Mode UART2). To enable this mode, you must program the input capture module to detect the falling and rising Setting the ADDEN bit (UxSTA<5>) enables this edges of the Start bit. special mode in which a 9th bit (URX8) value of ‘1’ identifies the received word as an address, rather than data. This mode is only applicable for 9-bit data communication. The URXISEL control bit does not have any impact on interrupt generation in this mode since an interrupt (if enabled) will be generated every time the received word has the 9th bit set. © 2010 Microchip Technology Inc. DS70139G-page 109

dsPIC30F2011/2012/3012/3013 15.10 UART Operation During CPU Sleep and Idle Modes 15.10.1 UART OPERATION DURING CPU SLEEP MODE When the device enters Sleep mode, all clock sources to the module are shut down and stay at logic ‘0’. If entry into Sleep mode occurs while a transmission is in progress, then the transmission is aborted. The UxTX pin is driven to logic ‘1’. Similarly, if entry into Sleep mode occurs while a reception is in progress, then the reception is aborted. The UxSTA, UxMODE, transmit and receive registers and buffers, and the UxBRG register are not affected by Sleep mode. If the WAKE bit (UxMODE<7>) is set before the device enters Sleep mode, then a falling edge on the UxRX pin will generate a receive interrupt. The Receive Interrupt Select mode bit (URXISEL) has no effect for this function. If the receive interrupt is enabled, then this will wake-up the device from Sleep. The UARTEN bit must be set in order to generate a wake-up interrupt. 15.10.2 UART OPERATION DURING CPU IDLE MODE For the UART, the USIDL bit selects if the module will stop operation when the device enters Idle mode or whether the module will continue on Idle. If USIDL=0, the module will continue to operate during Idle mode. If USIDL = 1, the module will stop on Idle. DS70139G-page 110 © 2010 Microchip Technology Inc.

© TABLE 15-1: UART1 REGISTER MAP FOR dsPIC30F2011/2012/3012/3013 2 0 1 SFR Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State 0 M U1MODE 020C UARTEN — USIDL — — ALTIO — — WAKE LPBACK ABAUD — — PDSEL1 PDSEL0 STSEL 0000 0000 0000 0000 ic ro U1STA 020E UTXISEL — — — UTXBRK UTXEN UTXBF TRMT URXISEL1 URXISEL0 ADDEN RIDLE PERR FERR OERR URXDA 0000 0001 0001 0000 c hip U1TXREG 0210 — — — — — — — UTX8 Transmit Register 0000 000u uuuu uuuu T U1RXREG 0212 — — — — — — — URX8 Receive Register 0000 0000 0000 0000 e c h U1BRG 0214 Baud Rate Generator Prescaler 0000 0000 0000 0000 n olo Legend: u = uninitialized bit; — = unimplemented bit, read as ‘0’ g y In TABLE 15-2: UART2 REGISTER MAP FOR dsPIC30F3013(1) c . SFR Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State Name U2MODE 0216 UARTEN — USIDL — — — — — WAKE LPBACK ABAUD — — PDSEL1 PDSEL0 STSEL 0000 0000 0000 0000 d U2STA 0218 UTXISEL — — — UTXBRK UTXEN UTXBF TRMT URXISEL1 URXISEL0 ADDEN RIDLE PERR FERR OERR URXDA 0000 0001 0001 0000 s U2TXREG 021A — — — — — — — UTX8 Transmit Register 0000 000u uuuu uuuu P U2RXREG 021C — — — — — — — URX8 Receive Register 0000 0000 0000 0000 I U2BRG 021E Baud Rate Generator Prescaler 0000 0000 0000 0000 C Legend: u = uninitialized bit; — = unimplemented bit, read as ‘0’ 3 Note 1: UART2 is not available on dsPIC30F2011/2012/3012 devices. 2: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields. 0 F 2 0 1 1 / 2 0 1 2 / 3 0 1 D S 7 2 0 1 / 39 3 G -p 0 a g 1 e 1 3 1 1

dsPIC30F2011/2012/3012/3013 NOTES: DS70139G-page 112 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 16.0 12-BIT ANALOG-TO-DIGITAL The ADC module has six 16-bit registers: CONVERTER (ADC) MODULE • A/D Control Register 1 (ADCON1) • A/D Control Register 2 (ADCON2) Note: This data sheet summarizes features of • A/D Control Register 3 (ADCON3) this group ofdsPIC30F devices and is not • A/D Input Select Register (ADCHS) intended to be a complete reference source. For more information on the CPU, • A/D Port Configuration Register (ADPCFG) peripherals, register descriptions and • A/D Input Scan Selection Register (ADCSSL) general device functionality, refer to the The ADCON1, ADCON2 and ADCON3 registers “dsPIC30F Family Reference Manual” control the operation of the ADC module. The ADCHS (DS70046). register selects the input channels to be converted. The ADPCFG register configures the port pins as analog The 12-bit Analog-to-Digital Converter allows inputs or as digital I/O. The ADCSSL register selects conversion of an analog input signal to a 12-bit digital inputs for scanning. number. This module is based on a Successive Approximation Register (SAR) architecture and Note: The SSRC<2:0>, ASAM, SMPI<3:0>, provides a maximum sampling rate of 200ksps. The BUFM and ALTS bits, as well as the ADC module has up to 10 analog inputs which are ADCON3 and ADCSSL registers, must multiplexed into a sample and hold amplifier. The not be written to while ADON = 1. This output of the sample and hold is the input into the would lead to indeterminate results. converter which generates the result. The analog reference voltage is software selectable to either the The block diagram of the 12-bit ADC module is shown device supply voltage (AVDD/AVSS) or the voltage level in Figure16-1. on the (VREF+/VREF-) pin. The ADC has a unique feature of being able to operate while the device is in Sleep mode with RC oscillator selection. FIGURE 16-1: 12-BIT ADC FUNCTIONAL BLOCK DIAGRAM AVDD/VREF+ AVSS/VREF- AN0 0000 Comparator DAC AN1 0001 AN2 0010 12-bit SAR Conversion Logic AN3 0011 AN4 0100 at 16-word, 12-bit m AN5 0101 Dual Port For Buffer a AN6 0110 Dat ace erf AN7 0111 s Int AN8 1000 Sample SampCleo/Snterqoulence Bu AN9 1001 S/H CH0 Input Input MUX Switches Control © 2010 Microchip Technology Inc. DS70139G-page 113

dsPIC30F2011/2012/3012/3013 16.1 A/D Result Buffer 16.3 Selecting the Conversion Sequence The module contains a 16-word dual port read-only buffer, called ADCBUF0...ADCBUFF, to buffer the A/D Several groups of control bits select the sequence in results. The RAM is 12 bits wide but the data obtained which the A/D connects inputs to the sample/hold is represented in one of four different 16-bit data channel, converts a channel, writes the buffer memory formats. The contents of the sixteen A/D Conversion and generates interrupts. Result Buffer registers, ADCBUF0 through ADCBUFF, The sequence is controlled by the sampling clocks. cannot be written by user software. The SMPI bits select the number of 16.2 Conversion Operation acquisition/conversion sequences that would be per- formed before an interrupt occurs. This can vary from 1 After the ADC module has been configured, the sample sample per interrupt to 16 samples per interrupt. acquisition is started by setting the SAMP bit. Various The BUFM bit will split the 16-word results buffer into sources, such as a programmable bit, timer time-outs two 8-word groups. Writing to the 8-word buffers will be and external events, will terminate acquisition and start alternated on each interrupt event. a conversion. When the A/D conversion is complete, the result is loaded into ADCBUF0...ADCBUFF, and Use of the BUFM bit will depend on how much time is the DONE bit and the A/D interrupt flag, ADIF, are set available for the moving of the buffers after the after the number of samples specified by the SMPI bit. interrupt. The ADC module can be configured for different inter- If the processor can quickly unload a full buffer within rupt rates as described in Section16.3 “Selecting the the time it takes to acquire and convert one channel, Conversion Sequence”. the BUFM bit can be ‘0’ and up to 16 conversions The following steps should be followed for doing an (corresponding to the 16 input channels) may be done A/D conversion: per interrupt. The processor will have one acquisition and conversion time to move the sixteen conversions. 1. Configure the ADC module: If the processor cannot unload the buffer within the • Configure analog pins, voltage reference and acquisition and conversion time, the BUFM bit should be digital I/O ‘1’. For example, if SMPI<3:0> (ADCON2<5:2>) = 0111, • Select A/D input channels then eight conversions will be loaded into 1/2 of the • Select A/D conversion clock buffer, following which an interrupt occurs. The next • Select A/D conversion trigger eight conversions will be loaded into the other 1/2 of the • Turn on ADC module buffer. The processor will have the entire time between 2. Configure A/D interrupt (if required): interrupts to move the eight conversions. • Clear ADIF bit The ALTS bit can be used to alternate the inputs • Select A/D interrupt priority selected during the sampling sequence. The input multiplexer has two sets of sample inputs: MUX A and 3. Start sampling MUX B. If the ALTS bit is ‘0’, only the MUX A inputs are 4. Wait the required acquisition time selected for sampling. If the ALTS bit is ‘1’ and 5. Trigger acquisition end, start conversion SMPI<3:0> = 0000 on the first sample/convert 6. Wait for A/D conversion to complete, by either: sequence, the MUX A inputs are selected and on the • Waiting for the A/D interrupt, or next acquire/convert sequence, the MUX B inputs are selected. • Waiting for the DONE bit to get set 7. Read A/D result buffer; clear ADIF if required The CSCNA bit (ADCON2<10>) will allow the multiplexer input to be alternately scanned across a selected number of analog inputs for the MUX A group. The inputs are selected by the ADCSSL register. If a particular bit in the ADCSSL register is ‘1’, the corresponding input is selected. The inputs are always scanned from lower to higher numbered inputs, starting after each interrupt. If the number of inputs selected is greater than the number of samples taken per interrupt, the higher numbered inputs are unused. DS70139G-page 114 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 16.4 Programming the Start of The internal RC oscillator is selected by setting the Conversion Trigger ADRC bit. For correct ADC conversions, the ADC conversion The conversion trigger will terminate acquisition and clock (TAD) must be selected to ensure a minimum TAD start the requested conversions. time of 334 nsec (for VDD = 5V). Refer to Section20.0 The SSRC<2:0> bits select the source of the “Electrical Characteristics” for minimum TAD under conversion trigger. The SSRC bits provide for up to four other operating conditions. alternate sources of conversion trigger. Example16-1 shows a sample calculation for the When SSRC<2:0> = 000, the conversion trigger is ADCS<5:0> bits, assuming a device operating speed under software control. Clearing the SAMP bit will of 30 MIPS. cause the conversion trigger. When SSRC<2:0> = 111 (Auto-Start mode), the EXAMPLE 16-1: ADC CONVERSION conversion trigger is under A/D clock control. The CLOCK AND SAMPLING SAMC bits select the number of A/D clocks between RATE CALCULATION the start of acquisition and the start of conversion. This provides the fastest conversion rates on multiple Minimum TAD = 334 nsec channels. SAMC must always be at least one clock TCY = 33 .33 nsec (30 MIPS) cycle. TAD ADCS<5:0> = 2 – 1 Other trigger sources can come from timer modules or TCY external interrupts. = 2 • 3 3 4 n s e c – 1 33.33 nsec 16.5 Aborting a Conversion = 19.04 Therefore, Clearing the ADON bit during a conversion will abort Set ADCS<5:0> = 19 the current conversion and stop the sampling sequencing until the next sampling trigger. The TCY Actual TAD = (ADCS<5:0> + 1) ADCBUF will not be updated with the partially 2 completed A/D conversion sample. That is, the 33.33 nsec = (19 + 1) ADCBUF will continue to contain the value of the last 2 completed conversion (or the last value written to the = 334 nsec ADCBUF register). If the clearing of the ADON bit coincides with an If SSRC<2:0> = ‘111’ and SAMC<4:0> = ‘00001’ auto-start, the clearing has a higher priority and a new Since, conversion will not start. Sampling Time = Acquisition Time + Conversion Time After the A/D conversion is aborted, a 2 TAD wait is = 1 TAD + 14 TAD required before the next sampling may be started by = 15 x 334 nsec setting the SAMP bit. Therefore, 1 16.6 Selecting the ADC Conversion Sampling Rate = (15 x 334 nsec) Clock = ~200 kHz The ADC conversion requires 14 TAD. The source of the ADC conversion clock is software selected, using a 6-bit counter. There are 64 possible options for TAD. EQUATION 16-1: ADC CONVERSION CLOCK TAD = TCY * (0.5*(ADCS<5:0> + 1)) © 2010 Microchip Technology Inc. DS70139G-page 115

dsPIC30F2011/2012/3012/3013 16.7 ADC Speeds The dsPIC30F 12-bit ADC specifications permit a maximum of 200 ksps sampling rate. Table16-1 summarizes the conversion speeds for the dsPIC30F 12-bit ADC and the required operating conditions. Figure16-2 depicts the recommended circuit for the conversion rates above 200 ksps. The dsPIC30F2011 is shown as an example. TABLE 16-1: 12-BIT ADC EXTENDED CONVERSION RATES dsPIC30F 12-bit ADC Conversion Rates TAD Sampling Speed Minimum Time Min Rs Max VDD Temperature Channel Configuration Up to 200 334 ns 1 TAD 2.5 kΩ 4.5V -40°C to +85°C ksps(1) to VREF-VREF+ 5.5V ANx CHX S/H ADC Up to 100 668 ns 1 TAD 2.5 kΩ 3.0V -40°C to +125°C ksps to VREF-VREF+ or or 5.5V AVSS AVDD ANx CHX S/H ADC ANx or VREF- Note1: External VREF- and VREF+ pins must be used for correct operation. See Figure16-2 for recommended circuit. FIGURE 16-2: ADC VOLTAGE REFERENCE SCHEMATIC VDD See Note 1: R2 10 VDD VDD VDD C2 C1 VDD C8 C7 C6 0.1 μF 0.01 μF 1 μF 0.1 μF 0.01 μF R1 10 1 V-REF2726AVDDVSS232221 2 20 3 19 dsPIC30F2011 VDD 4 18 AVDD AVDD AVDD VSS VDD 6 VSS 7 89VDD11121314 15 C1 5μF C0.41 μF C0.301 μF VDD Note 1: Ensure adequate bypass capacitors are provided on each VDD pin. DS70139G-page 116 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 The configuration procedures in the next section pro- The following figure shows the timing diagram of the vide the required setup values for the conversion ADC running at 200 ksps. The TAD selection in speeds above 100 ksps. conjunction with the guidelines described above allows a conversion speed of 200 ksps. See Example16-1 for 16.7.1 200 KSPS CONFIGURATION code example. GUIDELINE 16.8 A/D Acquisition Requirements The following configuration items are required to achieve a 200 ksps conversion rate. The analog input model of the 12-bit ADC is shown in • Comply with conditions provided in Table16-1. Figure16-3. The total sampling time for the A/D is a • Connect external VREF+ and VREF- pins following function of the internal amplifier settling time and the the recommended circuit shown in Figure16-2. holding capacitor charge time. • Set SSRC<2.0> = 111 in the ADCON1 register to For the ADC to meet its specified accuracy, the charge enable the auto convert option. holding capacitor (CHOLD) must be allowed to fully • Enable automatic sampling by setting the ASAM charge to the voltage level on the analog input pin. The control bit in the ADCON1 register. source impedance (RS), the interconnect • Write the SMPI<3.0> control bits in the ADCON2 impedance(RIC) and the internal sampling switch register for the desired number of conversions (RSS) impedance combine to directly affect the time between interrupts. required to charge the capacitor CHOLD. The combined impedance of the analog sources must therefore be • Configure the ADC clock period to be: small enough to fully charge the holding capacitor 1 within the chosen sample time. To minimize the effects = 334 ns (14 + 1) x 200,000 of pin leakage currents on the accuracy of the ADC, the maximum recommended source impedance, RS, is2.5kΩ. After the analog input channel is selected by writing to the ADCS<5:0> control bits in the (changed), this sampling function must be completed ADCON3 register. prior to starting the conversion. The internal holding • Configure the sampling time to be 1 TAD by capacitor will be in a discharged state prior to each writing: SAMC<4:0> = 00001. sample operation. FIGURE 16-3: 12-BIT A/D CONVERTER ANALOG INPUT MODEL VDD RIC ≤ 250Ω Sampling RSS ≤ 3 kΩ Switch VT = 0.6V Rs ANx RSS CHOLD VA CPIN I leakage = DAC capacitance VT = 0.6V ± 500 nA = 18 pF VSS Legend:CPIN = input capacitance VT = threshold voltage I leakage = leakage current at the pin due to various junctions RIC = interconnect resistance RSS = sampling switch resistance CHOLD = sample/hold capacitance (from DAC) Note: CPIN value depends on device package and is not tested. Effect of CPIN negligible if Rs ≤ 2.5 kΩ. © 2010 Microchip Technology Inc. DS70139G-page 117

dsPIC30F2011/2012/3012/3013 16.9 Module Power-Down Modes If the A/D interrupt is enabled, the device will wake-up from Sleep. If the A/D interrupt is not enabled, the ADC The module has two internal power modes. module will then be turned off, although the ADON bit When the ADON bit is ‘1’, the module is in Active mode; will remain set. it is fully powered and functional. 16.10.2 A/D OPERATION DURING CPU IDLE When ADON is ‘0’, the module is in Off mode. The MODE digital and analog portions of the circuit are disabled for maximum current savings. The ADSIDL bit selects if the module will stop on Idle or continue on Idle. If ADSIDL = 0, the module will In order to return to the Active mode from Off mode, the continue operation on assertion of Idle mode. If user must wait for the ADC circuitry to stabilize. ADSIDL = 1, the module will stop on Idle. 16.10 A/D Operation During CPU Sleep 16.11 Effects of a Reset and Idle Modes A device Reset forces all registers to their Reset state. 16.10.1 A/D OPERATION DURING CPU This forces the ADC module to be turned off, and any SLEEP MODE conversion and sampling sequence is aborted. The values that are in the ADCBUF registers are not When the device enters Sleep mode, all clock sources modified. The A/D Result register will contain unknown to the module are shut down and stay at logic ‘0’. data after a Power-on Reset. If Sleep occurs in the middle of a conversion, the conversion is aborted. The converter will not continue 16.12 Output Formats with a partially completed conversion on exit from Sleep mode. The A/D result is 12 bits wide. The data buffer RAM is also 12 bits wide. The 12-bit data can be read in one of Register contents are not affected by the device four different formats. The FORM<1:0> bits select the entering or leaving Sleep mode. format. Each of the output formats translates to a 16-bit The ADC module can operate during Sleep mode if the result on the data bus. A/D clock source is set to RC (ADRC = 1). When the RC clock source is selected, the ADC module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed which eliminates all digital switching noise from the conversion. When the conversion is complete, the CONV bit will be cleared and the result loaded into the ADCBUF register. FIGURE 16-4: A/D OUTPUT DATA FORMATS RAM Contents: d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 Read to Bus: Signed Fractional d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0 0 Fractional d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0 0 Signed Integer d11 d11 d11 d11 d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 Integer 0 0 0 0 d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 DS70139G-page 118 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 16.13 Configuring Analog Port Pins 16.14 Connection Considerations The use of the ADPCFG and TRIS registers control the The analog inputs have diodes to VDD and VSS as ESD operation of the A/D port pins. The port pins that are protection. This requires that the analog input be desired as analog inputs must have their between VDD and VSS. If the input voltage exceeds this corresponding TRIS bit set (input). If the TRIS bit is range by greater than 0.3V (either direction), one of the cleared (output), the digital output level (VOH or VOL) diodes becomes forward biased and it may damage the will be converted. device if the input current specification is exceeded. The A/D operation is independent of the state of the An external RC filter is sometimes added for CH0SA<3:0>/CH0SB<3:0> bits and the TRIS bits. anti-aliasing of the input signal. The R component should be selected to ensure that the sampling time When reading the PORT register, all pins configured as requirements are satisfied. Any external components analog input channels will read as cleared. connected (via high-impedance) to an analog input pin Pins configured as digital inputs will not convert an (capacitor, zener diode, etc.) should have very little analog input. Analog levels on any pin that is defined as leakage current at the pin. a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications. © 2010 Microchip Technology Inc. DS70139G-page 119

D TABLE 16-2: A/D CONVERTER REGISTER MAP FOR dsPIC30F2011/3012 d S 70 SFR s 1 Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State 3 Name P 9 G -p ADCBUF0 0280 — — — — ADC Data Buffer 0 0000 uuuu uuuu uuuu I a C g ADCBUF1 0282 — — — — ADC Data Buffer 1 0000 uuuu uuuu uuuu e 1 ADCBUF2 0284 — — — — ADC Data Buffer 2 0000 uuuu uuuu uuuu 3 2 0 ADCBUF3 0286 — — — — ADC Data Buffer 3 0000 uuuu uuuu uuuu 0 ADCBUF4 0288 — — — — ADC Data Buffer 4 0000 uuuu uuuu uuuu F ADCBUF5 028A — — — — ADC Data Buffer 5 0000 uuuu uuuu uuuu 2 ADCBUF6 028C — — — — ADC Data Buffer 6 0000 uuuu uuuu uuuu 0 ADCBUF7 028E — — — — ADC Data Buffer 7 0000 uuuu uuuu uuuu 1 ADCBUF8 0290 — — — — ADC Data Buffer 8 0000 uuuu uuuu uuuu 1 ADCBUF9 0292 — — — — ADC Data Buffer 9 0000 uuuu uuuu uuuu / 2 ADCBUFA 0294 — — — — ADC Data Buffer 10 0000 uuuu uuuu uuuu 0 ADCBUFB 0296 — — — — ADC Data Buffer 11 0000 uuuu uuuu uuuu 1 ADCBUFC 0298 — — — — ADC Data Buffer 12 0000 uuuu uuuu uuuu 2 ADCBUFD 029A — — — — ADC Data Buffer 13 0000 uuuu uuuu uuuu / ADCBUFE 029C — — — — ADC Data Buffer 14 0000 uuuu uuuu uuuu 3 ADCBUFF 029E — — — — ADC Data Buffer 15 0000 uuuu uuuu uuuu 0 ADCON1 02A0 ADON — ADSIDL — — — FORM<1:0> SSRC<2:0> — — ASAM SAMP DONE 0000 0000 0000 0000 1 ADCON2 02A2 VCFG<2:0> — — CSCNA — — BUFS — SMPI<3:0> BUFM ALTS 0000 0000 0000 0000 2 ADCON3 02A4 — — — SAMC<4:0> ADRC — ADCS<5:0> 0000 0000 0000 0000 / ADCHS 02A6 — — — CH0NB CH0SB<3:0> — — — CH0NA CH0SA<3:0> 0000 0000 0000 0000 3 ADPCFG 02A8 — — — — — — — — PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0 0000 0000 0000 0000 0 ADCSSL 02AA — — — — — — — — CSSL7 CSSL6 CSSL5 CSSL4 CSSL3 CSSL2 CSSL1 CSSL0 0000 0000 0000 0000 1 Legend: u = uninitialized bit; — = unimplemented bit, read as ‘0’ 3 Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields. © 2 0 1 0 M ic ro c h ip T e c h n o lo g y In c .

© TABLE 16-3: A/D CONVERTER REGISTER MAP FOR dsPIC30F2012/3013 2 0 10 M NSaFmRe Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State icro ADCBUF0 0280 — — — — ADC Data Buffer 0 0000 uuuu uuuu uuuu ch ADCBUF1 0282 — — — — ADC Data Buffer 1 0000 uuuu uuuu uuuu ip T ADCBUF2 0284 — — — — ADC Data Buffer 2 0000 uuuu uuuu uuuu e c ADCBUF3 0286 — — — — ADC Data Buffer 3 0000 uuuu uuuu uuuu h n o ADCBUF4 0288 — — — — ADC Data Buffer 4 0000 uuuu uuuu uuuu lo g ADCBUF5 028A — — — — ADC Data Buffer 5 0000 uuuu uuuu uuuu y In ADCBUF6 028C — — — — ADC Data Buffer 6 0000 uuuu uuuu uuuu c . ADCBUF7 028E — — — — ADC Data Buffer 7 0000 uuuu uuuu uuuu ADCBUF8 0290 — — — — ADC Data Buffer 8 0000 uuuu uuuu uuuu ADCBUF9 0292 — — — — ADC Data Buffer 9 0000 uuuu uuuu uuuu d ADCBUFA 0294 — — — — ADC Data Buffer 10 0000 uuuu uuuu uuuu ADCBUFB 0296 — — — — ADC Data Buffer 11 0000 uuuu uuuu uuuu s ADCBUFC 0298 — — — — ADC Data Buffer 12 0000 uuuu uuuu uuuu P ADCBUFD 029A — — — — ADC Data Buffer 13 0000 uuuu uuuu uuuu I C ADCBUFE 029C — — — — ADC Data Buffer 14 0000 uuuu uuuu uuuu ADCBUFF 029E — — — — ADC Data Buffer 15 0000 uuuu uuuu uuuu 3 ADCON1 02A0 ADON — ADSIDL — — — FORM<1:0> SSRC<2:0> — — ASAM SAMP DONE 0000 0000 0000 0000 0 ADCON2 02A2 VCFG<2:0> — — CSCNA — — BUFS — SMPI<3:0> BUFM ALTS 0000 0000 0000 0000 F ADCON3 02A4 — — — SAMC<4:0> ADRC — ADCS<5:0> 0000 0000 0000 0000 2 ADCHS 02A6 — — — CH0NB CH0SB<3:0> — — — CH0NA CH0SA<3:0> 0000 0000 0000 0000 0 ADPCFG 02A8 — — — — — — PCFG9 PCFG8 PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0 0000 0000 0000 0000 1 ADCSSL 02AA — — — — — — CSSL9 CSSL8 CSSL7 CSSL6 CSSL5 CSSL4 CSSL3 CSSL2 CSSL1 CSSL0 0000 0000 0000 0000 1 Legend: u = uninitialized bit; — = unimplemented bit, read as ‘0’ / 2 Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields. 0 1 2 / 3 0 1 D S 7 2 0 1 / 39 3 G -p 0 a g 1 e 1 3 2 1

dsPIC30F2011/2012/3012/3013 NOTES: DS70139G-page 122 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 17.0 SYSTEM INTEGRATION 17.1 Oscillator System Overview The dsPIC30F oscillator system has the following Note: This data sheet summarizes features of modules and features: this group ofdsPIC30F devices and is not intended to be a complete reference • Various external and internal oscillator options as source. For more information on the CPU, clock sources peripherals, register descriptions and • An on-chip PLL to boost internal operating general device functionality, refer to the frequency “dsPIC30F Family Reference Manual” • A clock switching mechanism between various (DS70046). For more information on the clock sources device instruction set and programming, • Programmable clock postscaler for system power refer to the “16-bit MCU and DSC savings Programmer’s Reference Manual” (DS70157). • A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures There are several features intended to maximize • Clock Control register (OSCCON) system reliability, minimize cost through elimination of • Configuration bits for main oscillator selection external components, provide Power Saving Operating modes and offer code protection: Configuration bits determine the clock source upon Power-on Reset (POR) and Brown-out Reset (BOR). • Oscillator Selection Thereafter, the clock source can be changed between • Reset permissible clock sources. The OSCCON register - Power-on Reset (POR) controls the clock switching and reflects system clock - Power-up Timer (PWRT) related status bits. - Oscillator Start-up Timer (OST) Table17-1 provides a summary of the dsPIC30F - Programmable Brown-out Reset (BOR) Oscillator Operating modes. A simplified diagram of the • Watchdog Timer (WDT) oscillator system is shown in Figure17-1. • Low-Voltage Detect • Power-Saving Modes (Sleep and Idle) • Code Protection • Unit ID Locations • In-Circuit Serial Programming (ICSP) dsPIC30F devices have a Watchdog Timer which is permanently enabled via the Configuration bits or can be software controlled. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT) which provides a delay on power-up only, designed to keep the part in Reset while the power supply stabilizes. With these two timers on-chip, most applications need no external Reset circuitry. Sleep mode is designed to offer a very low current Power-Down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit a wide variety of applications. In the Idle mode, the clock sources are still active but the CPU is shut-off. The RC oscillator option saves system cost while the LP crystal option saves power. © 2010 Microchip Technology Inc. DS70139G-page 123

dsPIC30F2011/2012/3012/3013 TABLE 17-1: OSCILLATOR OPERATING MODES Oscillator Mode Description XTL 200 kHz-4 MHz crystal on OSC1:OSC2. XT 4 MHz-10 MHz crystal on OSC1:OSC2. XT w/PLL 4x 4 MHz-10 MHz crystal on OSC1:OSC2, 4x PLL enabled. XT w/PLL 8x 4 MHz-10 MHz crystal on OSC1:OSC2, 8x PLL enabled. XT w/PLL 16x 4 MHz-7.5 MHz crystal on OSC1:OSC2, 16x PLL enabled(1). LP 32 kHz crystal on SOSCO:SOSCI(2). HS 10 MHz-25 MHz crystal. HS/2 w/PLL 4x 10 MHz-20 MHz crystal, divide by 2, 4x PLL enabled. HS/2 w/PLL 8x 10 MHz-20 MHz crystal, divide by 2, 8x PLL enabled. HS/2 w/PLL 16x 10 MHz-15 MHz crystal, divide by 2, 16x PLL enabled(1). HS/3 w/PLL 4x 12 MHz-25 MHz crystal, divide by 3, 4x PLL enabled. HS/3 w/PLL 8x 12 MHz-25 MHz crystal, divide by 3, 8x PLL enabled. HS/3 w/PLL 16x 12 MHz-22.5 MHz crystal, divide by 3, 16x PLL enabled(1). EC External clock input (0-40 MHz). ECIO External clock input (0-40 MHz), OSC2 pin is I/O. EC w/PLL 4x External clock input (4-10 MHz), OSC2 pin is I/O, 4x PLL enabled. EC w/PLL 8x External clock input (4-10 MHz), OSC2 pin is I/O, 8x PLL enabled. EC w/PLL 16x External clock input (4-7.5 MHz), OSC2 pin is I/O, 16x PLL enabled(1). ERC External RC oscillator, OSC2 pin is FOSC/4 output(3). ERCIO External RC oscillator, OSC2 pin is I/O(3). FRC 7.37 MHz internal RC oscillator. FRC w/PLL 4x 7.37 MHz Internal RC oscillator, 4x PLL enabled. FRC w/PLL 8x 7.37 MHz Internal RC oscillator, 8x PLL enabled. FRC w/PLL 16x 7.37 MHz Internal RC oscillator, 16x PLL enabled. LPRC 512 kHz internal RC oscillator. Note 1: dsPIC30F maximum operating frequency of 120 MHz must be met. 2: LP oscillator can be conveniently shared as system clock, as well as real-time clock for Timer1. 3: Requires external R and C. Frequency operation up to 4 MHz. DS70139G-page 124 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 17-1: OSCILLATOR SYSTEM BLOCK DIAGRAM Oscillator Configuration bits PWRSAV Instruction Wake-up Request FPLL OSC1 Primary PLL Oscillator x4, x8, x16 PLL OSC2 Lock COSC<2:0> Primary Osc Internal FRC Osc NOSC<2:0> Primary Internal Fast RC OSWEN Oscillator Oscillator (FRC) Stability Detector Oscillator POR Done Start-up Timer Clock Programmable Switching Secondary Osc Clock Divider System and Control Clock Block SOSCO Secondary 32 kHz LP 2 Oscillator Oscillator SOSCI Stability Detector POST<1:0> Internal Low LPRC Power RC Oscillator (LPRC) CF Fail-Safe Clock FCKSM<1:0> Monitor (FSCM) 2 Oscillator Trap To Timer1 © 2010 Microchip Technology Inc. DS70139G-page 125

dsPIC30F2011/2012/3012/3013 17.2 Oscillator Configurations 17.2.2 OSCILLATOR START-UP TIMER (OST) 17.2.1 INITIAL CLOCK SOURCE In order to ensure that a crystal oscillator (or ceramic SELECTION resonator) has started and stabilized, an Oscillator While coming out of Power-on Reset or Brown-out Start-up Timer is included. It is a simple 10-bit counter Reset, the device selects its clock source based on: that counts 1024 TOSC cycles before releasing the oscillator clock to the rest of the system. The time-out a) FOS<2:0> Configuration bits that select one of four oscillator groups, period is designated as TOST. b) and FPR<4:0> Configuration bits that select one The TOST time is involved every time the oscillator has of 15 oscillator choices within the primary group. to restart (i.e., on POR, BOR and wake-up from Sleep). The Oscillator Start-up Timer is applied to the LP The selection is as shown in Table17-2. oscillator, XT, XTL and HS modes (upon wake-up from Sleep, POR and BOR) for the primary oscillator. TABLE 17-2: CONFIGURATION BIT VALUES FOR CLOCK SELECTION Oscillator OSC2 Oscillator Mode FOS<2:0> FPR<4:0> Source Function ECIO w/PLL 4x PLL 1 1 1 0 1 1 0 1 I/O ECIO w/PLL 8x PLL 1 1 1 0 1 1 1 0 I/O ECIO w/PLL 16x PLL 1 1 1 0 1 1 1 1 I/O FRC w/PLL 4X PLL 1 1 1 0 0 0 0 1 I/O FRC w/PLL 8x PLL 1 1 1 0 1 0 1 0 I/O FRC w/PLL 16x PLL 1 1 1 0 0 0 1 1 I/O XT w/PLL 4x PLL 1 1 1 0 0 1 0 1 OSC2 XT w/PLL 8x PLL 1 1 1 0 0 1 1 0 OSC2 XT w/PLL 16x PLL 1 1 1 0 0 1 1 1 OSC2 HS2 w/PLL 4x PLL 1 1 1 1 0 0 0 1 OSC2 HS2 w/PLL 8x PLL 1 1 1 1 0 0 1 0 OSC2 HS2 w/ PLL 16x PLL 1 1 1 1 0 0 1 1 OSC2 HS3 w/PLL 4x PLL 1 1 1 1 0 1 0 1 OSC2 HS3 w/PLL 8x PLL 1 1 1 1 0 1 1 0 OSC2 HS3 w/PLL 16x PLL 1 1 1 1 0 1 1 1 OSC2 ECIO External 0 1 1 0 1 1 0 0 I/O XT External 0 1 1 0 0 1 0 0 OSC2 HS External 0 1 1 0 0 0 1 0 OSC2 EC External 0 1 1 0 1 0 1 1 CLKO ERC External 0 1 1 0 1 0 0 1 CLKO ERCIO External 0 1 1 0 1 0 0 0 I/O XTL External 0 1 1 0 0 0 0 0 OSC2 LP Secondary 0 0 0 X X X X X (Note 1, 2) FRC Internal FRC 0 0 1 X X X X X (Note 1, 2) LPRC Internal LPRC 0 1 0 X X X X X (Note 1, 2) Note 1: The OSC2 pin is either usable as a general purpose I/O pin or is completely unusable, depending on the Primary Oscillator mode selection (FPR<4:0>). 2: OSC1 pin cannot be used as an I/O pin even if the secondary oscillator or an internal clock source is selected at all times. DS70139G-page 126 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 17.2.3 LP OSCILLATOR CONTROL If OSCCON<14:12> are set to ‘111’ and FPR<4:0> are set to ‘00001’, ‘01010’ or ‘00011’, a PLL multiplier of Enabling the LP oscillator is controlled with two elements: 4, 8 or 16 (respectively) is applied. • The current oscillator group bits COSC<2:0>. Note: When a 16x PLL is used, the FRC fre- • The LPOSCEN bit (OSCCON register). quency must not be tuned to a frequency The LP oscillator is on (even during Sleep mode) if greater than 7.5 MHz. LPOSCEN = 1. The LP oscillator is the device clock if: • COSC<2:0> = 000 (LP selected as main osc.) and TABLE 17-4: FRC TUNING • LPOSCEN = 1 TUN<3:0> FRC Frequency Keeping the LP oscillator on at all times allows for a fast Bits switch to the 32 kHz system clock for lower power oper- 0111 + 10.5% ation. Returning to the faster main oscillator will still 0110 + 9.0% require a start-up time 0101 + 7.5% 17.2.4 PHASE LOCKED LOOP (PLL) 0100 + 6.0% 0011 + 4.5% The PLL multiplies the clock which is generated by the primary oscillator or Fast RC oscillator. The PLL is 0010 + 3.0% selectable to have either gains of x4, x8, and x16. Input 0001 + 1.5% and output frequency ranges are summarized in 0000 Center Frequency (oscillator is Table17-3. running at calibrated frequency) 1111 - 1.5% TABLE 17-3: PLL FREQUENCY RANGE 1110 - 3.0% PLL 1101 - 4.5% FIN FOUT Multiplier 1100 - 6.0% 1011 - 7.5% 4 MHz-10 MHz x4 16 MHz-40 MHz 1010 - 9.0% 4 MHz-10 MHz x8 32 MHz-80 MHz 1001 - 10.5% 4 MHz-7.5 MHz x16 64 MHz-120 MHz 1000 - 12.0% The PLL features a lock output which is asserted when the PLL enters a phase locked state. Should the loop 17.2.6 LOW-POWER RC OSCILLATOR (LPRC) fall out of lock (e.g., due to noise), the lock signal will be The LPRC oscillator is a component of the Watchdog rescinded. The state of this signal is reflected in the Timer (WDT) and oscillates at a nominal frequency of read-only LOCK bit in the OSCCON register. 512 kHz. The LPRC oscillator is the clock source for the Power-up Timer (PWRT) circuit, WDT and clock 17.2.5 FAST RC OSCILLATOR (FRC) monitor circuits. It may also be used to provide a The FRC oscillator is a fast (7.37 MHz ±2% nominal) low-frequency clock source option for applications internal RC oscillator. This oscillator is intended to where power consumption is critical and timing provide reasonable device operating speeds without accuracy is not required. the use of an external crystal, ceramic resonator, or RC The LPRC oscillator is always enabled at a Power-on network. The FRC oscillator can be used with the PLL Reset because it is the clock source for the PWRT. to obtain higher clock frequencies. After the PWRT expires, the LPRC oscillator will remain on if one of the following is true: The dsPIC30F operates from the FRC oscillator when- ever the current oscillator selection control bits in the • The Fail-Safe Clock Monitor is enabled OSCCON register (OSCCON<14:12>) are set to ‘001’. • The WDT is enabled • The LPRC oscillator is selected as the system The four bit field specified by TUN<3:0> (OSCTUN clock via the COSC<2:0> control bits in the <3:0>) allows the user to tune the internal fast RC OSCCON register oscillator (nominal 7.37 MHz). The user can tune the FRC oscillator within a range of +10.5% (840 kHz) If one of the above conditions is not true, the LPRC will and-12% (960 kHz) in steps of 1.50% around the shut-off after the PWRT expires. factory calibrated setting, as shown in Table17-4. Note1: OSC2 pin function is determined by the Note: OSCTUN functionality has been provided Primary Oscillator mode selection to help customers compensate for (FPR<4:0>). temperature effects on the FRC frequency 2: OSC1 pin cannot be used as an I/O pin over a wide range of temperatures. The even if the secondary oscillator or an tuning step size is an approximation and is internal clock source is selected at all times. neither characterized nor tested. © 2010 Microchip Technology Inc. DS70139G-page 127

dsPIC30F2011/2012/3012/3013 17.2.7 FAIL-SAFE CLOCK MONITOR The OSCCON register holds the Control and Status bits related to clock switching. The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator • COSC<2:0>: Read-only bits always reflect the failure. The FSCM function is enabled by appropriately current oscillator group in effect. programming the FCKSM Configuration bits (clock • NOSC<2:0>: Control bits which are written to switch and monitor selection bits) in the FOSC Device indicate the new oscillator group of choice. Configuration register. If the FSCM function is enabled, - On POR and BOR, COSC<2:0> and the LPRC internal oscillator will run at all times (except NOSC<2:0> are both loaded with the during Sleep mode) and will not be subject to control by Configuration bit values FOS<2:0>. the SWDTEN bit. • LOCK: The LOCK bit indicates a PLL lock. In the event of an oscillator failure, the FSCM will gen- • CF: Read-only bit indicating if a clock fail detect erate a clock failure trap event and will switch the sys- has occurred. tem clock over to the FRC oscillator. The user will then • OSWEN: Control bit changes from a ‘0’ to a ‘1’ have the option to either attempt to restart the oscillator when a clock transition sequence is initiated. or execute a controlled shutdown. The user may decide Clearing the OSWEN control bit will abort a clock to treat the trap as a warm Reset by simply loading the transition in progress (used for hang-up Reset address into the oscillator fail trap vector. In this situations). event, the CF (Clock Fail) bit (OSCCON<3>) is also set whenever a clock failure is recognized. If Configuration bits FCKSM<1:0> = 1x, then the clock switching and Fail-Safe Clock monitoring functions are In the event of a clock failure, the WDT is unaffected disabled. This is the default Configuration bit setting. and continues to run on the LPRC clock. If clock switching is disabled, then the FOS<2:0> and If the oscillator has a very slow start-up time coming out FPR<4:0> bits directly control the oscillator selection of POR, BOR or Sleep, it is possible that the PWRT and the COSC<2:0> bits do not control the clock selec- timer will expire before the oscillator has started. In tion. However, these bits will reflect the clock source such cases, the FSCM will be activated and the FSCM selection. will initiate a clock failure trap, and the COSC<2:0> bits are loaded with FRC oscillator selection. This will Note: The application should not attempt to effectively shut-off the original oscillator that was trying switch to a clock of frequency lower than to start. 100 kHz when the Fail-Safe Clock Monitor The user may detect this situation and restart the is enabled. If such clock switching is oscillator in the clock fail trap ISR. performed, the device may generate an oscillator fail trap and switch to the Fast Upon a clock failure detection, the FSCM module will RC oscillator. initiate a clock switch to the FRC oscillator as follows: 1. The COSC bits (OSCCON<14:12>) are loaded 17.2.8 PROTECTION AGAINST with the FRC oscillator selection value. ACCIDENTAL WRITES TO OSCCON 2. CF bit is set (OSCCON<3>). A write to the OSCCON register is intentionally made 3. OSWEN control bit (OSCCON<0>) is cleared. difficult because it controls clock switching and clock For the purpose of clock switching, the clock sources scaling. are sectioned into four groups: To write to the OSCCON low byte, the following code • Primary (with or without PLL) sequence must be executed without any other instructions in between: • Secondary • Internal FRC Byte Write 0x46 to OSCCON low • Internal LPRC Byte Write 0x57 to OSCCON low Byte write is allowed for one instruction cycle. Write the The user can switch between these functional groups desired value or use bit manipulation instruction. but cannot switch between options within a group. If the primary group is selected, then the choice within the To write to the OSCCON high byte, the following group is always determined by the FPR<4:0> instructions must be executed without any other Configuration bits. instructions in between: Byte Write 0x78 to OSCCON high Byte Write 0x9A to OSCCON high Byte write is allowed for one instruction cycle. Write the desired value or use bit manipulation instruction. DS70139G-page 128 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 17.3 Reset 17.3.1 POR: POWER-ON RESET The dsPIC30F2011/2012/3012/3013 devices A power-on event will generate an internal POR pulse differentiate between various kinds of Reset: when a VDD rise is detected. The Reset pulse will occur at the POR circuit threshold voltage (VPOR) which is a) Power-on Reset (POR) nominally 1.85V. The device supply voltage b) MCLR Reset during normal operation characteristics must meet specified starting voltage c) MCLR Reset during Sleep and rise rate requirements. The POR pulse will reset a d) Watchdog Timer (WDT) Reset (during normal POR timer and place the device in the Reset state. The operation) POR also selects the device clock source identified by the oscillator configuration fuses. e) Programmable Brown-out Reset (BOR) f) RESET Instruction The POR circuit inserts a small delay, TPOR, which is nominally 10μs and ensures that the device bias g) Reset caused by trap lockup (TRAPR) circuits are stable. Furthermore, a user selected h) Reset caused by illegal opcode or by using an power-up time-out (TPWRT) is applied. The TPWRT uninitialized W register as an address pointer parameter is based on device Configuration bits and (IOPUWR) can be 0 ms (no delay), 4 ms, 16 ms or 64 ms. The total Different registers are affected in different ways by delay is at device power-up, TPOR + TPWRT. When various Reset conditions. Most registers are not these delays have expired, SYSRST will be negated on affected by a WDT wake-up since this is viewed as the the next leading edge of the Q1 clock and the PC will resumption of normal operation. Status bits from the jump to the Reset vector. RCON register are set or cleared differently in different The timing for the SYSRST signal is shown in Reset situations, as indicated in Table17-5. These bits Figure17-3 through Figure17-5. are used in software to determine the nature of the Reset. A block diagram of the On-Chip Reset Circuit is shown in Figure17-2. A MCLR noise filter is provided in the MCLR Reset path. The filter detects and ignores small pulses. Internally generated Resets do not drive MCLR pin low. FIGURE 17-2: RESET SYSTEM BLOCK DIAGRAM RESET Instruction Digital Glitch Filter MCLR Sleep or Idle WDT Module VDD Rise POR S Detect VDD Brown-out BOR Reset BOREN R Q SYSRST Trap Conflict Illegal Opcode/ Uninitialized W Register © 2010 Microchip Technology Inc. DS70139G-page 129

dsPIC30F2011/2012/3012/3013 FIGURE 17-3: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD) VDD MCLR INTERNAL POR TOST OST TIME-OUT TPWRT PWRT TIME-OUT INTERNAL Reset FIGURE 17-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1 VDD MCLR INTERNAL POR TOST OST TIME-OUT TPWRT PWRT TIME-OUT INTERNAL Reset FIGURE 17-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2 VDD MCLR INTERNAL POR TOST OST TIME-OUT TPWRT PWRT TIME-OUT INTERNAL Reset DS70139G-page 130 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 17.3.1.1 POR with Long Crystal Start-up Time A BOR will generate a Reset pulse which will reset the (with FSCM Enabled) device. The BOR will select the clock source based on the device Configuration bit values (FOS<2:0> and The oscillator start-up circuitry is not linked to the POR FPR<4:0>). Furthermore, if an Oscillator mode is circuitry. Some crystal circuits (especially low selected, the BOR will activate the Oscillator Start-up frequency crystals) will have a relatively long start-up Timer (OST). The system clock is held until OST time. Therefore, one or more of the following conditions expires. If the PLL is used, then the clock will be held is possible after the POR timer and the PWRT have until the LOCK bit (OSCCON<5>) is ‘1’. expired: Concurrently, the POR time-out (TPOR) and the PWRT • The oscillator circuit has not begun to oscillate. time-out (TPWRT) will be applied before the internal Reset • The Oscillator Start-up Timer has not expired (if a is released. If TPWRT = 0 and a crystal oscillator is being crystal oscillator is used). used, then a nominal delay of TFSCM = 100 μs is applied. • The PLL has not achieved a LOCK (if PLL is The total delay in this case is (TPOR+ TFSCM). used). The BOR Status bit (RCON<1>) will be set to indicate If the FSCM is enabled and one of the above conditions that a BOR has occurred. The BOR circuit, if enabled, is true, then a clock failure trap will occur. The device will continue to operate while in Sleep or Idle modes will automatically switch to the FRC oscillator and the and will reset the device should VDD fall below the BOR user can switch to the desired crystal oscillator in the threshold voltage. trap ISR. FIGURE 17-6: EXTERNAL POWER-ON 17.3.1.2 Operating without FSCM and PWRT RESET CIRCUIT (FOR If the FSCM is disabled and the Power-up Timer SLOW VDD POWER-UP) (PWRT) is also disabled, then the device will exit rap- idly from Reset on power-up. If the clock source is VDD FRC, LPRC, ERC or EC, it will be active immediately. If the FSCM is disabled and the system clock has not D R R1 started, the device will be in a frozen state at the Reset MCLR vector until the system clock starts. From the user’s perspective, the device will appear to be in Reset until C dsPIC30F a system clock is available. 17.3.2 BOR: PROGRAMMABLE Note 1: External Power-on Reset circuit is required BROWN-OUT RESET only if the VDD power-up slope is too slow. The diode D helps discharge the capacitor The BOR (Brown-out Reset) module is based on an quickly when VDD powers down. internal voltage reference circuit. The main purpose of 2: R should be suitably chosen so as to make the BOR module is to generate a device Reset when a sure that the voltage drop across R does not brown-out condition occurs. Brown-out conditions are violate the device’s electrical specifications. generally caused by glitches on the AC mains 3: R1 should be suitably chosen so as to limit (i.e.,missing portions of the AC cycle waveform due to any current flowing into MCLR from external bad power transmission lines, or voltage sags due to capacitor C, in the event of MCLR/VPP pin breakdown due to Electrostatic Discharge excessive current draw when a large inductive load is (ESD) or Electrical Overstress (EOS). turned on). The BOR module allows selection of one of the following voltage trip points (see Table20-11): Note: Dedicated supervisory devices, such as the MCP1XX and MCP8XX, may also be • 2.6V-2.71V used as an external Power-on Reset • 4.1V-4.4V circuit. • 4.58V-4.73V Note: The BOR voltage trip points indicated here are nominal values provided for design guidance only. Refer to the Electrical Specifications in the specific device data sheet for BOR voltage limit specifications. © 2010 Microchip Technology Inc. DS70139G-page 131

dsPIC30F2011/2012/3012/3013 Table17-5 shows the Reset conditions for the RCON register. Since the control bits within the RCON register are R/W, the information in the table means that all the bits are negated prior to the action specified in the condition column. TABLE 17-5: INITIALIZATION CONDITION FOR RCON REGISTER: CASE 1 Program Condition TRAPR IOPUWR EXTR SWR WDTO IDLE SLEEP POR BOR Counter Power-on Reset 0x000000 0 0 0 0 0 0 0 1 1 Brown-out Reset 0x000000 0 0 0 0 0 0 0 0 1 MCLR Reset during normal 0x000000 0 0 1 0 0 0 0 0 0 operation Software Reset during 0x000000 0 0 0 1 0 0 0 0 0 normal operation MCLR Reset during Sleep 0x000000 0 0 1 0 0 0 1 0 0 MCLR Reset during Idle 0x000000 0 0 1 0 0 1 0 0 0 WDT Time-out Reset 0x000000 0 0 0 0 1 0 0 0 0 WDT Wake-up PC + 2 0 0 0 0 1 0 1 0 0 Interrupt Wake-up from PC + 2(1) 0 0 0 0 0 0 1 0 0 Sleep Clock Failure Trap 0x000004 0 0 0 0 0 0 0 0 0 Trap Reset 0x000000 1 0 0 0 0 0 0 0 0 Illegal Operation Trap 0x000000 0 1 0 0 0 0 0 0 0 Note 1: When the wake-up is due to an enabled interrupt, the PC is loaded with the corresponding interrupt vector. Table17-6 shows a second example of the bit conditions for the RCON register. In this case, it is not assumed the user has set/cleared specific bits prior to action specified in the condition column. TABLE 17-6: INITIALIZATION CONDITION FOR RCON REGISTER: CASE 2 Program Condition TRAPR IOPUWR EXTR SWR WDTO IDLE SLEEP POR BOR Counter Power-on Reset 0x000000 0 0 0 0 0 0 0 1 1 Brown-out Reset 0x000000 u u u u u u u 0 1 MCLR Reset during normal 0x000000 u u 1 0 0 0 0 u u operation Software Reset during 0x000000 u u 0 1 0 0 0 u u normal operation MCLR Reset during Sleep 0x000000 u u 1 u 0 0 1 u u MCLR Reset during Idle 0x000000 u u 1 u 0 1 0 u u WDT Time-out Reset 0x000000 u u 0 0 1 0 0 u u WDT Wake-up PC + 2 u u u u 1 u 1 u u Interrupt Wake-up from PC + 2(1) u u u u u u 1 u u Sleep Clock Failure Trap 0x000004 u u u u u u u u u Trap Reset 0x000000 1 u u u u u u u u Illegal Operation Reset 0x000000 u 1 u u u u u u u Legend: u = unchanged Note 1: When the wake-up is due to an enabled interrupt, the PC is loaded with the corresponding interrupt vector. DS70139G-page 132 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 17.4 Watchdog Timer (WDT) 17.6 Power-Saving Modes 17.4.1 WATCHDOG TIMER OPERATION There are two power-saving states that can be entered through the execution of a special instruction, PWRSAV; The primary function of the Watchdog Timer (WDT) is these are Sleep and Idle. to reset the processor in the event of a software The format of the PWRSAV instruction is as follows: malfunction. The WDT is a free-running timer which runs off an on-chip RC oscillator, requiring no external PWRSAV <parameter>, where ‘parameter’ defines component. Therefore, the WDT timer will continue to Idle or Sleep mode. operate even if the main processor clock (e.g., the crystal oscillator) fails. 17.6.1 SLEEP MODE In Sleep mode, the clock to the CPU and peripherals is 17.4.2 ENABLING AND DISABLING shut down. If an on-chip oscillator is being used, it is THE WDT shut down. The Watchdog Timer can be “Enabled” or “Disabled” The Fail-Safe Clock Monitor is not functional during only through a Configuration bit (FWDTEN) in the Sleep since there is no clock to monitor. However, Configuration register, FWDT. LPRC clock remains active if WDT is operational during Setting FWDTEN = 1 enables the Watchdog Timer. The Sleep. enabling is done when programming the device. By The brown-out protection circuit and the Low-Voltage default, after chip erase, FWDTEN bit = 1. Any device Detect circuit, if enabled, will remain functional during programmer capable of programming dsPIC30F Sleep. devices allows programming of this and other The processor wakes up from Sleep if at least one of Configuration bits. the following conditions has occurred: If enabled, the WDT will increment until it overflows or • any interrupt that is individually enabled and “times out”. A WDT time-out will force a device Reset meets the required priority level (except during Sleep). To prevent a WDT time-out, the user must clear the Watchdog Timer using a CLRWDT • any Reset (POR, BOR and MCLR) instruction. • WDT time-out If a WDT times out during Sleep, the device will On waking up from Sleep mode, the processor will wake-up. The WDTO bit in the RCON register will be restart the same clock that was active prior to entry into cleared to indicate a wake-up resulting from a WDT Sleep mode. When clock switching is enabled, bits time-out. COSC<2:0> will determine the oscillator source that will be used on wake-up. If clock switch is disabled, Setting FWDTEN = 0 allows user software to then there is only one system clock. enable/disable the Watchdog Timer via the SWDTEN (RCON<5>) control bit. Note: If a POR or BOR occurred, the selection of the oscillator is based on the FOS<2:0> 17.5 Low-Voltage Detect and FPR<4:0> Configuration bits. The Low-Voltage Detect (LVD) module is used to If the clock source is an oscillator, the clock to the detect when the VDD of the device drops below a device will be held off until OST times out (indicating a threshold value, VLVD, which is determined by the stable oscillator). If PLL is used, the system clock is LVDL<3:0> bits (RCON<11:8>) and is thus user pro- held off until LOCK = 1 (indicating that the PLL is grammable. The internal voltage reference circuitry stable). In either case, TPOR, TLOCK and TPWRT delays requires a nominal amount of time to stabilize, and the are applied. BGST bit (RCON<13>) indicates when the voltage If EC, FRC, LPRC or ERC oscillators are used, then a reference has stabilized. delay of TPOR (~ 10 μs) is applied. This is the smallest In some devices, the LVD threshold voltage may be delay possible on wake-up from Sleep. applied externally on the LVDIN pin. Moreover, if LP oscillator was active during Sleep and The LVD module is enabled by setting the LVDEN bit LP is the oscillator used on wake-up, then the start-up (RCON<12>). delay will be equal to TPOR. PWRT delay and OST timer delay are not applied. In order to have the smallest possible start-up delay when waking up from Sleep, one of these faster wake-up options should be selected before entering Sleep. © 2010 Microchip Technology Inc. DS70139G-page 133

dsPIC30F2011/2012/3012/3013 Any interrupt that is individually enabled (using the Any interrupt that is individually enabled (using IE bit) corresponding IE bit) and meets the prevailing priority and meets the prevailing priority level will be able to level will be able to wake-up the processor. The wake-up the processor. The processor will process the processor will process the interrupt and branch to the interrupt and branch to the ISR. The Idle Status bit in ISR. The Sleep Status bit in the RCON register is set the RCON register is set upon wake-up. upon wake-up. Any Reset other than POR will set the Idle Status bit. On a POR, the Idle bit is cleared. Note: In spite of various delays applied (TPOR, TLOCK and TPWRT), the crystal oscillator If Watchdog Timer is enabled, then the processor will (and PLL) may not be active at the end of wake-up from Idle mode upon WDT time-out. The Idle the time-out (e.g., for low-frequency and WDTO Status bits are both set. crystals). In such cases, if FSCM is Unlike wake-up from Sleep, there are no time delays enabled, then the device will detect this as involved in wake-up from Idle. a clock failure and process the clock failure trap, the FRC oscillator will be enabled and 17.7 Device Configuration Registers the user will have to re-enable the crystal oscillator. If FSCM is not enabled, then the The Configuration bits in each device Configuration device will simply suspend execution of register specify some of the device modes and are code until the clock is stable and will remain programmed by a device programmer, or by using the in Sleep until the oscillator clock has In-Circuit Serial Programming™ (ICSP™) feature of started. the device. Each device Configuration register is a 24-bit register, but only the lower 16 bits of each All Resets will wake-up the processor from Sleep register are used to hold configuration data. There are mode. Any Reset, other than POR, will set the Sleep five device Configuration registers available to the Status bit. In a POR, the Sleep bit is cleared. user: If the Watchdog Timer is enabled, then the processor 1. FOSC (0xF80000): Oscillator Configuration will wake-up from Sleep mode upon WDT time-out. The Register Sleep and WDTO Status bits are both set. 2. FWDT (0xF80002): Watchdog Timer 17.6.2 IDLE MODE Configuration Register In Idle mode, the clock to the CPU is shut down while 3. FBORPOR (0xF80004): BOR and POR peripherals keep running. Unlike Sleep mode, the clock Configuration Register source remains active. 4. FGS (0xF8000A): General Code Segment Configuration Register Several peripherals have a control bit in each module that allows them to operate during Idle. 5. FICD (0xF8000C): Debug Configuration Register LPRC Fail-Safe Clock remains active if clock failure detect is enabled. The placement of the Configuration bits is automatically handled when you select the device in The processor wakes up from Idle if at least one of the your device programmer. The desired state of the following conditions has occurred: Configuration bits may be specified in the source code • any interrupt that is individually enabled (IE bit is (dependent on the language tool used), or through the ‘1’) and meets the required priority level programming interface. After the device has been • any Reset (POR, BOR, MCLR) programmed, the application software may read the Configuration bit values through the table read • WDT time-out instructions. For additional information, please refer to Upon wake-up from Idle mode, the clock is re-applied the Programming Specifications of the device. to the CPU and instruction execution begins immediately, starting with the instruction following the Note: If the code protection Configuration fuse PWRSAV instruction. bits (FGS<GCP> and FGS<GWRP>) have been programmed, an erase of the entire code-protected device is only possible at voltages VDD ≥ 4.5V. DS70139G-page 134 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 17.8 Peripheral Module Disable (PMD) 17.9 In-Circuit Debugger Registers When MPLAB® ICD 2 is selected as a Debugger, the The Peripheral Module Disable (PMD) registers In-Circuit Debugging functionality is enabled. This provide a method to disable a peripheral module by function allows simple debugging functions when used stopping all clock sources supplied to that module. with MPLAB IDE. When the device has this feature When a peripheral is disabled via the appropriate PMD enabled, some of the resources are not available for control bit, the peripheral is in a minimum power general use. These resources include the first 80 bytes consumption state. The Control and Status registers of Data RAM and two I/O pins. associated with the peripheral will also be disabled so One of four pairs of Debug I/O pins may be selected by writes to those registers will have no effect and read the user using configuration options in MPLAB IDE. values will be invalid. These pin pairs are named EMUD/EMUC, A peripheral module will only be enabled if both the EMUD1/EMUC1, EMUD2/EMUC2 and associated bit in the PMD register is cleared and the EMUD3/EMUC3. peripheral is supported by the specific dsPIC DSC In each case, the selected EMUD pin is the variant. If the peripheral is present in the device, it is Emulation/Debug Data line, and the EMUC pin is the enabled in the PMD register by default. Emulation/Debug Clock line. These pins will interface to the MPLAB ICD 2 module available from Microchip. Note1: If a PMD bit is set, the corresponding The selected pair of Debug I/O pins is used by MPLAB module is disabled after a delay of 1 ICD2 to send commands and receive responses, as instruction cycle. Similarly, if a PMD bit is well as to send and receive data. To use the In-Circuit cleared, the corresponding module is Debugger function of the device, the design must enabled after a delay of 1 instruction implement ICSP connections to MCLR, VDD, VSS, cycle (assuming the module Control reg- PGC, PGD and the selected EMUDx/EMUCx pin pair. isters are already configured to enable module operation). This gives rise to two possibilities: 2: In dsPIC30F2011, dsPIC30F3012 and 1. If EMUD/EMUC is selected as the Debug I/O pin dsPIC30F2012 devices, the U2MD bit is pair, then only a 5-pin interface is required, as readable and writable and will be read as the EMUD and EMUC pin functions are multi- ‘1’ when set. plexed with the PGD and PGC pin functions in all dsPIC30F devices. 2. If EMUD1/EMUC1, EMUD2/EMUC2 or EMUD3/EMUC3 is selected as the Debug I/O pin pair, then a 7-pin interface is required, as the EMUDx/EMUCx pin functions (x = 1, 2 or 3) are not multiplexed with the PGD and PGC pin functions. © 2010 Microchip Technology Inc. DS70139G-page 135

D TABLE 17-7: SYSTEM INTEGRATION REGISTER MAP d S 70 SFR s 1 Address Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State 3 Name P 9 G -p RCON 0740 TRAPR IOPUWR BGST LVDEN LVDL<3:0> EXTR SWR SWDTEN WDTO SLEEP IDLE BOR POR (Note 1) I ag OSCCON 0742 — COSC<2:0> — NOSC<2:0> POST<1:0> LOCK — CF — LPOSCEN OSWEN (Note 2) C e 1 OSCTUN 0744 — — — — — — — — — — — — TUN3 TUN2 TUN1 TUN0 (Note 2) 3 3 6 PMD1 0770 — — T3MD T2MD T1MD — — — I2CMD U2MD(3) U1MD — SPI1MD — — ADCMD 0000 0000 0000 0000 0 PMD2 0772 — — — — — — IC2MD IC1MD — — — — — — OC2MD OC1MD 0000 0000 0000 0000 F Legend: — = unimplemented bit, read as ‘0’ 2 Note 1: Reset state depends on type of reset. 2: Reset state depends on Configuration bits. 0 3: Only available on dsPIC30F3013 devices. 1 1 TABLE 17-8: DEVICE CONFIGURATION REGISTER MAP / 2 Name Address Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 FOSC F80000 FCKSM<1:0> — — — FOS<2:0> — — — FPR<4:0> 1 FWDT F80002 FWDTEN — — — — — — — — — FWPSA<1:0> FWPSB<3:0> 2 FBORPOR F80004 MCLREN — — — — PWMPIN(1) HPOL(1) LPOL(1) BOREN — BORV<1:0> — — FPWRT<1:0> / FBS F80006 — — Reserved(2) — — — Reserved(2) — — — — Reserved(2) 3 FSS F80008 — — Reserved(2) — — Reserved(2) — — — — Reserved(2) 0 FGS F8000A — — — — — — — — — — — — — Reserved(3) GCP GWRP 1 2 FICD F8000C BKBUG COE — — — — — — — — — — — — ICS<1:0> / Legend: — = unimplemented bit, read as ‘0’ 3 Note 1: These bits are reserved (read as ‘1’ and must be programmed as ‘1’). 2: Reserved bits read as ‘1’ and must be programmed as ‘1’. 0 3: The FGS<2> bit is a read-only copy of the GCP bit (FGS<1>). 1 3 © 2 0 1 0 M ic ro c h ip T e c h n o lo g y In c .

dsPIC30F2011/2012/3012/3013 18.0 INSTRUCTION SET SUMMARY Most bit-oriented instructions (including simple rotate/shift instructions) have two operands: Note: This data sheet summarizes features of • The W register (with or without an address this group ofdsPIC30F devices and is not modifier) or file register (specified by the value of intended to be a complete reference ‘Ws’ or ‘f’) source. For more information on the CPU, • The bit in the W register or file register peripherals, register descriptions and (specified by a literal value or indirectly by the general device functionality, refer to the contents of register ‘Wb’) “dsPIC30F Family Reference Manual” (DS70046). For more information on the The literal instructions that involve data movement may device instruction set and programming, use some of the following operands: refer to the “dsPIC30F Programmer’s • A literal value to be loaded into a W register or file Reference Manual” (DS70030). register (specified by the value of ‘k’) The dsPIC30F instruction set adds many • The W register or file register where the literal enhancements to the previous PIC® MCU instruction value is to be loaded (specified by ‘Wb’ or ‘f’) sets, while maintaining an easy migration from PIC However, literal instructions that involve arithmetic or MCU instruction sets. logical operations use some of the following operands: Most instructions are a single program memory word • The first source operand which is a register ‘Wb’ (24 bits). Only three instructions require two program without any address modifier memory locations. • The second source operand which is a literal Each single-word instruction is a 24-bit word divided value into an 8-bit opcode which specifies the instruction • The destination of the result (only if not the same type, and one or more operands which further specify as the first source operand) which is typically a the operation of the instruction. register ‘Wd’ with or without an address modifier The instruction set is highly orthogonal and is grouped The MAC class of DSP instructions may use some of the into five basic categories: following operands: • Word or byte-oriented operations • The accumulator (A or B) to be used (required • Bit-oriented operations operand) • Literal operations • The W registers to be used as the two operands • DSP operations • The X and Y address space prefetch operations • Control operations • The X and Y address space prefetch destinations Table18-1 shows the general symbols used in • The accumulator write-back destination describing the instructions. The other DSP instructions do not involve any The dsPIC30F instruction set summary in Table18-2 multiplication, and may include: lists all the instructions, along with the status flags affected by each instruction. • The accumulator to be used (required) • The source or destination operand (designated as Most word or byte-oriented W register instructions Wso or Wdo, respectively) with or without an (including barrel shift instructions) have three address modifier operands: • The amount of shift specified by a W register ‘Wn’ • The first source operand which is typically a or a literal value register ‘Wb’ without any address modifier The control instructions may use some of the following • The second source operand which is typically a operands: register ‘Ws’ with or without an address modifier • The destination of the result which is typically a • A program memory address register ‘Wd’ with or without an address modifier • The mode of the table read and table write instructions However, word or byte-oriented file register instructions have two operands: • The file register specified by the value ‘f’ • The destination, which could either be the file register ‘f’ or the W0 register, which is denoted as ‘WREG’ © 2010 Microchip Technology Inc. DS70139G-page 137

dsPIC30F2011/2012/3012/3013 All instructions are a single word, except for certain RETURN/RETFIE instructions, which are single-word double-word instructions, which were made instructions but take two or three cycles. Certain double-word instructions so that all the required instructions that involve skipping over the subsequent information is available in these 48 bits. In the second instruction require either two or three cycles if the skip word, the 8MSbs are ‘0’s. If this second word is is performed, depending on whether the instruction executed as an instruction (by itself), it will execute as being skipped is a single-word or two-word instruction. a NOP. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction Most single-word instructions are executed in a single cycles. instruction cycle, unless a conditional test is true or the program counter is changed as a result of the Note: For more details on the instruction set, instruction. In these cases, the execution takes two refer to the “MCU and DSC Programmer’s instruction cycles with the additional instruction Reference Manual” (DS70157). cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes, and TABLE 18-1: SYMBOLS USED IN OPCODE DESCRIPTIONS Field Description #text Means literal defined by “text” (text) Means “content of text” [text] Means “the location addressed by text” { } Optional field or operation <n:m> Register bit field .b Byte mode selection .d Double-Word mode selection .S Shadow register select .w Word mode selection (default) Acc One of two accumulators {A, B} AWB Accumulator write-back destination address register ∈ {W13, [W13]+=2} bit4 4-bit bit selection field (used in word addressed instructions) ∈ {0...15} C, DC, N, OV, Z MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero Expr Absolute address, label or expression (resolved by the linker) f File register address ∈ {0x0000...0x1FFF} lit1 1-bit unsigned literal ∈ {0,1} lit4 4-bit unsigned literal ∈ {0...15} lit5 5-bit unsigned literal ∈ {0...31} lit8 8-bit unsigned literal ∈ {0...255} lit10 10-bit unsigned literal ∈ {0...255} for Byte mode, {0:1023} for Word mode lit14 14-bit unsigned literal ∈ {0...16384} lit16 16-bit unsigned literal ∈ {0...65535} lit23 23-bit unsigned literal ∈ {0...8388608}; LSB must be 0 None Field does not require an entry, may be blank OA, OB, SA, SB DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate PC Program Counter Slit10 10-bit signed literal ∈ {-512...511} Slit16 16-bit signed literal ∈ {-32768...32767} Slit6 6-bit signed literal ∈ {-16...16} DS70139G-page 138 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 TABLE 18-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED) Field Description Wb Base W register ∈ {W0..W15} Wd Destination W register ∈ { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] } Wdo Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] } Wm,Wn Dividend, Divisor working register pair (direct addressing) Wm*Wm Multiplicand and Multiplier working register pair for Square instructions ∈ {W4*W4,W5*W5,W6*W6,W7*W7} Wm*Wn Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4*W5,W4*W6,W4*W7,W5*W6,W5*W7,W6*W7} Wn One of 16 working registers ∈ {W0..W15} Wnd One of 16 destination working registers ∈ {W0..W15} Wns One of 16 source working registers ∈ {W0..W15} WREG W0 (working register used in file register instructions) Ws Source W register ∈ { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] } Wso Source W register ∈ { Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] } Wx X data space prefetch address register for DSP instructions ∈ {[W8]+=6, [W8]+=4, [W8]+=2, [W8], [W8]-=6, [W8]-=4, [W8]-=2, [W9]+=6, [W9]+=4, [W9]+=2, [W9], [W9]-=6, [W9]-=4, [W9]-=2, [W9+W12],none} Wxd X data space prefetch destination register for DSP instructions ∈ {W4..W7} Wy Y data space prefetch address register for DSP instructions ∈ {[W10]+=6, [W10]+=4, [W10]+=2, [W10], [W10]-=6, [W10]-=4, [W10]-=2, [W11]+=6, [W11]+=4, [W11]+=2, [W11], [W11]-=6, [W11]-=4, [W11]-=2, [W11+W12], none} Wyd Y data space prefetch destination register for DSP instructions ∈ {W4..W7} © 2010 Microchip Technology Inc. DS70139G-page 139

dsPIC30F2011/2012/3012/3013 TABLE 18-2: INSTRUCTION SET OVERVIEW Base # of Assembly # of Status Flags Instr Assembly Syntax Description Cycle Mnemonic Words Affected # s 1 ADD ADD Acc Add Accumulators 1 1 OA,OB,SA,SB ADD f f = f + WREG 1 1 C,DC,N,OV,Z ADD f,WREG WREG = f + WREG 1 1 C,DC,N,OV,Z ADD #lit10,Wn Wd = lit10 + Wd 1 1 C,DC,N,OV,Z ADD Wb,Ws,Wd Wd = Wb + Ws 1 1 C,DC,N,OV,Z ADD Wb,#lit5,Wd Wd = Wb + lit5 1 1 C,DC,N,OV,Z ADD Wso,#Slit4,Acc 16-bit Signed Add to Accumulator 1 1 OA,OB,SA,SB 2 ADDC ADDC f f = f + WREG + (C) 1 1 C,DC,N,OV,Z ADDC f,WREG WREG = f + WREG + (C) 1 1 C,DC,N,OV,Z ADDC #lit10,Wn Wd = lit10 + Wd + (C) 1 1 C,DC,N,OV,Z ADDC Wb,Ws,Wd Wd = Wb + Ws + (C) 1 1 C,DC,N,OV,Z ADDC Wb,#lit5,Wd Wd = Wb + lit5 + (C) 1 1 C,DC,N,OV,Z 3 AND AND f f = f .AND. WREG 1 1 N,Z AND f,WREG WREG = f .AND. WREG 1 1 N,Z AND #lit10,Wn Wd = lit10 .AND. Wd 1 1 N,Z AND Wb,Ws,Wd Wd = Wb .AND. Ws 1 1 N,Z AND Wb,#lit5,Wd Wd = Wb .AND. lit5 1 1 N,Z 4 ASR ASR f f = Arithmetic Right Shift f 1 1 C,N,OV,Z ASR f,WREG WREG = Arithmetic Right Shift f 1 1 C,N,OV,Z ASR Ws,Wd Wd = Arithmetic Right Shift Ws 1 1 C,N,OV,Z ASR Wb,Wns,Wnd Wnd = Arithmetic Right Shift Wb by Wns 1 1 N,Z ASR Wb,#lit5,Wnd Wnd = Arithmetic Right Shift Wb by lit5 1 1 N,Z 5 BCLR BCLR f,#bit4 Bit Clear f 1 1 None BCLR Ws,#bit4 Bit Clear Ws 1 1 None 6 BRA BRA C,Expr Branch if Carry 1 1 (2) None BRA GE,Expr Branch if greater than or equal 1 1 (2) None BRA GEU,Expr Branch if unsigned greater than or equal 1 1 (2) None BRA GT,Expr Branch if greater than 1 1 (2) None BRA GTU,Expr Branch if unsigned greater than 1 1 (2) None BRA LE,Expr Branch if less than or equal 1 1 (2) None BRA LEU,Expr Branch if unsigned less than or equal 1 1 (2) None BRA LT,Expr Branch if less than 1 1 (2) None BRA LTU,Expr Branch if unsigned less than 1 1 (2) None BRA N,Expr Branch if Negative 1 1 (2) None BRA NC,Expr Branch if Not Carry 1 1 (2) None BRA NN,Expr Branch if Not Negative 1 1 (2) None BRA NOV,Expr Branch if Not Overflow 1 1 (2) None BRA NZ,Expr Branch if Not Zero 1 1 (2) None BRA OA,Expr Branch if Accumulator A overflow 1 1 (2) None BRA OB,Expr Branch if Accumulator B overflow 1 1 (2) None BRA OV,Expr Branch if Overflow 1 1 (2) None BRA SA,Expr Branch if Accumulator A saturated 1 1 (2) None BRA SB,Expr Branch if Accumulator B saturated 1 1 (2) None BRA Expr Branch Unconditionally 1 2 None BRA Z,Expr Branch if Zero 1 1 (2) None BRA Wn Computed Branch 1 2 None 7 BSET BSET f,#bit4 Bit Set f 1 1 None BSET Ws,#bit4 Bit Set Ws 1 1 None 8 BSW BSW.C Ws,Wb Write C bit to Ws<Wb> 1 1 None BSW.Z Ws,Wb Write Z bit to Ws<Wb> 1 1 None DS70139G-page 140 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 TABLE 18-2: INSTRUCTION SET OVERVIEW (CONTINUED) Base # of Assembly # of Status Flags Instr Assembly Syntax Description Cycle Mnemonic Words Affected # s 9 BTG BTG f,#bit4 Bit Toggle f 1 1 None BTG Ws,#bit4 Bit Toggle Ws 1 1 None 10 BTSC BTSC f,#bit4 Bit Test f, Skip if Clear 1 1 None (2 or 3) BTSC Ws,#bit4 Bit Test Ws, Skip if Clear 1 1 None (2 or 3) 11 BTSS BTSS f,#bit4 Bit Test f, Skip if Set 1 1 None (2 or 3) BTSS Ws,#bit4 Bit Test Ws, Skip if Set 1 1 None (2 or 3) 12 BTST BTST f,#bit4 Bit Test f 1 1 Z BTST.C Ws,#bit4 Bit Test Ws to C 1 1 C BTST.Z Ws,#bit4 Bit Test Ws to Z 1 1 Z BTST.C Ws,Wb Bit Test Ws<Wb> to C 1 1 C BTST.Z Ws,Wb Bit Test Ws<Wb> to Z 1 1 Z 13 BTSTS BTSTS f,#bit4 Bit Test then Set f 1 1 Z BTSTS.C Ws,#bit4 Bit Test Ws to C, then Set 1 1 C BTSTS.Z Ws,#bit4 Bit Test Ws to Z, then Set 1 1 Z 14 CALL CALL lit23 Call subroutine 2 2 None CALL Wn Call indirect subroutine 1 2 None 15 CLR CLR f f = 0x0000 1 1 None CLR WREG WREG = 0x0000 1 1 None CLR Ws Ws = 0x0000 1 1 None CLR Acc,Wx,Wxd,Wy,Wyd,AWB Clear Accumulator 1 1 OA,OB,SA,SB 16 CLRWDT CLRWDT Clear Watchdog Timer 1 1 WDTO,Sleep 17 COM COM f f = f 1 1 N,Z COM f,WREG WREG = f 1 1 N,Z COM Ws,Wd Wd = Ws 1 1 N,Z 18 CP CP f Compare f with WREG 1 1 C,DC,N,OV,Z CP Wb,#lit5 Compare Wb with lit5 1 1 C,DC,N,OV,Z CP Wb,Ws Compare Wb with Ws (Wb - Ws) 1 1 C,DC,N,OV,Z 19 CP0 CP0 f Compare f with 0x0000 1 1 C,DC,N,OV,Z CP0 Ws Compare Ws with 0x0000 1 1 C,DC,N,OV,Z 20 CPB CPB f Compare f with WREG, with Borrow 1 1 C,DC,N,OV,Z CPB Wb,#lit5 Compare Wb with lit5, with Borrow 1 1 C,DC,N,OV,Z CPB Wb,Ws Compare Wb with Ws, with Borrow 1 1 C,DC,N,OV,Z (Wb - Ws - C) 21 CPSEQ CPSEQ Wb, Wn Compare Wb with Wn, skip if = 1 1 None (2 or 3) 22 CPSGT CPSGT Wb, Wn Compare Wb with Wn, skip if > 1 1 None (2 or 3) 23 CPSLT CPSLT Wb, Wn Compare Wb with Wn, skip if < 1 1 None (2 or 3) 24 CPSNE CPSNE Wb, Wn Compare Wb with Wn, skip if ≠ 1 1 None (2 or 3) 25 DAW DAW Wn Wn = decimal adjust Wn 1 1 C 26 DEC DEC f f = f -1 1 1 C,DC,N,OV,Z DEC f,WREG WREG = f -1 1 1 C,DC,N,OV,Z DEC Ws,Wd Wd = Ws - 1 1 1 C,DC,N,OV,Z 27 DEC2 DEC2 f f = f -2 1 1 C,DC,N,OV,Z DEC2 f,WREG WREG = f -2 1 1 C,DC,N,OV,Z DEC2 Ws,Wd Wd = Ws - 2 1 1 C,DC,N,OV,Z 28 DISI DISI #lit14 Disable Interrupts for k instruction cycles 1 1 None © 2010 Microchip Technology Inc. DS70139G-page 141

dsPIC30F2011/2012/3012/3013 TABLE 18-2: INSTRUCTION SET OVERVIEW (CONTINUED) Base # of Assembly # of Status Flags Instr Assembly Syntax Description Cycle Mnemonic Words Affected # s 29 DIV DIV.S Wm,Wn Signed 16/16-bit Integer Divide 1 18 N,Z,C,OV DIV.SD Wm,Wn Signed 32/16-bit Integer Divide 1 18 N,Z,C,OV DIV.U Wm,Wn Unsigned 16/16-bit Integer Divide 1 18 N,Z,C,OV DIV.UD Wm,Wn Unsigned 32/16-bit Integer Divide 1 18 N,Z,C,OV 30 DIVF DIVF Wm,Wn Signed 16/16-bit Fractional Divide 1 18 N,Z,C,OV 31 DO DO #lit14,Expr Do code to PC+Expr, lit14+1 times 2 2 None DO Wn,Expr Do code to PC+Expr, (Wn)+1 times 2 2 None 32 ED ED Wm*Wm,Acc,Wx,Wy,Wxd Euclidean Distance (no accumulate) 1 1 OA,OB,OAB, SA,SB,SAB 33 EDAC EDAC Wm*Wm,Acc,Wx,Wy,Wxd Euclidean Distance 1 1 OA,OB,OAB, SA,SB,SAB 34 EXCH EXCH Wns,Wnd Swap Wns with Wnd 1 1 None 35 FBCL FBCL Ws,Wnd Find Bit Change from Left (MSb) Side 1 1 C 36 FF1L FF1L Ws,Wnd Find First One from Left (MSb) Side 1 1 C 37 FF1R FF1R Ws,Wnd Find First One from Right (LSb) Side 1 1 C 38 GOTO GOTO Expr Go to address 2 2 None GOTO Wn Go to indirect 1 2 None 39 INC INC f f = f + 1 1 1 C,DC,N,OV,Z INC f,WREG WREG = f + 1 1 1 C,DC,N,OV,Z INC Ws,Wd Wd = Ws + 1 1 1 C,DC,N,OV,Z 40 INC2 INC2 f f = f + 2 1 1 C,DC,N,OV,Z INC2 f,WREG WREG = f + 2 1 1 C,DC,N,OV,Z INC2 Ws,Wd Wd = Ws + 2 1 1 C,DC,N,OV,Z 41 IOR IOR f f = f .IOR. WREG 1 1 N,Z IOR f,WREG WREG = f .IOR. WREG 1 1 N,Z IOR #lit10,Wn Wd = lit10 .IOR. Wd 1 1 N,Z IOR Wb,Ws,Wd Wd = Wb .IOR. Ws 1 1 N,Z IOR Wb,#lit5,Wd Wd = Wb .IOR. lit5 1 1 N,Z 42 LAC LAC Wso,#Slit4,Acc Load Accumulator 1 1 OA,OB,OAB, SA,SB,SAB 43 LNK LNK #lit14 Link frame pointer 1 1 None 44 LSR LSR f f = Logical Right Shift f 1 1 C,N,OV,Z LSR f,WREG WREG = Logical Right Shift f 1 1 C,N,OV,Z LSR Ws,Wd Wd = Logical Right Shift Ws 1 1 C,N,OV,Z LSR Wb,Wns,Wnd Wnd = Logical Right Shift Wb by Wns 1 1 N,Z LSR Wb,#lit5,Wnd Wnd = Logical Right Shift Wb by lit5 1 1 N,Z 45 MAC MAC Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Multiply and Accumulate 1 1 OA,OB,OAB, , SA,SB,SAB AWB MAC Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and Accumulate 1 1 OA,OB,OAB, SA,SB,SAB 46 MOV MOV f,Wn Move f to Wn 1 1 None MOV f Move f to f 1 1 N,Z MOV f,WREG Move f to WREG 1 1 N,Z MOV #lit16,Wn Move 16-bit literal to Wn 1 1 None MOV.b #lit8,Wn Move 8-bit literal to Wn 1 1 None MOV Wn,f Move Wn to f 1 1 None MOV Wso,Wdo Move Ws to Wd 1 1 None MOV WREG,f Move WREG to f 1 1 N,Z MOV.D Wns,Wd Move Double from W(ns):W(ns+1) to Wd 1 2 None MOV.D Ws,Wnd Move Double from Ws to W(nd+1):W(nd) 1 2 None 47 MOVSAC MOVSAC Acc,Wx,Wxd,Wy,Wyd,AWB Prefetch and store accumulator 1 1 None DS70139G-page 142 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 TABLE 18-2: INSTRUCTION SET OVERVIEW (CONTINUED) Base # of Assembly # of Status Flags Instr Assembly Syntax Description Cycle Mnemonic Words Affected # s 48 MPY MPY Multiply Wm by Wn to Accumulator 1 1 OA,OB,OAB, Wm*Wn,Acc,Wx,Wxd,Wy,Wyd SA,SB,SAB MPY Square Wm to Accumulator 1 1 OA,OB,OAB, Wm*Wm,Acc,Wx,Wxd,Wy,Wyd SA,SB,SAB 49 MPY.N MPY.N -(Multiply Wm by Wn) to Accumulator 1 1 None Wm*Wn,Acc,Wx,Wxd,Wy,Wyd 50 MSC MSC Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Multiply and Subtract from Accumulator 1 1 OA,OB,OAB, , SA,SB,SAB AWB 51 MUL MUL.SS Wb,Ws,Wnd {Wnd+1, Wnd} = signed(Wb) * signed(Ws) 1 1 None MUL.SU Wb,Ws,Wnd {Wnd+1, Wnd} = signed(Wb) * 1 1 None unsigned(Ws) MUL.US Wb,Ws,Wnd {Wnd+1, Wnd} = unsigned(Wb) * 1 1 None signed(Ws) MUL.UU Wb,Ws,Wnd {Wnd+1, Wnd} = unsigned(Wb) * 1 1 None unsigned(Ws) MUL.SU Wb,#lit5,Wnd {Wnd+1, Wnd} = signed(Wb) * unsigned(lit5) 1 1 None MUL.UU Wb,#lit5,Wnd {Wnd+1, Wnd} = unsigned(Wb) * 1 1 None unsigned(lit5) MUL f W3:W2 = f * WREG 1 1 None 52 NEG NEG Acc Negate Accumulator 1 1 OA,OB,OAB, SA,SB,SAB NEG f f = f + 1 1 1 C,DC,N,OV,Z NEG f,WREG WREG = f + 1 1 1 C,DC,N,OV,Z NEG Ws,Wd Wd = Ws + 1 1 1 C,DC,N,OV,Z 53 NOP NOP No Operation 1 1 None NOPR No Operation 1 1 None 54 POP POP f Pop f from top-of-stack (TOS) 1 1 None POP Wdo Pop from top-of-stack (TOS) to Wdo 1 1 None POP.D Wnd Pop from top-of-stack (TOS) to 1 2 None W(nd):W(nd+1) POP.S Pop Shadow Registers 1 1 All 55 PUSH PUSH f Push f to top-of-stack (TOS) 1 1 None PUSH Wso Push Wso to top-of-stack (TOS) 1 1 None PUSH.D Wns Push W(ns):W(ns+1) to top-of-stack (TOS) 1 2 None PUSH.S Push Shadow Registers 1 1 None 56 PWRSAV PWRSAV #lit1 Go into Sleep or Idle mode 1 1 WDTO,Sleep 57 RCALL RCALL Expr Relative Call 1 2 None RCALL Wn Computed Call 1 2 None 58 REPEAT REPEAT #lit14 Repeat Next Instruction lit14+1 times 1 1 None REPEAT Wn Repeat Next Instruction (Wn)+1 times 1 1 None 59 RESET RESET Software device Reset 1 1 None 60 RETFIE RETFIE Return from interrupt 1 3 (2) None 61 RETLW RETLW #lit10,Wn Return with literal in Wn 1 3 (2) None 62 RETURN RETURN Return from Subroutine 1 3 (2) None 63 RLC RLC f f = Rotate Left through Carry f 1 1 C,N,Z RLC f,WREG WREG = Rotate Left through Carry f 1 1 C,N,Z RLC Ws,Wd Wd = Rotate Left through Carry Ws 1 1 C,N,Z 64 RLNC RLNC f f = Rotate Left (No Carry) f 1 1 N,Z RLNC f,WREG WREG = Rotate Left (No Carry) f 1 1 N,Z RLNC Ws,Wd Wd = Rotate Left (No Carry) Ws 1 1 N,Z 65 RRC RRC f f = Rotate Right through Carry f 1 1 C,N,Z RRC f,WREG WREG = Rotate Right through Carry f 1 1 C,N,Z RRC Ws,Wd Wd = Rotate Right through Carry Ws 1 1 C,N,Z © 2010 Microchip Technology Inc. DS70139G-page 143

dsPIC30F2011/2012/3012/3013 TABLE 18-2: INSTRUCTION SET OVERVIEW (CONTINUED) Base # of Assembly # of Status Flags Instr Assembly Syntax Description Cycle Mnemonic Words Affected # s 66 RRNC RRNC f f = Rotate Right (No Carry) f 1 1 N,Z RRNC f,WREG WREG = Rotate Right (No Carry) f 1 1 N,Z RRNC Ws,Wd Wd = Rotate Right (No Carry) Ws 1 1 N,Z 67 SAC SAC Acc,#Slit4,Wdo Store Accumulator 1 1 None SAC.R Acc,#Slit4,Wdo Store Rounded Accumulator 1 1 None 68 SE SE Ws,Wnd Wnd = sign-extended Ws 1 1 C,N,Z 69 SETM SETM f f = 0xFFFF 1 1 None SETM WREG WREG = 0xFFFF 1 1 None SETM Ws Ws = 0xFFFF 1 1 None 70 SFTAC SFTAC Acc,Wn Arithmetic Shift Accumulator by (Wn) 1 1 OA,OB,OAB, SA,SB,SAB SFTAC Acc,#Slit6 Arithmetic Shift Accumulator by Slit6 1 1 OA,OB,OAB, SA,SB,SAB 71 SL SL f f = Left Shift f 1 1 C,N,OV,Z SL f,WREG WREG = Left Shift f 1 1 C,N,OV,Z SL Ws,Wd Wd = Left Shift Ws 1 1 C,N,OV,Z SL Wb,Wns,Wnd Wnd = Left Shift Wb by Wns 1 1 N,Z SL Wb,#lit5,Wnd Wnd = Left Shift Wb by lit5 1 1 N,Z 72 SUB SUB Acc Subtract Accumulators 1 1 OA,OB,OAB, SA,SB,SAB SUB f f = f - WREG 1 1 C,DC,N,OV,Z SUB f,WREG WREG = f - WREG 1 1 C,DC,N,OV,Z SUB #lit10,Wn Wn = Wn - lit10 1 1 C,DC,N,OV,Z SUB Wb,Ws,Wd Wd = Wb - Ws 1 1 C,DC,N,OV,Z SUB Wb,#lit5,Wd Wd = Wb - lit5 1 1 C,DC,N,OV,Z 73 SUBB SUBB f f = f - WREG - (C) 1 1 C,DC,N,OV,Z SUBB f,WREG WREG = f - WREG - (C) 1 1 C,DC,N,OV,Z SUBB #lit10,Wn Wn = Wn - lit10 - (C) 1 1 C,DC,N,OV,Z SUBB Wb,Ws,Wd Wd = Wb - Ws - (C) 1 1 C,DC,N,OV,Z SUBB Wb,#lit5,Wd Wd = Wb - lit5 - (C) 1 1 C,DC,N,OV,Z 74 SUBR SUBR f f = WREG - f 1 1 C,DC,N,OV,Z SUBR f,WREG WREG = WREG - f 1 1 C,DC,N,OV,Z SUBR Wb,Ws,Wd Wd = Ws - Wb 1 1 C,DC,N,OV,Z SUBR Wb,#lit5,Wd Wd = lit5 - Wb 1 1 C,DC,N,OV,Z 75 SUBBR SUBBR f f = WREG - f - (C) 1 1 C,DC,N,OV,Z SUBBR f,WREG WREG = WREG -f - (C) 1 1 C,DC,N,OV,Z SUBBR Wb,Ws,Wd Wd = Ws - Wb - (C) 1 1 C,DC,N,OV,Z SUBBR Wb,#lit5,Wd Wd = lit5 - Wb - (C) 1 1 C,DC,N,OV,Z 76 SWAP SWAP.b Wn Wn = nibble swap Wn 1 1 None SWAP Wn Wn = byte swap Wn 1 1 None 77 TBLRDH TBLRDH Ws,Wd Read Prog<23:16> to Wd<7:0> 1 2 None 78 TBLRDL TBLRDL Ws,Wd Read Prog<15:0> to Wd 1 2 None 79 TBLWTH TBLWTH Ws,Wd Write Ws<7:0> to Prog<23:16> 1 2 None 80 TBLWTL TBLWTL Ws,Wd Write Ws to Prog<15:0> 1 2 None 81 ULNK ULNK Unlink frame pointer 1 1 None 82 XOR XOR f f = f .XOR. WREG 1 1 N,Z XOR f,WREG WREG = f .XOR. WREG 1 1 N,Z XOR #lit10,Wn Wd = lit10 .XOR. Wd 1 1 N,Z XOR Wb,Ws,Wd Wd = Wb .XOR. Ws 1 1 N,Z XOR Wb,#lit5,Wd Wd = Wb .XOR. lit5 1 1 N,Z 83 ZE ZE Ws,Wnd Wnd = Zero-extend Ws 1 1 C,Z,N DS70139G-page 144 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 19.0 DEVELOPMENT SUPPORT 19.1 MPLAB Integrated Development Environment Software The PIC® microcontrollers and dsPIC® digital signal controllers are supported with a full range of software The MPLAB IDE software brings an ease of software and hardware development tools: development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows® • Integrated Development Environment operating system-based application that contains: - MPLAB® IDE Software • Compilers/Assemblers/Linkers • A single graphical interface to all debugging tools - MPLAB C Compiler for Various Device - Simulator Families - Programmer (sold separately) - HI-TECH C for Various Device Families - In-Circuit Emulator (sold separately) - MPASMTM Assembler - In-Circuit Debugger (sold separately) - MPLINKTM Object Linker/ • A full-featured editor with color-coded context MPLIBTM Object Librarian • A multiple project manager - MPLAB Assembler/Linker/Librarian for • Customizable data windows with direct edit of Various Device Families contents • Simulators • High-level source code debugging - MPLAB SIM Software Simulator • Mouse over variable inspection • Emulators • Drag and drop variables from source to watch - MPLAB REAL ICE™ In-Circuit Emulator windows • In-Circuit Debuggers • Extensive on-line help - MPLAB ICD 3 • Integration of select third party tools, such as - PICkit™ 3 Debug Express IAR C Compilers • Device Programmers The MPLAB IDE allows you to: - PICkit™ 2 Programmer • Edit your source files (either C or assembly) - MPLAB PM3 Device Programmer • One-touch compile or assemble, and download to • Low-Cost Demonstration/Development Boards, emulator and simulator tools (automatically Evaluation Kits, and Starter Kits updates all project information) • Debug using: - Source files (C or assembly) - Mixed C and assembly - Machine code MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power. © 2010 Microchip Technology Inc. DS70139G-page 145

dsPIC30F2011/2012/3012/3013 19.2 MPLAB C Compilers for Various 19.5 MPLINK Object Linker/ Device Families MPLIB Object Librarian The MPLAB C Compiler code development systems The MPLINK Object Linker combines relocatable are complete ANSI C compilers for Microchip’s PIC18, objects created by the MPASM Assembler and the PIC24 and PIC32 families of microcontrollers and the MPLAB C18 C Compiler. It can link relocatable objects dsPIC30 and dsPIC33 families of digital signal control- from precompiled libraries, using directives from a lers. These compilers provide powerful integration linker script. capabilities, superior code optimization and ease of The MPLIB Object Librarian manages the creation and use. modification of library files of precompiled code. When For easy source level debugging, the compilers provide a routine from a library is called from a source file, only symbol information that is optimized to the MPLAB IDE the modules that contain that routine will be linked in debugger. with the application. This allows large libraries to be used efficiently in many different applications. 19.3 HI-TECH C for Various Device The object linker/library features include: Families • Efficient linking of single libraries instead of many The HI-TECH C Compiler code development systems smaller files are complete ANSI C compilers for Microchip’s PIC • Enhanced code maintainability by grouping family of microcontrollers and the dsPIC family of digital related modules together signal controllers. These compilers provide powerful • Flexible creation of libraries with easy module integration capabilities, omniscient code generation listing, replacement, deletion and extraction and ease of use. For easy source level debugging, the compilers provide 19.6 MPLAB Assembler, Linker and symbol information that is optimized to the MPLAB IDE Librarian for Various Device debugger. Families The compilers include a macro assembler, linker, pre- MPLAB Assembler produces relocatable machine processor, and one-step driver, and can run on multiple code from symbolic assembly language for PIC24, platforms. PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler 19.4 MPASM Assembler generates relocatable object files that can then be The MPASM Assembler is a full-featured, universal archived or linked with other relocatable object files and macro assembler for PIC10/12/16/18 MCUs. archives to create an executable file. Notable features of the assembler include: The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX • Support for the entire device instruction set files, MAP files to detail memory usage and symbol • Support for fixed-point and floating-point data reference, absolute LST files that contain source lines • Command line interface and generated machine code and COFF files for • Rich directive set debugging. • Flexible macro language The MPASM Assembler features include: • MPLAB IDE compatibility • Integration into MPLAB IDE projects • User-defined macros to streamline assembly code • Conditional assembly for multi-purpose source files • Directives that allow complete control over the assembly process DS70139G-page 146 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 19.7 MPLAB SIM Software Simulator 19.9 MPLAB ICD 3 In-Circuit Debugger System The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulat- MPLAB ICD 3 In-Circuit Debugger System is Micro- ing the PIC MCUs and dsPIC® DSCs on an instruction chip's most cost effective high-speed hardware level. On any given instruction, the data areas can be debugger/programmer for Microchip Flash Digital Sig- examined or modified and stimuli can be applied from nal Controller (DSC) and microcontroller (MCU) a comprehensive stimulus controller. Registers can be devices. It debugs and programs PIC® Flash microcon- logged to files for further run-time analysis. The trace trollers and dsPIC® DSCs with the powerful, yet easy- buffer and logic analyzer display extend the power of to-use graphical user interface of MPLAB Integrated the simulator to record and track program execution, Development Environment (IDE). actions on I/O, most peripherals and internal registers. The MPLAB ICD 3 In-Circuit Debugger probe is con- The MPLAB SIM Software Simulator fully supports nected to the design engineer's PC using a high-speed symbolic debugging using the MPLAB CCompilers, USB 2.0 interface and is connected to the target with a and the MPASM and MPLAB Assemblers. The soft- connector compatible with the MPLAB ICD 2 or MPLAB ware simulator offers the flexibility to develop and REAL ICE systems (RJ-11). MPLAB ICD 3 supports all debug code outside of the hardware laboratory envi- MPLAB ICD 2 headers. ronment, making it an excellent, economical software development tool. 19.10 PICkit 3 In-Circuit Debugger/ Programmer and 19.8 MPLAB REAL ICE In-Circuit PICkit 3 Debug Express Emulator System The MPLAB PICkit 3 allows debugging and program- MPLAB REAL ICE In-Circuit Emulator System is ming of PIC® and dsPIC® Flash microcontrollers at a Microchip’s next generation high-speed emulator for most affordable price point using the powerful graphical Microchip Flash DSC and MCU devices. It debugs and user interface of the MPLAB Integrated Development programs PIC® Flash MCUs and dsPIC® Flash DSCs Environment (IDE). The MPLAB PICkit 3 is connected with the easy-to-use, powerful graphical user interface of to the design engineer's PC using a full speed USB the MPLAB Integrated Development Environment (IDE), interface and can be connected to the target via an included with each kit. Microchip debug (RJ-11) connector (compatible with The emulator is connected to the design engineer’s PC MPLAB ICD 3 and MPLAB REAL ICE). The connector using a high-speed USB 2.0 interface and is connected uses two device I/O pins and the reset line to imple- to the target with either a connector compatible with in- ment in-circuit debugging and In-Circuit Serial Pro- circuit debugger systems (RJ11) or with the new high- gramming™. speed, noise tolerant, Low-Voltage Differential Signal The PICkit 3 Debug Express include the PICkit 3, demo (LVDS) interconnection (CAT5). board and microcontroller, hookup cables and CDROM The emulator is field upgradable through future firmware with user’s guide, lessons, tutorial, compiler and downloads in MPLAB IDE. In upcoming releases of MPLAB IDE software. MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables. © 2010 Microchip Technology Inc. DS70139G-page 147

dsPIC30F2011/2012/3012/3013 19.11 PICkit 2 Development 19.13 Demonstration/Development Programmer/Debugger and Boards, Evaluation Kits, and PICkit 2 Debug Express Starter Kits The PICkit™ 2 Development Programmer/Debugger is A wide variety of demonstration, development and a low-cost development tool with an easy to use inter- evaluation boards for various PIC MCUs and dsPIC face for programming and debugging Microchip’s Flash DSCs allows quick application development on fully func- families of microcontrollers. The full featured tional systems. Most boards include prototyping areas for Windows® programming interface supports baseline adding custom circuitry and provide application firmware (PIC10F, PIC12F5xx, PIC16F5xx), midrange and source code for examination and modification. (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, The boards support a variety of features, including LEDs, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit temperature sensors, switches, speakers, RS-232 microcontrollers, and many Microchip Serial EEPROM interfaces, LCD displays, potentiometers and additional products. With Microchip’s powerful MPLAB Integrated EEPROM memory. Development Environment (IDE) the PICkit™ 2 enables in-circuit debugging on most PIC® microcon- The demonstration and development boards can be trollers. In-Circuit-Debugging runs, halts and single used in teaching environments, for prototyping custom steps the program while the PIC microcontroller is circuits and for learning about various microcontroller embedded in the application. When halted at a break- applications. point, the file registers can be examined and modified. In addition to the PICDEM™ and dsPICDEM™ demon- The PICkit 2 Debug Express include the PICkit 2, demo stration/development board series of circuits, Microchip board and microcontroller, hookup cables and CDROM has a line of evaluation kits and demonstration software with user’s guide, lessons, tutorial, compiler and for analog filter design, KEELOQ® security ICs, CAN, IrDA®, PowerSmart battery management, SEEVAL® MPLAB IDE software. evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more. 19.12 MPLAB PM3 Device Programmer Also available are starter kits that contain everything The MPLAB PM3 Device Programmer is a universal, needed to experience the specified device. This usually CE compliant device programmer with programmable includes a single application and debug capability, all voltage verification at VDDMIN and VDDMAX for on one board. maximum reliability. It features a large LCD display Check the Microchip web page (www.microchip.com) (128 x 64) for menus and error messages and a modu- for the complete list of demonstration, development lar, detachable socket assembly to support various and evaluation kits. package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications. DS70139G-page 148 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 20.0 ELECTRICAL CHARACTERISTICS This section provides an overview of dsPIC30F electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available. For detailed information about the dsPIC30F architecture and core, refer to the “dsPIC30F Family Reference Manual” (DS70046). Absolute maximum ratings for the dsPIC30F family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied. Absolute Maximum Ratings(†) Ambient temperature under bias.............................................................................................................-40°C to +125°C Storage temperature.............................................................................................................................. -65°C to +150°C Voltage on any pin with respect to VSS (except VDD and MCLR) (Note 1).....................................-0.3V to (VDD + 0.3V) Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +5.5V Voltage on MCLR with respect to VSS........................................................................................................0V to +13.25V Maximum current out of VSS pin...........................................................................................................................300 mA Maximum current into VDD pin (Note 2)................................................................................................................250 mA Input clamp current, IIK (VI < 0 or VI > VDD)..........................................................................................................±20 mA Output clamp current, IOK (VO < 0 or VO > VDD)...................................................................................................±20 mA Maximum output current sunk by any I/O pin..........................................................................................................25 mA Maximum output current sourced by any I/O pin....................................................................................................25 mA Maximum current sunk by all ports.......................................................................................................................200 mA Maximum current sourced by all ports (Note 2)....................................................................................................200 mA Note1: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a “low” level to the MCLR/VPP pin, rather than pulling this pin directly to VSS. 2: Maximum allowable current is a function of device maximum power dissipation. See Table20-2 for PDMAX. †NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Note: All peripheral electrical characteristics are specified. For exact peripherals available on specific devices, please refer to the dsPIC30F2011/2012/3012/3013 Sensor Family table on page4 of this data sheet. © 2010 Microchip Technology Inc. DS70139G-page 149

dsPIC30F2011/2012/3012/3013 20.1 DC Characteristics TABLE 20-1: OPERATING MIPS VS. VOLTAGE Max MIPS VDD Range Temp Range dsPIC30FXXX-30I dsPIC30FXXX-20E 4.5-5.5V -40°C to 85°C 30 — 4.5-5.5V -40°C to 125°C — 20 3.0-3.6V -40°C to 85°C 20 — 3.0-3.6V -40°C to 125°C — 15 2.5-3.0V -40°C to 85°C 10 — TABLE 20-2: THERMAL OPERATING CONDITIONS Rating Symbol Min Typ Max Unit dsPIC30F201x-30I dsPIC30F301x-30I Operating Junction Temperature Range TJ -40 — +125 °C Operating Ambient Temperature Range TA -40 — +85 °C dsPIC30F201x-20E dsPIC30F301x-20E Operating Junction Temperature Range TJ -40 — +150 °C Operating Ambient Temperature Range TA -40 — +125 °C Power Dissipation: Internal chip power dissipation: PINT = VDD× (IDD–∑IOH) PD PINT + PI/O W I/O Pin power dissipation: PI/O= ∑({VDD–VOH}× IOH)+∑(VOL× IOL) Maximum Allowed Power Dissipation PDMAX (TJ - TA) / θJA W TABLE 20-3: THERMAL PACKAGING CHARACTERISTICS Characteristic Symbol Typ Max Unit Notes Package Thermal Resistance, 18-pin PDIP (P) θJA 44 — °C/W 1 Package Thermal Resistance, 18-pin SOIC (SO) θJA 57 — °C/W 1 Package Thermal Resistance, 28-pin SPDIP (SP) θJA 42 — °C/W 1 Package Thermal Resistance, 28-pin (SOIC) θJA 49 — °C/W 1 Package Thermal Resistance, 44-pin QFN θJA 28 — °C/W 1 Note 1: Junction to ambient thermal resistance, Theta-ja (θJA) numbers are achieved by package simulations. DS70139G-page 150 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 T ABLE 20-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic Min Typ(1) Max Units Conditions No. Operating Voltage(2) DC10 VDD Supply Voltage 2.5 — 5.5 V Industrial temperature DC11 VDD Supply Voltage 3.0 — 5.5 V Extended temperature DC12 VDR RAM Data Retention Voltage(3) 1.75 — — V DC16 VPOR VDD Start Voltage (to ensure — — VSS V internal Power-on Reset signal) DC17 SVDD VDD Rise Rate (to ensure 0.05 — — V/ms 0-5V in 0.1 sec internal Power-on Reset signal) 0-3V in 60 ms Note 1: “Typ” column data is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 2: These parameters are characterized but not tested in manufacturing. 3: This is the limit to which VDD can be lowered without losing RAM data. © 2010 Microchip Technology Inc. DS70139G-page 151

dsPIC30F2011/2012/3012/3013 T ABLE 20-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD) Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Parameter Typical(1) Max Units Conditions No. Operating Current (IDD)(2) DC31a 1.6 3.0 mA 25°C DC31b 1.6 3.0 mA 85°C 3.3V DC31c 1.6 3.0 mA 125°C 0.128 MIPS DC31e 3.6 6.0 mA 25°C LPRC (512 kHz) DC31f 3.3 6.0 mA 85°C 5V DC31g 3.2 6.0 mA 125°C DC30a 3.0 5.0 mA 25°C DC30b 3.0 5.0 mA 85°C 3.3V DC30c 3.1 5.0 mA 125°C (1.8 MIPS) DC30e 6.0 9.0 mA 25°C FRC (7.37 MHz) DC30f 5.8 9.0 mA 85°C 5V DC30g 5.7 9.0 mA 125°C DC23a 9.0 15.0 mA 25°C DC23b 10.0 15.0 mA 85°C 3.3V DC23c 10.0 15.0 mA 125°C 4 MIPS DC23e 16.0 24.0 mA 25°C DC23f 16.0 24.0 mA 85°C 5V DC23g 16.0 24.0 mA 125°C DC24a 22.0 33.0 mA 25°C DC24b 22.0 33.0 mA 85°C 3.3V DC24c 22.0 33.0 mA 125°C 10 MIPS DC24e 37.0 56.0 mA 25°C DC24f 37.0 56.0 mA 85°C 5V DC24g 37.0 56.0 mA 125°C DC27a 41.0 60.0 mA 25°C 3.3V DC27b 40.0 60.0 mA 85°C DC27d 68.0 90.0 mA 25°C 20 MIPS DC27e 67.0 90.0 mA 85°C 5V DC27f 66.0 90.0 mA 125°C DC29a 96.0 140.0 mA 25°C 5V 30 MIPS DC29b 94.0 140.0 mA 85°C Note 1: Data in “Typical” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as Inputs and pulled to VDD. MCLR = VDD, WDT, FSCM, LVD and BOR are disabled. CPU, SRAM, Program Memory and Data Memory are operational. No peripheral modules are operating. DS70139G-page 152 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 T ABLE 20-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Parameter Typical(1) Max Units Conditions No. Operating Current (IDD)(2) DC51a 1.3 2.5 mA 25°C DC51b 1.3 2.5 mA 85°C 3.3V DC51c 1.2 2.5 mA 125°C 0.128 MIPS DC51e 3.2 5.0 mA 25°C LPRC (512 kHz) DC51f 2.9 5.0 mA 85°C 5V DC51g 2.8 5.0 mA 125°C DC50a 3.0 5.0 mA 25°C DC50b 3.0 5.0 mA 85°C 3.3V DC50c 3.0 5.0 mA 125°C (1.8 MIPS) DC50e 6.0 9.0 mA 25°C FRC (7.37 MHz) DC50f 5.8 9.0 mA 85°C 5V DC50g 5.7 9.0 mA 125°C DC43a 5.2 8.0 mA 25°C DC43b 5.3 8.0 mA 85°C 3.3V DC43c 5.4 8.0 mA 125°C 4 MIPS DC43e 9.7 15.0 mA 25°C DC43f 9.6 15.0 mA 85°C 5V DC43g 9.5 15.0 mA 125°C DC44a 11.0 17.0 mA 25°C DC44b 11.0 17.0 mA 85°C 3.3V DC44c 11.0 17.0 mA 125°C 10 MIPS DC44e 19.0 29.0 mA 25°C DC44f 19.0 29.0 mA 85°C 5V DC44g 20.0 30.0 mA 125°C DC47a 20.0 35.0 mA 25°C 3.3V DC47b 21.0 35.0 mA 85°C DC47d 35.0 50.0 mA 25°C 20 MIPS DC47e 36.0 50.0 mA 85°C 5V DC47f 36.0 50.0 mA 125°C DC49a 51.0 70.0 mA 25°C 5V 30 MIPS DC49b 51.0 70.0 mA 85°C Note 1: Data in “Typical” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 2: Base IIDLE current is measured with Core off, Clock on and all modules turned off. © 2010 Microchip Technology Inc. DS70139G-page 153

dsPIC30F2011/2012/3012/3013 T ABLE 20-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Parameter Typical(1) Max Units Conditions No. Power-Down Current (IPD)(2) DC60a 0.3 — μA 25°C DC60b 1.3 30.0 μA 85°C 3.3V DC60c 16.0 60.0 μA 125°C Base Power-Down Current(3) DC60e 0.5 — μA 25°C DC60f 3.7 45.0 μA 85°C 5V DC60g 25.0 90.0 μA 125°C DC61a 6.0 9.0 μA 25°C DC61b 6.0 9.0 μA 85°C 3.3V DC61c 6.0 9.0 μA 125°C Watchdog Timer Current: ΔIWDT(3) DC61e 13.0 20.0 μA 25°C DC61f 12.0 20.0 μA 85°C 5V DC61g 12.0 20.0 μA 125°C DC62a 4.0 10.0 μA 25°C DC62b 5.0 10.0 μA 85°C 3.3V DC62c 4.0 10.0 μA 125°C Timer1 w/32 kHz Crystal: ΔITI32(3) DC62e 4.0 15.0 μA 25°C DC62f 6.0 15.0 μA 85°C 5V DC62g 5.0 15.0 μA 125°C DC63a 33.0 53.0 μA 25°C DC63b 35.0 53.0 μA 85°C 3.3V DC63c 19.0 53.0 μA 125°C BOR On: ΔIBOR(3) DC63e 38.0 62.0 μA 25°C DC63f 41.0 62.0 μA 85°C 5V DC63g 41.0 62.0 μA 125°C DC66a 21.0 40.0 μA 25°C DC66b 26.0 40.0 μA 85°C 3.3V DC66c 27.0 40.0 μA 125°C Low-Voltage Detect: ΔILVD(3) DC66e 25.0 44.0 μA 25°C DC66f 27.0 44.0 μA 85°C 5V DC66g 29.0 44.0 μA 125°C Note 1: Data in the Typical column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled high. LVD, BOR, WDT, etc. are all switched off. 3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. DS70139G-page 154 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 TABLE 20-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic Min Typ(1) Max Units Conditions No. VIL Input Low Voltage(2) DI10 I/O pins: with Schmitt Trigger buffer VSS — 0.2VDD V DI15 MCLR VSS — 0.2VDD V DI16 OSC1 (in XT, HS and LP modes) VSS — 0.2VDD V DI17 OSC1 (in RC mode)(3) VSS — 0.3VDD V DI18 SDA, SCL VSS — 0.3VDD V SM bus disabled DI19 SDA, SCL VSS — 0.8 V SM bus enabled VIH Input High Voltage(2) DI20 I/O pins: with Schmitt Trigger buffer 0.8VDD — VDD V DI25 MCLR 0.8VDD — VDD V DI26 OSC1 (in XT, HS and LP modes) 0.7VDD — VDD V DI27 OSC1 (in RC mode)(3) 0.9VDD — VDD V DI28 SDA, SCL 0.7VDD — VDD V SM bus disabled DI29 SDA, SCL 2.1 — VDD V SM bus enabled ICNPU CNXX Pull-up Current(2) DI30 50 250 400 μA VDD = 5V, VPIN = VSS IIL Input Leakage Current(2)(4)(5) DI50 I/O ports — 0.01 ±1 μA VSS ≤ VPIN ≤ VDD, Pin at high impedance DI51 Analog input pins — 0.50 — μA VSS ≤ VPIN ≤ VDD, Pin at high impedance DI55 MCLR — 0.05 ±5 μA VSS ≤ VPIN ≤ VDD DI56 OSC1 — 0.05 ±5 μA VSS ≤ VPIN ≤ VDD, XT, HS and LP Osc mode Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 2: These parameters are characterized but not tested in manufacturing. 3: In RC oscillator configuration, the OSC1/CLKl pin is a Schmitt Trigger input. It is not recommended that the dsPIC30F device be driven with an external clock while in RC mode. 4: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. 5: Negative current is defined as current sourced by the pin. © 2010 Microchip Technology Inc. DS70139G-page 155

dsPIC30F2011/2012/3012/3013 TABLE 20-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic Min Typ(1) Max Units Conditions No. VOL Output Low Voltage(2) DO10 I/O ports — — 0.6 V IOL = 8.5 mA, VDD = 5V — — 0.15 V IOL = 2.0 mA, VDD = 3V DO16 OSC2/CLKO — — 0.6 V IOL = 1.6 mA, VDD = 5V (RC or EC Osc mode) — — 0.72 V IOL = 2.0 mA, VDD = 3V VOH Output High Voltage(2) DO20 I/O ports VDD – 0.7 — — V IOH = -3.0 mA, VDD = 5V VDD – 0.2 — — V IOH = -2.0 mA, VDD = 3V DO26 OSC2/CLKO VDD – 0.7 — — V IOH = -1.3 mA, VDD = 5V (RC or EC Osc mode) VDD – 0.1 — — V IOH = -2.0 mA, VDD = 3V Capacitive Loading Specs on Output Pins(2) DO50 COSC2 OSC2/SOSC2 pin — — 15 pF In XTL, XT, HS and LP modes when external clock is used to drive OSC1. DO56 CIO All I/O pins and OSC2 — — 50 pF RC or EC Osc mode DO58 CB SCL, SDA — — 400 pF In I2C mode Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 2: These parameters are characterized but not tested in manufacturing. DS70139G-page 156 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 20-1: LOW-VOLTAGE DETECT CHARACTERISTICS VDD LV10 LVDIF (LVDIF set by hardware) TABLE 20-10: ELECTRICAL CHARACTERISTICS: LVDL Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic(1) Min Typ Max Units Conditions No. LV10 VPLVD LVDL Voltage on VDD transition LVDL = 0000(2) — — — V high-to-low LVDL = 0001(2) — — — V LVDL = 0010(2) — — — V LVDL = 0011(2) — — — V LVDL = 0100 2.50 — 2.65 V LVDL = 0101 2.70 — 2.86 V LVDL = 0110 2.80 — 2.97 V LVDL = 0111 3.00 — 3.18 V LVDL = 1000 3.30 — 3.50 V LVDL = 1001 3.50 — 3.71 V LVDL = 1010 3.60 — 3.82 V LVDL = 1011 3.80 — 4.03 V LVDL = 1100 4.00 — 4.24 V LVDL = 1101 4.20 — 4.45 V LVDL = 1110 4.50 — 4.77 V LV15 VLVDIN External LVD input pin LVDL = 1111 — — — V threshold voltage Note 1: These parameters are characterized but not tested in manufacturing. 2: These values not in usable operating range. © 2010 Microchip Technology Inc. DS70139G-page 157

dsPIC30F2011/2012/3012/3013 FIGURE 20-2: BROWN-OUT RESET CHARACTERISTICS VDD (Device not in Brown-out Reset) BO15 BO10 (Device in Brown-out Reset) RESET (due to BOR) Power-Up Time-out TABLE 20-11: ELECTRICAL CHARACTERISTICS: BOR Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic Min Typ(1) Max Units Conditions No. BO10 VBOR BOR Voltage(2) on BORV = 11(3) — — — V Not in operating VDD transition high to range low BORV = 10 2.6 — 2.71 V BORV = 01 4.1 — 4.4 V BORV = 00 4.58 — 4.73 V BO15 VBHYS — 5 — mV Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 2: These parameters are characterized but not tested in manufacturing. 3: 11 values not in usable operating range. DS70139G-page 158 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 TABLE 20-12: DC CHARACTERISTICS: PROGRAM AND EEPROM Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic Min Typ(1) Max Units Conditions No. Data EEPROM Memory(2) D120 ED Byte Endurance 100K 1M — E/W -40°C ≤ TA ≤ +85°C D121 VDRW VDD for Read/Write VMIN — 5.5 V Using EECON to Read/Write VMIN = Minimum operating voltage D122 TDEW Erase/Write Cycle Time 0.8 2 2.6 ms RTSP D123 TRETD Characteristic Retention 40 100 — Year Provided no other specifications are violated D124 IDEW IDD During Programming — 10 30 mA Row Erase Program Flash Memory(2) D130 EP Cell Endurance 10K 100K — E/W -40°C ≤ TA ≤ +85°C D131 VPR VDD for Read VMIN — 5.5 V VMIN = Minimum operating voltage D132 VEB VDD for Bulk Erase 4.5 — 5.5 V D133 VPEW VDD for Erase/Write 3.0 — 5.5 V D134 TPEW Erase/Write Cycle Time 0.8 2 2.6 ms RTSP D135 TRETD Characteristic Retention 40 100 — Year Provided no other specifications are violated D137 IPEW IDD During Programming — 10 30 mA Row Erase D138 IEB IDD During Programming — 10 30 mA Bulk Erase Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. 2: These parameters are characterized but not tested in manufacturing. © 2010 Microchip Technology Inc. DS70139G-page 159

dsPIC30F2011/2012/3012/3013 20.2 AC Characteristics and Timing Parameters The information contained in this section defines dsPIC30F AC characteristics and timing parameters. TABLE 20-13: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial AC CHARACTERISTICS -40°C ≤ TA ≤ +125°C for Extended Operating voltage VDD range as described in Section20.1 “DC Characteristics”. FIGURE 20-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS Load Condition 1 — for all pins except OSC2 Load Condition 2 — for OSC2 VDD/2 RL Pin CL VSS Pin CL Legend: RL = 464Ω VSS CL = 50 pF for all pins except OSC2 5 pF for OSC2 output FIGURE 20-4: EXTERNAL CLOCK TIMING Q4 Q1 Q2 Q3 Q4 Q1 OSC1 OS20 OS30 OS30 OS31 OS31 OS25 CLKO OS40 OS41 DS70139G-page 160 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 TABLE 20-14: EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic Min Typ(1) Max Units Conditions No. OS10 FOSC External CLKN Frequency(2) DC — 40 MHz EC (External clocks allowed only 4 — 10 MHz EC with 4x PLL in EC mode) 4 — 10 MHz EC with 8x PLL 4 — 7.5 MHz EC with 16x PLL Oscillator Frequency(2) DC — 4 MHz RC 0.4 — 4 MHz XTL 4 — 10 MHz XT 4 — 10 MHz XT with 4x PLL 4 — 10 MHz XT with 8x PLL 4 — 7.5 MHz XT with 16x PLL 10 — 25 MHz HS 10 — 20 MHz HS/2 with 4x PLL 10 — 20 MHz HS/2 with 8x PLL 10 — 15 MHz HS/2 with 16x PLL 12 — 25 MHz HS/3 with 4x PLL 12 — 25 MHz HS/3 with 8x PLL 12 — 22.5 MHz HS/3 with 16x PLL 31 — 33 kHz LP — 7.37 — MHz FRC internal — 7.37 — MHz FRC internal w/4x PLL — 7.37 — MHz FRC internal w/8x PLL — 7.37 — MHz FRC internal w/16x PLL — 512 — kHz LPRC internal OS20 TOSC TOSC = 1/FOSC — — — — See parameter OS10 for FOSC value OS25 TCY Instruction Cycle Time(2)(3) 33 — DC ns See Table20-17 OS30 TosL, External Clock(2) in (OSC1) .45 x — — ns EC TosH High or Low Time TOSC OS31 TosR, External Clock(2) in (OSC1) — — 20 ns EC TosF Rise or Fall Time OS40 TckR CLKO Rise Time(2)(4) — — — ns See parameter DO31 OS41 TckF CLKO Fall Time(2)(4) — — — ns See parameter DO32 Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 2: These parameters are characterized but not tested in manufacturing. 3: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “min.” values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the “Max.” cycle time limit is “DC” (no clock) for all devices. 4: Measurements are taken in EC or ERC modes. The CLKO signal is measured on the OSC2 pin. CLKO is low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY). © 2010 Microchip Technology Inc. DS70139G-page 161

dsPIC30F2011/2012/3012/3013 TABLE 20-15: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.5 TO 5.5V) Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic(1) Min Typ(2) Max Units Conditions No. OS50 FPLLI PLL Input Frequency Range(2) 4 — 10 MHz EC with 4x PLL 4 — 10 MHz EC with 8x PLL 4 — 7.5(4) MHz EC with 16x PLL 4 — 10 MHz XT with 4x PLL 4 — 10 MHz XT with 8x PLL 4 — 7.5(4) MHz XT with 16x PLL 5(3) — 10 MHz HS/2 with 4x PLL 5(3) — 10 MHz HS/2 with 8x PLL 5(3) — 7.5(4) MHz HS/2 with 16x PLL 4 — 8.33(3) MHz HS/3 with 4x PLL 4 — 8.33(3) MHz HS/3 with 8x PLL 4 — 7.5(4) MHz HS/3 with 16x PLL OS51 FSYS On-Chip PLL Output(2) 16 — 120 MHz EC, XT, HS/2, HS/3 modes with PLL OS52 TLOC PLL Start-up Time (Lock Time) — 20 50 μs Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: Limited by oscillator frequency range. 4: Limited by device operating frequency range. TABLE 20-16: PLL JITTER Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Characteristic Min Typ(1) Max Units Conditions No. OS61 x4 PLL — 0.251 0.413 % -40°C ≤ TA ≤ +85°C VDD = 3.0 to 3.6V — 0.251 0.413 % -40°C ≤ TA ≤ +125°C VDD = 3.0 to 3.6V — 0.256 0.47 % -40°C ≤ TA ≤ +85°C VDD = 4.5 to 5.5V — 0.256 0.47 % -40°C ≤ TA ≤ +125°C VDD = 4.5 to 5.5V x8 PLL — 0.355 0.584 % -40°C ≤ TA ≤ +85°C VDD = 3.0 to 3.6V — 0.355 0.584 % -40°C ≤ TA ≤ +125°C VDD = 3.0 to 3.6V — 0.362 0.664 % -40°C ≤ TA ≤ +85°C VDD = 4.5 to 5.5V — 0.362 0.664 % -40°C ≤ TA ≤ +125°C VDD = 4.5 to 5.5V x16 PLL — 0.67 0.92 % -40°C ≤ TA ≤ +85°C VDD = 3.0 to 3.6V — 0.632 0.956 % -40°C ≤ TA ≤ +85°C VDD = 4.5 to 5.5V — 0.632 0.956 % -40°C ≤ TA ≤ +125°C VDD = 4.5 to 5.5V Note 1: These parameters are characterized but not tested in manufacturing. DS70139G-page 162 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 T ABLE 20-17: INTERNAL CLOCK TIMING EXAMPLES Clock Oscillator (MFHOzS)C(1 ) TCY (μsec)(2) wM/IoP PSL(3L) wM PIPLSL( 3x)4 wM PIPLSL( 3x)8 wM PILPLS (x31)6 Mode EC 0.200 20.0 0.05 — — — 4 1.0 1.0 4.0 8.0 16.0 10 0.4 2.5 10.0 20.0 — 25 0.16 6.25 — — — XT 4 1.0 1.0 4.0 8.0 16.0 10 0.4 2.5 10.0 20.0 — Note 1: Assumption: Oscillator Postscaler is divide by 1. 2: Instruction Execution Cycle Time: TCY = 1/MIPS. 3: Instruction Execution Frequency: MIPS = (FOSC * PLLx)/4 [since there are 4 Q clocks per instruction cycle]. TABLE 20-18: AC CHARACTERISTICS: INTERNAL FRC ACCURACY Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Characteristic Min Typ Max Units Conditions No. Internal FRC Accuracy @ FRC Freq. = 7.37 MHz(1) OS63 FRC — — ±2.00 % -40°C ≤ TA ≤ +85°C VDD = 3.0-5.5V — — ±5.00 % -40°C ≤ TA ≤ +125°C VDD = 3.0-5.5V Note 1: Frequency calibrated at 7.372 MHz ±2%, 25°C and 5V. TUN bits (OSCCON<3:0>) can be used to compensate for temperature drift. TABLE 20-19: AC CHARACTERISTICS: INTERNAL LPRC ACCURACY Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Characteristic Min Typ Max Units Conditions No. LPRC @ Freq. = 512 kHz(1) OS65A -50 — +50 % VDD = 5.0V, ±10% OS65B -60 — +60 % VDD = 3.3V, ±10% OS65C -70 — +70 % VDD = 2.5V Note 1: Change of LPRC frequency as VDD changes. © 2010 Microchip Technology Inc. DS70139G-page 163

dsPIC30F2011/2012/3012/3013 FIGURE 20-5: CLKO AND I/O TIMING CHARACTERISTICS I/O Pin (Input) DI35 DI40 I/O Pin Old Value New Value (Output) DO31 DO32 Note: Refer to Figure20-3 for load conditions. TABLE 20-20: CLKO AND I/O TIMING REQUIREMENTS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic(1)(2)(3) Min Typ(4) Max Units Conditions No. DO31 TIOR Port output rise time — 7 20 ns DO32 TIOF Port output fall time — 7 20 ns DI35 TINP INTx pin high or low time (output) 20 — — ns DI40 TRBP CNx high or low time (input) 2 TCY — — ns Note 1: These parameters are asynchronous events not related to any internal clock edges 2: Measurements are taken in RC mode and EC mode where CLKO output is 4 x TOSC. 3: These parameters are characterized but not tested in manufacturing. 4: Data in “Typ” column is at 5V, 25°C unless otherwise stated. DS70139G-page 164 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 20-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS VDD SY12 MCLR Internal SY10 POR SY11 PWRT Time-out SY30 OSC Time-out Internal RESET Watchdog Timer RESET SY20 SY13 SY13 I/O Pins SY35 FSCM Delay Note: Refer to Figure20-3 for load conditions. TABLE 20-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic(1) Min Typ(2) Max Units Conditions No. SY10 TmcL MCLR Pulse Width (low) 2 — — μs -40°C to +85°C SY11 TPWRT Power-up Timer Period 2 4 8 ms -40°C to +85°C, VDD = 10 16 32 5V 43 64 128 User programmable SY12 TPOR Power On Reset Delay 3 10 30 μs -40°C to +85°C SY13 TIOZ I/O high impedance from MCLR — 0.8 1.0 μs Low or Watchdog Timer Reset SY20 TWDT1 Watchdog Timer Time-out Period 1.1 2.0 6.6 ms VDD = 2.5V TWDT2 (No Prescaler) 1.2 2.0 5.0 ms VDD = 3.3V, ±10% TWDT3 1.3 2.0 4.0 ms VDD = 5V, ±10% SY25 TBOR Brown-out Reset Pulse Width(3) 100 — — μs VDD ≤ VBOR (D034) SY30 TOST Oscillation Start-up Timer Period — 1024TOSC — — TOSC = OSC1 period SY35 TFSCM Fail-Safe Clock Monitor Delay — 500 900 μs -40°C to +85°C Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. 3: Refer to Figure20-2 and Table20-11 for BOR. © 2010 Microchip Technology Inc. DS70139G-page 165

dsPIC30F2011/2012/3012/3013 FIGURE 20-7: BAND GAP START-UP TIME CHARACTERISTICS VBGAP 0V Enable Band Gap (see Note) Band Gap SY40 Stable Note: Set LVDEN bit (RCON<12>) or FBORPOR<7>set. TABLE 20-22: BAND GAP START-UP TIME REQUIREMENTS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic(1) Min Typ(2) Max Units Conditions No. SY40 TBGAP Band Gap Start-up Time — 40 65 µs Defined as the time between the instant that the band gap is enabled and the moment that the band gap reference voltage is stable. RCON<13> bit Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. DS70139G-page 166 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 20-8: TYPE A, B AND C TIMER EXTERNAL CLOCK TIMING CHARACTERISTICS TxCK Tx10 Tx11 Tx15 Tx20 OS60 TMRX Note: Refer to Figure20-3 for load conditions. TABLE 20-23: TYPE A TIMER (TIMER1) EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic Min Typ Max Units Conditions No. TA10 TTXH TxCK High Time Synchronous, 0.5 TCY + 20 — — ns Must also meet no prescaler parameter TA15 Synchronous, 10 — — ns with prescaler Asynchronous 10 — — ns TA11 TTXL TxCK Low Time Synchronous, 0.5 TCY + 20 — — ns Must also meet no prescaler parameter TA15 Synchronous, 10 — — ns with prescaler Asynchronous 10 — — ns TA15 TTXP TxCK Input Period Synchronous, TCY + 10 — — ns no prescaler Synchronous, Greater of: — — — N = prescale with prescaler 20 ns or value (TCY + 40)/N (1, 8, 64, 256) Asynchronous 20 — — ns OS60 Ft1 SOSC1/T1CK oscillator input DC — 50 kHz frequency range (oscillator enabled by setting bit TCS (T1CON, bit 1)) TA20 TCKEXTMRL Delay from External TxCK Clock 0.5 TCY — 1.5 TCY — Edge to Timer Increment Note: Timer1 is a Type A. © 2010 Microchip Technology Inc. DS70139G-page 167

dsPIC30F2011/2012/3012/3013 T ABLE 20-24: TYPE B TIMER (TIMER2 AND TIMER4) EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic Min Typ Max Units Conditions No. TB10 TtxH TxCK High Time Synchronous, 0.5 TCY + 20 — — ns Must also meet no prescaler parameter TB15 Synchronous, 10 — — ns with prescaler TB11 TtxL TxCK Low Time Synchronous, 0.5 TCY + 20 — — ns Must also meet no prescaler parameter TB15 Synchronous, 10 — — ns with prescaler TB15 TtxP TxCK Input Period Synchronous, TCY + 10 — — ns N = prescale no prescaler value Synchronous, Greater of: (1, 8, 64, 256) with prescaler 20 ns or (TCY + 40)/N TB20 TCKEXTMRL Delay from External TxCK Clock 0.5 TCY — 1.5 TCY — Edge to Timer Increment Note: Timer2 and Timer4 are Type B. TABLE 20-25: TYPE C TIMER (TIMER3 AND TIMER5) EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic Min Typ Max Units Conditions No. TC10 TtxH TxCK High Time Synchronous 0.5 TCY + 20 — — ns Must also meet parameter TC15 TC11 TtxL TxCK Low Time Synchronous 0.5 TCY + 20 — — ns Must also meet parameter TC15 TC15 TtxP TxCK Input Period Synchronous, TCY + 10 — — ns N = prescale no prescaler value Synchronous, Greater of: (1, 8, 64, 256) with prescaler 20 ns or (TCY + 40)/N TC20 TCKEXTMRL Delay from External TxCK Clock 0.5 TCY — 1.5 — Edge to Timer Increment TCY Note: Timer3 and Timer5 are Type C. DS70139G-page 168 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 20-9: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS ICX IC10 IC11 IC15 Note: Refer to Figure20-3 for load conditions. TABLE 20-26: INPUT CAPTURE TIMING REQUIREMENTS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic(1) Min Max Units Conditions No. IC10 TccL ICx Input Low Time No Prescaler 0.5 TCY + 20 — ns With Prescaler 10 — ns IC11 TccH ICx Input High Time No Prescaler 0.5 TCY + 20 — ns With Prescaler 10 — ns IC15 TccP ICx Input Period (2 TCY + 40)/N — ns N = prescale value (1, 4, 16) Note 1: These parameters are characterized but not tested in manufacturing. © 2010 Microchip Technology Inc. DS70139G-page 169

dsPIC30F2011/2012/3012/3013 FIGURE 20-10: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS OCx (Output Compare or PWM Mode) OC11 OC10 Note: Refer to Figure20-3 for load conditions. TABLE 20-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic(1) Min Typ(2) Max Units Conditions No. OC10 TccF OCx Output Fall Time — — — ns See Parameter DO32 OC11 TccR OCx Output Rise Time — — — ns See Parameter DO31 Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. DS70139G-page 170 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 20-11: OC/PWM MODULE TIMING CHARACTERISTICS OC20 OCFA/OCFB OC15 OCx TABLE 20-28: SIMPLE OC/PWM MODE TIMING REQUIREMENTS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic(1) Min Typ(2) Max Units Conditions No. OC15 TFD Fault Input to PWM I/O — — 50 ns Change OC20 TFLT Fault Input Pulse Width 50 — — ns Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. © 2010 Microchip Technology Inc. DS70139G-page 171

dsPIC30F2011/2012/3012/3013 FIGURE 20-12: SPI MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS SCKx (CKP = 0) SP11 SP10 SP21 SP20 SCKx (CKP = 1) SP35 SP20 SP21 SDOx MSb BIT 14 - - - - - -1 LSb SP31 SP30 SDIx MSb IN BIT 14 - - - -1 LSb IN SP40 SP41 Note: Refer to Figure20-3 for load conditions. TABLE 20-29: SPI MASTER MODE (CKE = 0) TIMING REQUIREMENTS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic(1) Min Typ(2) Max Units Conditions No. SP10 TscL SCKX Output Low Time(3) TCY/2 — — ns — SP11 TscH SCKX Output High Time(3) TCY/2 — — ns — SP20 TscF SCKX Output Fall Time(4 — — — ns See parameter DO32 SP21 TscR SCKX Output Rise Time(4) — — — ns See parameter DO31 SP30 TdoF SDOX Data Output Fall Time(4) — — — ns See parameter DO32 SP31 TdoR SDOX Data Output Rise Time(4) — — — ns See parameter DO31 SP35 TscH2doV, SDOX Data Output Valid after — — 30 ns — TscL2doV SCKX Edge SP40 TdiV2scH, Setup Time of SDIX Data Input 20 — — ns — TdiV2scL to SCKX Edge SP41 TscH2diL, Hold Time of SDIX Data Input 20 — — ns — TscL2diL to SCKX Edge Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: The minimum clock period for SCK is 100 ns. Therefore, the clock generated in Master mode must not violate this specification. 4: Assumes 50 pF load on all SPI pins. DS70139G-page 172 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 20-13: SPI MODULE MASTER MODE (CKE =1) TIMING CHARACTERISTICS SP36 SCKX (CKP = 0) SP11 SP10 SP21 SP20 SCKX (CKP = 1) SP35 SP20 SP21 SDOX MSb BIT 14 - - - - - -1 LSb SP40 SP30,SP31 SDIX MSb IN BIT 14 - - - -1 LSb IN SP41 Note: Refer to Figure20-3 for load conditions. TABLE 20-30: SPI MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic(1) Min Typ(2) Max Units Conditions No. SP10 TscL SCKX output low time(3) TCY/2 — — ns — SP11 TscH SCKX output high time(3) TCY/2 — — ns — SP20 TscF SCKX output fall time(4) — — — ns See parameter DO32 SP21 TscR SCKX output rise time(4) — — — ns See parameter DO31 SP30 TdoF SDOX data output fall time(4) — — — ns See parameter DO32 SP31 TdoR SDOX data output rise time(4) — — — ns See parameter DO31 SP35 TscH2doV, SDOX data output valid after — — 30 ns — TscL2doV SCKX edge SP36 TdoV2sc, SDOX data output setup to 30 — — ns — TdoV2scL first SCKX edge SP40 TdiV2scH, Setup time of SDIX data input 20 — — ns — TdiV2scL to SCKX edge SP41 TscH2diL, Hold time of SDIX data input 20 — — ns — TscL2diL to SCKX edge Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: The minimum clock period for SCK is 100 ns. Therefore, the clock generated in master mode must not violate this specification. 4: Assumes 50 pF load on all SPI pins. © 2010 Microchip Technology Inc. DS70139G-page 173

dsPIC30F2011/2012/3012/3013 FIGURE 20-14: SPI MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS SSX SP50 SP52 SCKX (CKP = 0) SP71 SP70 SP73 SP72 SCKX (CKP = 1) SP72 SP73 SP35 SDOX MSb BIT 14 - - - - - -1 LSb SP30,SP31 SP51 SSDDIIX MSb IN BIT 14 - - - -1 LSb IN SP41 SP40 Note: Refer to Figure20-3 for load conditions. TABLE 20-31: SPI MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic(1) Min Typ(2) Max Units Conditions No. SP70 TscL SCKX Input Low Time 30 — — ns — SP71 TscH SCKX Input High Time 30 — — ns — SP72 TscF SCKX Input Fall Time(3) — 10 25 ns — SP73 TscR SCKX Input Rise Time(3) — 10 25 ns — SP30 TdoF SDOX Data Output Fall Time(3) — — — ns See DO32 SP31 TdoR SDOX Data Output Rise Time(3) — — — ns See DO31 SP35 TscH2doV, SDOX Data Output Valid after — — 30 ns — TscL2doV SCKX Edge SP40 TdiV2scH, Setup Time of SDIX Data Input 20 — — ns — TdiV2scL to SCKX Edge SP41 TscH2diL, Hold Time of SDIX Data Input 20 — — ns — TscL2diL to SCKX Edge SP50 TssL2scH, SSX↓ to SCKX↑ or SCKX↓ Input 120 — — ns — TssL2scL SP51 TssH2doZ SSX↑ to SDOX Output 10 — 50 ns — high impedance(3) SP52 TscH2ssH SSX after SCK Edge 1.5 TCY — — ns — TscL2ssH +40 Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: Assumes 50 pF load on all SPI pins. DS70139G-page 174 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 20-15: SPI MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS SP60 SSX SP52 SP50 SCKX (CKP = 0) SP71 SP70 SP73 SP72 SCKX (CKP = 1) SP35 SP72 SP73 SP52 SDOX MSb BIT 14 - - - - - -1 LSb SP30,SP31 SP51 SSDDIIX MSb IN BIT 14 - - - -1 LSb IN SP41 SP40 Note: Refer to Figure20-3 for load conditions. © 2010 Microchip Technology Inc. DS70139G-page 175

dsPIC30F2011/2012/3012/3013 TABLE 20-32: SPI MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic(1) Min Typ(2) Max Units Conditions No. SP70 TscL SCKX Input Low Time 30 — — ns — SP71 TscH SCKX Input High Time 30 — — ns — SP72 TscF SCKX Input Fall Time(3) — 10 25 ns — SP73 TscR SCKX Input Rise Time(3) — 10 25 ns — SP30 TdoF SDOX Data Output Fall Time(3) — — — ns See parameter DO32 SP31 TdoR SDOX Data Output Rise Time(3) — — — ns See parameter DO31 SP35 TscH2doV, SDOX Data Output Valid after — — 30 ns — TscL2doV SCKX Edge SP40 TdiV2scH, Setup Time of SDIX Data Input 20 — — ns — TdiV2scL to SCKX Edge SP41 TscH2diL, Hold Time of SDIX Data Input 20 — — ns — TscL2diL to SCKX Edge SP50 TssL2scH, SSX↓ to SCKX↓ or SCKX↑ input 120 — — ns — TssL2scL SP51 TssH2doZ SS↑ to SDOX Output 10 — 50 ns — high impedance(4) SP52 TscH2ssH SSX↑ after SCKX Edge 1.5 TCY + 40 — — ns — TscL2ssH SP60 TssL2doV SDOX Data Output Valid after — — 50 ns — SCKX Edge Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: The minimum clock period for SCK is 100 ns. Therefore, the clock generated in Master mode must not violate this specification. 4: Assumes 50 pF load on all SPI pins. DS70139G-page 176 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 20-16: I2C™ BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE) SCL IM31 IM34 IM30 IM33 SDA Start Stop Condition Condition Note: Refer to Figure20-3 for load conditions. FIGURE 20-17: I2C™ BUS DATA TIMING CHARACTERISTICS (MASTER MODE) IM20 IM11 IM21 IM10 SCL IM11 IM26 IM10 IM25 IM33 SDA In IM40 IM40 IM45 SDA Out Note: Refer to Figure20-3 for load conditions. © 2010 Microchip Technology Inc. DS70139G-page 177

dsPIC30F2011/2012/3012/3013 ITABLE 20-33: I2C™ BUS DATA TIMING REQUIREMENTS (MASTER MODE) Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic Min(1) Max Units Conditions No. IM10 TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 1) — μs 400 kHz mode TCY/2 (BRG + 1) — μs 1 MHz mode(2) TCY/2 (BRG + 1) — μs IM11 THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 1) — μs 400 kHz mode TCY/2 (BRG + 1) — μs 1 MHz mode(2) TCY/2 (BRG + 1) — μs IM20 TF:SCL SDA and SCL 100 kHz mode — 300 ns CB is specified to be Fall Time 400 kHz mode 20 + 0.1 CB 300 ns from 10 to 400 pF 1 MHz mode(2) — 100 ns IM21 TR:SCL SDA and SCL 100 kHz mode — 1000 ns CB is specified to be Rise Time 400 kHz mode 20 + 0.1 CB 300 ns from 10 to 400 pF 1 MHz mode(2) — 300 ns IM25 TSU:DAT Data Input 100 kHz mode 250 — ns Setup Time 400 kHz mode 100 — ns 1 MHz mode(2) — — ns IM26 THD:DAT Data Input 100 kHz mode 0 — ns Hold Time 400 kHz mode 0 0.9 μs 1 MHz mode(2) — — ns IM30 TSU:STA Start Condition 100 kHz mode TCY/2 (BRG + 1) — μs Only relevant for Setup Time 400 kHz mode TCY/2 (BRG + 1) — μs Repeated Start condition 1 MHz mode(2) TCY/2 (BRG + 1) — μs IM31 THD:STA Start Condition 100 kHz mode TCY/2 (BRG + 1) — μs After this period the Hold Time 400 kHz mode TCY/2 (BRG + 1) — μs first clock pulse is generated 1 MHz mode(2) TCY/2 (BRG + 1) — μs IM33 TSU:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1) — μs Setup Time 400 kHz mode TCY/2 (BRG + 1) — μs 1 MHz mode(2) TCY/2 (BRG + 1) — μs IM34 THD:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1) — ns Hold Time 400 kHz mode TCY/2 (BRG + 1) — ns 1 MHz mode(2) TCY/2 (BRG + 1) — ns IM40 TAA:SCL Output Valid 100 kHz mode — 3500 ns From Clock 400 kHz mode — 1000 ns 1 MHz mode(2) — — ns IM45 TBF:SDA Bus Free Time 100 kHz mode 4.7 — μs Time the bus must be 400 kHz mode 1.3 — μs free before a new transmission can start 1 MHz mode(2) — — μs IM50 CB Bus Capacitive Loading — 400 pF Note 1: BRG is the value of the I2C Baud Rate Generator. Refer to Section 21. “Inter-Integrated Circuit™ (I2C)” (DS70068) in the dsPIC30F Family Reference Manual (DS70046). 2: Maximum pin capacitance = 10 pF for all I2C™ pins (for 1 MHz mode only). DS70139G-page 178 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 20-18: I2C™ BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE) SCL IS31 IS34 IS30 IS33 SDA Start Stop Condition Condition FIGURE 20-19: I2C™ BUS DATA TIMING CHARACTERISTICS (SLAVE MODE) IS20 IS11 IS21 IS10 SCL IS30 IS26 IS31 IS25 IS33 SDA In IS40 IS40 IS45 SDA Out TABLE 20-34: I2C™ BUS DATA TIMING REQUIREMENTS (SLAVE MODE) Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic Min Max Units Conditions No. IS10 TLO:SCL Clock Low Time 100 kHz mode 4.7 — μs Device must operate at a minimum of 1.5 MHz 400 kHz mode 1.3 — μs Device must operate at a minimum of 10 MHz. 1 MHz mode(1) 0.5 — μs IS11 THI:SCL Clock High Time 100 kHz mode 4.0 — μs Device must operate at a minimum of 1.5 MHz 400 kHz mode 0.6 — μs Device must operate at a minimum of 10 MHz 1 MHz mode(1) 0.5 — μs IS20 TF:SCL SDA and SCL 100 kHz mode — 300 ns CB is specified to be from Fall Time 400 kHz mode 20 + 0.1 CB 300 ns 10 to 400 pF 1 MHz mode(1) — 100 ns IS21 TR:SCL SDA and SCL 100 kHz mode — 1000 ns CB is specified to be from Rise Time 400 kHz mode 20 + 0.1 CB 300 ns 10 to 400 pF 1 MHz mode(1) — 300 ns Note 1: Maximum pin capacitance = 10 pF for all I2C™ pins (for 1 MHz mode only). © 2010 Microchip Technology Inc. DS70139G-page 179

dsPIC30F2011/2012/3012/3013 TABLE 20-34: I2C™ BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED) Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic Min Max Units Conditions No. IS25 TSU:DAT Data Input 100 kHz mode 250 — ns Setup Time 400 kHz mode 100 — ns 1 MHz mode(1) 100 — ns IS26 THD:DAT Data Input 100 kHz mode 0 — ns Hold Time 400 kHz mode 0 0.9 μs 1 MHz mode(1) 0 0.3 μs IS30 TSU:STA Start Condition 100 kHz mode 4.7 — μs Only relevant for Repeated Setup Time 400 kHz mode 0.6 — μs Start condition 1 MHz mode(1) 0.25 — μs IS31 THD:STA Start Condition 100 kHz mode 4.0 — μs After this period the first Hold Time 400 kHz mode 0.6 — μs clock pulse is generated 1 MHz mode(1) 0.25 — μs IS33 TSU:STO Stop Condition 100 kHz mode 4.7 — μs Setup Time 400 kHz mode 0.6 — μs 1 MHz mode(1) 0.6 — μs IS34 THD:STO Stop Condition 100 kHz mode 4000 — ns Hold Time 400 kHz mode 600 — ns 1 MHz mode(1) 250 ns IS40 TAA:SCL Output Valid 100 kHz mode 0 3500 ns From Clock 400 kHz mode 0 1000 ns 1 MHz mode(1) 0 350 ns IS45 TBF:SDA Bus Free Time 100 kHz mode 4.7 — μs Time the bus must be free 400 kHz mode 1.3 — μs before a new transmission can start 1 MHz mode(1) 0.5 — μs IS50 CB Bus Capacitive — 400 pF Loading Note 1: Maximum pin capacitance = 10 pF for all I2C™ pins (for 1 MHz mode only). DS70139G-page 180 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 FIGURE 20-20: CAN MODULE I/O TIMING CHARACTERISTICS CXTX Pin Old Value New Value (output) CA10 CA11 CXRX Pin (input) CA20 TABLE 20-35: CAN MODULE I/O TIMING REQUIREMENTS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic(1) Min Typ(2) Max Units Conditions No. CA10 TioF Port Output Fall Time — 10 25 ns CA11 TioR Port Output Rise Time — 10 25 ns CA20 Tcwf Pulse Width to Trigger 500 — — ns CAN Wake-up Filter Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. © 2010 Microchip Technology Inc. DS70139G-page 181

dsPIC30F2011/2012/3012/3013 TABLE 20-36: 12-BIT ADC MODULE SPECIFICATIONS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic Min. Typ Max. Units Conditions No. Device Supply AD01 AVDD Module VDD Supply Greater of — Lesser of V VDD - 0.3 VDD + 0.3 or 2.7 or 5.5 AD02 AVSS Module VSS Supply VSS - 0.3 — VSS + 0.3 V Reference Inputs AD05 VREFH Reference Voltage High AVSS + 2.7 — AVDD V AD06 VREFL Reference Voltage Low AVSS — AVDD - 2.7 V AD07 VREF Absolute Reference AVSS - 0.3 — AVDD + 0.3 V Voltage AD08 IREF Current Drain — 200 300 μA A/D operating .001 2 μA A/D off Analog Input AD10 VINH-VINL Full-Scale Input Span VREFL — VREFH V See Note 1 AD11 VIN Absolute Input Voltage AVSS - 0.3 — AVDD + 0.3 V — AD12 — Leakage Current — ±0.001 ±0.610 μA VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V Source Impedance = 2.5 kΩ AD13 — Leakage Current — ±0.001 ±0.610 μA VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V Source Impedance = 2.5 kΩ AD15 RSS Switch Resistance — 3.2K — Ω AD16 CSAMPLE Sample Capacitor — 18 pF AD17 RIN Recommended Impedance — — 2.5K Ω of Analog Voltage Source DC Accuracy(2) AD20 Nr Resolution 12 data bits bits AD21 INL Integral Nonlinearity — — <±1 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V AD21A INL Integral Nonlinearity — — <±1 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V AD22 DNL Differential Nonlinearity — — <±1 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V AD22A DNL Differential Nonlinearity — — <±1 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V AD23 GERR Gain Error +1.25 +1.5 +3 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V AD23A GERR Gain Error +1.25 +1.5 +3 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes. 2: Measurements taken with external VREF+ and VREF- used as the ADC voltage references. DS70139G-page 182 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 TABLE 20-36: 12-BIT ADC MODULE SPECIFICATIONS (CONTINUED) Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic Min. Typ Max. Units Conditions No. AD24 EOFF Offset Error -2 -1.5 -1.25 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V AD24A EOFF Offset Error -2 -1.5 -1.25 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V AD25 — Monotonicity(1) — — — — Guaranteed Dynamic Performance AD30 THD Total Harmonic Distortion — -71 — dB AD31 SINAD Signal to Noise and — 68 — dB Distortion AD32 SFDR Spurious Free Dynamic — 83 — dB Range AD33 FNYQ Input Signal Bandwidth — — 100 kHz AD34 ENOB Effective Number of Bits 10.95 11.1 — bits Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes. 2: Measurements taken with external VREF+ and VREF- used as the ADC voltage references. © 2010 Microchip Technology Inc. DS70139G-page 183

dsPIC30F2011/2012/3012/3013 FIGURE 20-21: 12-BIT A/D CONVERSION TIMING CHARACTERISTICS (ASAM = 0, SSRC = 000) AD50 ADCLK Instruction Execution Set SAMP Clear SAMP SAMP ch0_dischrg ch0_samp eoc AD61 AD60 TSAMP AD55 DONE ADIF ADRES(0) 1 2 3 4 5 6 7 8 9 1 - Software sets ADCON. SAMP to start sampling. 2 - Sampling starts after discharge period. TSAMP is described in Section 18. “12-bit A/D Converter” in the dsPIC30F Family Reference Manual (DS70046). 3 - Software clears ADCON. SAMP to Start conversion. 4 - Sampling ends, conversion sequence starts. 5 - Convert bit 11. 6 - Convert bit 10. 7 - Convert bit 1. 8 - Convert bit 0. 9 - One TAD for end of conversion. DS70139G-page 184 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 TABLE 20-37: 12-BIT A/D CONVERSION TIMING REQUIREMENTS Standard Operating Conditions: 2.7V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature-40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Param Symbol Characteristic Min. Typ Max. Units Conditions No. Clock Parameters AD50 TAD A/D Clock Period 334 — — ns VDD = 3-5.5V (Note 1) AD51 tRC A/D Internal RC Oscillator Period 1.2 1.5 1.8 μs Conversion Rate AD55 tCONV Conversion Time — 14 TAD ns AD56a FCNV Throughput Rate — 200 — ksps VDD = VREF = 5V, Industrial temperature AD56b FCNV Throughput Rate — 100 — ksps VDD = VREF = 5V, Extended temperature AD57 TSAMP Sampling Time 1 TAD — — ns VDD = 3-5.5V source resistance RS = 0-2.5 kΩ Timing Parameters AD60 tPCS Conversion Start from Sample — 1 TAD — ns Trigger AD61 tPSS Sample Start from Setting 0.5 TAD — 1.5 ns Sample (SAMP) Bit TAD AD62 tCSS Conversion Completion to — 0.5 TAD — ns Sample Start (ASAM = 1) AD63 tDPU(2) Time to Stabilize Analog Stage — — 20 μs from A/D Off to A/D On Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures. 2: tDPU is the time required for the ADC module to stabilize when it is turned on (ADCON1<ADON> = 1). During this time the ADC result is indeterminate. © 2010 Microchip Technology Inc. DS70139G-page 185

dsPIC30F2011/2012/3012/3013 NOTES: DS70139G-page 186 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 21.0 PACKAGING INFORMATION 21.1 Package Marking Information 18-Lead PDIP Example XXXXXXXXXXXXXXXXX dsPIC30F3012 XXXXXXXXXXXXXXXXX 30I/Pe3 YYWWNNN 0610017 18-Lead SOIC Example XXXXXXXXXXXX dsPIC30F2011 XXXXXXXXXXXX 30I/SOe3 XXXXXXXXXXXX YYWWNNN 0610017 28-Lead SPDIP Example XXXXXXXXXXXXXXXXX dsPIC30F2012 XXXXXXXXXXXXXXXXX 30I/SPe3 YYWWNNN 0610017 Legend: XX...X Customer-specific information Y Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week ‘01’) NNN Alphanumeric traceability code e3 Pb-free JEDEC designator for Matte Tin (Sn) * This package is Pb-free. The Pb-free JEDEC designator ( e 3 ) can be found on the outer packaging for this package. Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. © 2010 Microchip Technology Inc. DS70139G-page 187

dsPIC30F2011/2012/3012/3013 21.2 Package Marking Information (Continued) 28-Lead SOIC Example XXXXXXXXXXXXXXXXXXXX dsPIC30F3013 XXXXXXXXXXXXXXXXXXXX 30I/SOe3 XXXXXXXXXXXXXXXXXXXX YYWWNNN 0610017 28-Lead QFN-S Example XXXXXXX 30F2011 XXXXXXX 30I/MMe3 YYWWNNN 0610017 44-Lead QFN Example XXXXXXXXXX dsPIC XXXXXXXXXX 30F3013 XXXXXXXXXX 30I/MLe3 YYWWNNN 0610017 DS70139G-page 188 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:7)(cid:12)(cid:13)(cid:14)(cid:15)(cid:9)(cid:16)(cid:17)(cid:7)(cid:11)(cid:9)(cid:18)(cid:19)(cid:4)(cid:5)(cid:14)(cid:19)(cid:6)(cid:9)(cid:20)(cid:10)(cid:21)(cid:9)(cid:22)(cid:9)(cid:23)(cid:24)(cid:24)(cid:9)(cid:25)(cid:14)(cid:11)(cid:9)(cid:26)(cid:27)(cid:8)(cid:28)(cid:9)(cid:29)(cid:10)(cid:16)(cid:18)(cid:10)(cid:30) (cid:31)(cid:27)(cid:13)(cid:6) 3(cid:10)(cid:9)(cid:2)&(cid:11)(cid:14)(cid:2)’(cid:10)!&(cid:2)(cid:8)"(cid:9)(cid:9)(cid:14)(cid:15)&(cid:2)(cid:12)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:14)(cid:2)#(cid:9)(cid:28)*(cid:7)(cid:15)(cid:17)!((cid:2)(cid:12)(cid:16)(cid:14)(cid:28)!(cid:14)(cid:2)!(cid:14)(cid:14)(cid:2)&(cid:11)(cid:14)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:2)(cid:31)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:7)(cid:15)(cid:17)(cid:2)(cid:22)(cid:12)(cid:14)(cid:8)(cid:7)%(cid:7)(cid:8)(cid:28)&(cid:7)(cid:10)(cid:15)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)&(cid:14)#(cid:2)(cid:28)&(cid:2) (cid:11)&&(cid:12)255***(cid:20)’(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:20)(cid:8)(cid:10)’5(cid:12)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:7)(cid:15)(cid:17) (cid:2) N NOTE1 E1 1 2 3 D E A A2 L c A1 b1 b e eB 6(cid:15)(cid:7)&! (cid:19)7,8.(cid:22) (cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)(cid:2)9(cid:7)’(cid:7)&! (cid:6)(cid:19)7 7:(cid:6) (cid:6)(cid:25); 7"’)(cid:14)(cid:9)(cid:2)(cid:10)%(cid:2)(cid:31)(cid:7)(cid:15)! 7 (cid:30)< (cid:31)(cid:7)&(cid:8)(cid:11) (cid:14) (cid:20)(cid:30)(cid:4)(cid:4)(cid:2)1(cid:22), (cid:13)(cid:10)(cid:12)(cid:2)&(cid:10)(cid:2)(cid:22)(cid:14)(cid:28)&(cid:7)(cid:15)(cid:17)(cid:2)(cid:31)(cid:16)(cid:28)(cid:15)(cid:14) (cid:25) = = (cid:20)(cid:3)(cid:30)(cid:4) (cid:6)(cid:10)(cid:16)#(cid:14)#(cid:2)(cid:31)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:14)(cid:2)(cid:13)(cid:11)(cid:7)(cid:8)4(cid:15)(cid:14)!! (cid:25)(cid:3) (cid:20)(cid:30)(cid:30)(cid:29) (cid:20)(cid:30)-(cid:4) (cid:20)(cid:30)(cid:24)(cid:29) 1(cid:28)!(cid:14)(cid:2)&(cid:10)(cid:2)(cid:22)(cid:14)(cid:28)&(cid:7)(cid:15)(cid:17)(cid:2)(cid:31)(cid:16)(cid:28)(cid:15)(cid:14) (cid:25)(cid:30) (cid:20)(cid:4)(cid:30)(cid:29) = = (cid:22)(cid:11)(cid:10)"(cid:16)#(cid:14)(cid:9)(cid:2)&(cid:10)(cid:2)(cid:22)(cid:11)(cid:10)"(cid:16)#(cid:14)(cid:9)(cid:2)>(cid:7)#&(cid:11) . (cid:20)-(cid:4)(cid:4) (cid:20)-(cid:30)(cid:4) (cid:20)-(cid:3)(cid:29) (cid:6)(cid:10)(cid:16)#(cid:14)#(cid:2)(cid:31)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:14)(cid:2)>(cid:7)#&(cid:11) .(cid:30) (cid:20)(cid:3)(cid:23)(cid:4) (cid:20)(cid:3)(cid:29)(cid:4) (cid:20)(cid:3)<(cid:4) : (cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)9(cid:14)(cid:15)(cid:17)&(cid:11) (cid:21) (cid:20)<<(cid:4) (cid:20)(cid:24)(cid:4)(cid:4) (cid:20)(cid:24)(cid:3)(cid:4) (cid:13)(cid:7)(cid:12)(cid:2)&(cid:10)(cid:2)(cid:22)(cid:14)(cid:28)&(cid:7)(cid:15)(cid:17)(cid:2)(cid:31)(cid:16)(cid:28)(cid:15)(cid:14) 9 (cid:20)(cid:30)(cid:30)(cid:29) (cid:20)(cid:30)-(cid:4) (cid:20)(cid:30)(cid:29)(cid:4) 9(cid:14)(cid:28)#(cid:2)(cid:13)(cid:11)(cid:7)(cid:8)4(cid:15)(cid:14)!! (cid:8) (cid:20)(cid:4)(cid:4)< (cid:20)(cid:4)(cid:30)(cid:4) (cid:20)(cid:4)(cid:30)(cid:23) 6(cid:12)(cid:12)(cid:14)(cid:9)(cid:2)9(cid:14)(cid:28)#(cid:2)>(cid:7)#&(cid:11) )(cid:30) (cid:20)(cid:4)(cid:23)(cid:29) (cid:20)(cid:4)?(cid:4) (cid:20)(cid:4)(cid:5)(cid:4) 9(cid:10)*(cid:14)(cid:9)(cid:2)9(cid:14)(cid:28)#(cid:2)>(cid:7)#&(cid:11) ) (cid:20)(cid:4)(cid:30)(cid:23) (cid:20)(cid:4)(cid:30)< (cid:20)(cid:4)(cid:3)(cid:3) : (cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)(cid:26)(cid:10)*(cid:2)(cid:22)(cid:12)(cid:28)(cid:8)(cid:7)(cid:15)(cid:17)(cid:2)(cid:2)+ (cid:14)1 = = (cid:20)(cid:23)-(cid:4) (cid:31)(cid:27)(cid:13)(cid:6)(cid:12) (cid:30)(cid:20) (cid:31)(cid:7)(cid:15)(cid:2)(cid:30)(cid:2) (cid:7)!"(cid:28)(cid:16)(cid:2)(cid:7)(cid:15)#(cid:14)$(cid:2)%(cid:14)(cid:28)&"(cid:9)(cid:14)(cid:2)’(cid:28)(cid:18)(cid:2) (cid:28)(cid:9)(cid:18)((cid:2))"&(cid:2)’"!&(cid:2))(cid:14)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)&(cid:14)#(cid:2)*(cid:7)&(cid:11)(cid:7)(cid:15)(cid:2)&(cid:11)(cid:14)(cid:2)(cid:11)(cid:28)&(cid:8)(cid:11)(cid:14)#(cid:2)(cid:28)(cid:9)(cid:14)(cid:28)(cid:20) (cid:3)(cid:20) +(cid:2)(cid:22)(cid:7)(cid:17)(cid:15)(cid:7)%(cid:7)(cid:8)(cid:28)(cid:15)&(cid:2),(cid:11)(cid:28)(cid:9)(cid:28)(cid:8)&(cid:14)(cid:9)(cid:7)!&(cid:7)(cid:8)(cid:20) -(cid:20) (cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)!(cid:2)(cid:21)(cid:2)(cid:28)(cid:15)#(cid:2).(cid:30)(cid:2)#(cid:10)(cid:2)(cid:15)(cid:10)&(cid:2)(cid:7)(cid:15)(cid:8)(cid:16)"#(cid:14)(cid:2)’(cid:10)(cid:16)#(cid:2)%(cid:16)(cid:28)!(cid:11)(cid:2)(cid:10)(cid:9)(cid:2)(cid:12)(cid:9)(cid:10)&(cid:9)"!(cid:7)(cid:10)(cid:15)!(cid:20)(cid:2)(cid:6)(cid:10)(cid:16)#(cid:2)%(cid:16)(cid:28)!(cid:11)(cid:2)(cid:10)(cid:9)(cid:2)(cid:12)(cid:9)(cid:10)&(cid:9)"!(cid:7)(cid:10)(cid:15)!(cid:2)!(cid:11)(cid:28)(cid:16)(cid:16)(cid:2)(cid:15)(cid:10)&(cid:2)(cid:14)$(cid:8)(cid:14)(cid:14)#(cid:2)(cid:20)(cid:4)(cid:30)(cid:4)/(cid:2)(cid:12)(cid:14)(cid:9)(cid:2)!(cid:7)#(cid:14)(cid:20) (cid:23)(cid:20) (cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)(cid:7)(cid:15)(cid:17)(cid:2)(cid:28)(cid:15)#(cid:2)&(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:7)(cid:15)(cid:17)(cid:2)(cid:12)(cid:14)(cid:9)(cid:2)(cid:25)(cid:22)(cid:6).(cid:2)0(cid:30)(cid:23)(cid:20)(cid:29)(cid:6)(cid:20) 1(cid:22),2 1(cid:28)!(cid:7)(cid:8)(cid:2)(cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)(cid:20)(cid:2)(cid:13)(cid:11)(cid:14)(cid:10)(cid:9)(cid:14)&(cid:7)(cid:8)(cid:28)(cid:16)(cid:16)(cid:18)(cid:2)(cid:14)$(cid:28)(cid:8)&(cid:2) (cid:28)(cid:16)"(cid:14)(cid:2)!(cid:11)(cid:10)*(cid:15)(cid:2)*(cid:7)&(cid:11)(cid:10)"&(cid:2)&(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:14)!(cid:20) (cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:13)(cid:14)(cid:8)(cid:11)(cid:15)(cid:10)(cid:16)(cid:10)(cid:17)(cid:18)(cid:21)(cid:9)(cid:28)*(cid:7)(cid:15)(cid:17),(cid:4)(cid:23)(cid:27)(cid:4)(cid:4)(cid:5)1 © 2010 Microchip Technology Inc. DS70139G-page 189

dsPIC30F2011/2012/3012/3013 (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:7)(cid:12)(cid:13)(cid:14)(cid:15)(cid:9)!(cid:25)(cid:7)(cid:11)(cid:11)(cid:9)"(cid:17)(cid:13)(cid:11)(cid:14)(cid:19)(cid:6)(cid:9)(cid:20)!"(cid:21)(cid:9)(cid:22)(cid:9)#(cid:14)(cid:8)(cid:6)$(cid:9)%&’(cid:24)(cid:9)(cid:25)(cid:25)(cid:9)(cid:26)(cid:27)(cid:8)(cid:28)(cid:9)(cid:29)!"(cid:18)((cid:30) (cid:31)(cid:27)(cid:13)(cid:6) 3(cid:10)(cid:9)(cid:2)&(cid:11)(cid:14)(cid:2)’(cid:10)!&(cid:2)(cid:8)"(cid:9)(cid:9)(cid:14)(cid:15)&(cid:2)(cid:12)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:14)(cid:2)#(cid:9)(cid:28)*(cid:7)(cid:15)(cid:17)!((cid:2)(cid:12)(cid:16)(cid:14)(cid:28)!(cid:14)(cid:2)!(cid:14)(cid:14)(cid:2)&(cid:11)(cid:14)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:2)(cid:31)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:7)(cid:15)(cid:17)(cid:2)(cid:22)(cid:12)(cid:14)(cid:8)(cid:7)%(cid:7)(cid:8)(cid:28)&(cid:7)(cid:10)(cid:15)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)&(cid:14)#(cid:2)(cid:28)&(cid:2) (cid:11)&&(cid:12)255***(cid:20)’(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:20)(cid:8)(cid:10)’5(cid:12)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:7)(cid:15)(cid:17) D N E E1 NOTE1 1 2 3 e b α h h c φ A A2 β A1 L L1 6(cid:15)(cid:7)&! (cid:6)(cid:19)99(cid:19)(cid:6).(cid:13).(cid:26)(cid:22) (cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)(cid:2)9(cid:7)’(cid:7)&! (cid:6)(cid:19)7 7:(cid:6) (cid:6)(cid:25); 7"’)(cid:14)(cid:9)(cid:2)(cid:10)%(cid:2)(cid:31)(cid:7)(cid:15)! 7 (cid:30)< (cid:31)(cid:7)&(cid:8)(cid:11) (cid:14) (cid:30)(cid:20)(cid:3)(cid:5)(cid:2)1(cid:22), : (cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)8(cid:14)(cid:7)(cid:17)(cid:11)& (cid:25) = = (cid:3)(cid:20)?(cid:29) (cid:6)(cid:10)(cid:16)#(cid:14)#(cid:2)(cid:31)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:14)(cid:2)(cid:13)(cid:11)(cid:7)(cid:8)4(cid:15)(cid:14)!! (cid:25)(cid:3) (cid:3)(cid:20)(cid:4)(cid:29) = = (cid:22)&(cid:28)(cid:15)#(cid:10)%%(cid:2)(cid:2)+ (cid:25)(cid:30) (cid:4)(cid:20)(cid:30)(cid:4) = (cid:4)(cid:20)-(cid:4) : (cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)>(cid:7)#&(cid:11) . (cid:30)(cid:4)(cid:20)-(cid:4)(cid:2)1(cid:22), (cid:6)(cid:10)(cid:16)#(cid:14)#(cid:2)(cid:31)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:14)(cid:2)>(cid:7)#&(cid:11) .(cid:30) (cid:5)(cid:20)(cid:29)(cid:4)(cid:2)1(cid:22), : (cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)9(cid:14)(cid:15)(cid:17)&(cid:11) (cid:21) (cid:30)(cid:30)(cid:20)(cid:29)(cid:29)(cid:2)1(cid:22), ,(cid:11)(cid:28)’%(cid:14)(cid:9)(cid:2)@(cid:10)(cid:12)&(cid:7)(cid:10)(cid:15)(cid:28)(cid:16)A (cid:11) (cid:4)(cid:20)(cid:3)(cid:29) = (cid:4)(cid:20)(cid:5)(cid:29) 3(cid:10)(cid:10)&(cid:2)9(cid:14)(cid:15)(cid:17)&(cid:11) 9 (cid:4)(cid:20)(cid:23)(cid:4) = (cid:30)(cid:20)(cid:3)(cid:5) 3(cid:10)(cid:10)&(cid:12)(cid:9)(cid:7)(cid:15)& 9(cid:30) (cid:30)(cid:20)(cid:23)(cid:4)(cid:2)(cid:26).3 3(cid:10)(cid:10)&(cid:2)(cid:25)(cid:15)(cid:17)(cid:16)(cid:14) (cid:3) (cid:4)B = <B 9(cid:14)(cid:28)#(cid:2)(cid:13)(cid:11)(cid:7)(cid:8)4(cid:15)(cid:14)!! (cid:8) (cid:4)(cid:20)(cid:3)(cid:4) = (cid:4)(cid:20)-- 9(cid:14)(cid:28)#(cid:2)>(cid:7)#&(cid:11) ) (cid:4)(cid:20)-(cid:30) = (cid:4)(cid:20)(cid:29)(cid:30) (cid:6)(cid:10)(cid:16)#(cid:2)(cid:21)(cid:9)(cid:28)%&(cid:2)(cid:25)(cid:15)(cid:17)(cid:16)(cid:14)(cid:2)(cid:13)(cid:10)(cid:12) (cid:4) (cid:29)B = (cid:30)(cid:29)B (cid:6)(cid:10)(cid:16)#(cid:2)(cid:21)(cid:9)(cid:28)%&(cid:2)(cid:25)(cid:15)(cid:17)(cid:16)(cid:14)(cid:2)1(cid:10)&&(cid:10)’ (cid:5) (cid:29)B = (cid:30)(cid:29)B (cid:31)(cid:27)(cid:13)(cid:6)(cid:12) (cid:30)(cid:20) (cid:31)(cid:7)(cid:15)(cid:2)(cid:30)(cid:2) (cid:7)!"(cid:28)(cid:16)(cid:2)(cid:7)(cid:15)#(cid:14)$(cid:2)%(cid:14)(cid:28)&"(cid:9)(cid:14)(cid:2)’(cid:28)(cid:18)(cid:2) (cid:28)(cid:9)(cid:18)((cid:2))"&(cid:2)’"!&(cid:2))(cid:14)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)&(cid:14)#(cid:2)*(cid:7)&(cid:11)(cid:7)(cid:15)(cid:2)&(cid:11)(cid:14)(cid:2)(cid:11)(cid:28)&(cid:8)(cid:11)(cid:14)#(cid:2)(cid:28)(cid:9)(cid:14)(cid:28)(cid:20) (cid:3)(cid:20) +(cid:2)(cid:22)(cid:7)(cid:17)(cid:15)(cid:7)%(cid:7)(cid:8)(cid:28)(cid:15)&(cid:2),(cid:11)(cid:28)(cid:9)(cid:28)(cid:8)&(cid:14)(cid:9)(cid:7)!&(cid:7)(cid:8)(cid:20) -(cid:20) (cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)!(cid:2)(cid:21)(cid:2)(cid:28)(cid:15)#(cid:2).(cid:30)(cid:2)#(cid:10)(cid:2)(cid:15)(cid:10)&(cid:2)(cid:7)(cid:15)(cid:8)(cid:16)"#(cid:14)(cid:2)’(cid:10)(cid:16)#(cid:2)%(cid:16)(cid:28)!(cid:11)(cid:2)(cid:10)(cid:9)(cid:2)(cid:12)(cid:9)(cid:10)&(cid:9)"!(cid:7)(cid:10)(cid:15)!(cid:20)(cid:2)(cid:6)(cid:10)(cid:16)#(cid:2)%(cid:16)(cid:28)!(cid:11)(cid:2)(cid:10)(cid:9)(cid:2)(cid:12)(cid:9)(cid:10)&(cid:9)"!(cid:7)(cid:10)(cid:15)!(cid:2)!(cid:11)(cid:28)(cid:16)(cid:16)(cid:2)(cid:15)(cid:10)&(cid:2)(cid:14)$(cid:8)(cid:14)(cid:14)#(cid:2)(cid:4)(cid:20)(cid:30)(cid:29)(cid:2)’’(cid:2)(cid:12)(cid:14)(cid:9)(cid:2)!(cid:7)#(cid:14)(cid:20) (cid:23)(cid:20) (cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)(cid:7)(cid:15)(cid:17)(cid:2)(cid:28)(cid:15)#(cid:2)&(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:7)(cid:15)(cid:17)(cid:2)(cid:12)(cid:14)(cid:9)(cid:2)(cid:25)(cid:22)(cid:6).(cid:2)0(cid:30)(cid:23)(cid:20)(cid:29)(cid:6)(cid:20) 1(cid:22),2 1(cid:28)!(cid:7)(cid:8)(cid:2)(cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)(cid:20)(cid:2)(cid:13)(cid:11)(cid:14)(cid:10)(cid:9)(cid:14)&(cid:7)(cid:8)(cid:28)(cid:16)(cid:16)(cid:18)(cid:2)(cid:14)$(cid:28)(cid:8)&(cid:2) (cid:28)(cid:16)"(cid:14)(cid:2)!(cid:11)(cid:10)*(cid:15)(cid:2)*(cid:7)&(cid:11)(cid:10)"&(cid:2)&(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:14)!(cid:20) (cid:26).32 (cid:26)(cid:14)%(cid:14)(cid:9)(cid:14)(cid:15)(cid:8)(cid:14)(cid:2)(cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)((cid:2)"!"(cid:28)(cid:16)(cid:16)(cid:18)(cid:2)*(cid:7)&(cid:11)(cid:10)"&(cid:2)&(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:14)((cid:2)%(cid:10)(cid:9)(cid:2)(cid:7)(cid:15)%(cid:10)(cid:9)’(cid:28)&(cid:7)(cid:10)(cid:15)(cid:2)(cid:12)"(cid:9)(cid:12)(cid:10)!(cid:14)!(cid:2)(cid:10)(cid:15)(cid:16)(cid:18)(cid:20) (cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:13)(cid:14)(cid:8)(cid:11)(cid:15)(cid:10)(cid:16)(cid:10)(cid:17)(cid:18)(cid:21)(cid:9)(cid:28)*(cid:7)(cid:15)(cid:17),(cid:4)(cid:23)(cid:27)(cid:4)(cid:29)(cid:30)1 DS70139G-page 190 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging © 2010 Microchip Technology Inc. DS70139G-page 191

dsPIC30F2011/2012/3012/3013 )(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)!*(cid:14)(cid:19)(cid:19)(cid:28)(cid:9)(cid:10)(cid:11)(cid:7)(cid:12)(cid:13)(cid:14)(cid:15)(cid:9)(cid:16)(cid:17)(cid:7)(cid:11)(cid:9)(cid:18)(cid:19)(cid:4)(cid:5)(cid:14)(cid:19)(cid:6)(cid:9)(cid:20)!(cid:10)(cid:21)(cid:9)(cid:22)(cid:9)(cid:23)(cid:24)(cid:24)(cid:9)(cid:25)(cid:14)(cid:11)(cid:9)(cid:26)(cid:27)(cid:8)(cid:28)(cid:9)(cid:29)!(cid:10)(cid:16)(cid:18)(cid:10)(cid:30) (cid:31)(cid:27)(cid:13)(cid:6) 3(cid:10)(cid:9)(cid:2)&(cid:11)(cid:14)(cid:2)’(cid:10)!&(cid:2)(cid:8)"(cid:9)(cid:9)(cid:14)(cid:15)&(cid:2)(cid:12)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:14)(cid:2)#(cid:9)(cid:28)*(cid:7)(cid:15)(cid:17)!((cid:2)(cid:12)(cid:16)(cid:14)(cid:28)!(cid:14)(cid:2)!(cid:14)(cid:14)(cid:2)&(cid:11)(cid:14)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:2)(cid:31)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:7)(cid:15)(cid:17)(cid:2)(cid:22)(cid:12)(cid:14)(cid:8)(cid:7)%(cid:7)(cid:8)(cid:28)&(cid:7)(cid:10)(cid:15)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)&(cid:14)#(cid:2)(cid:28)&(cid:2) (cid:11)&&(cid:12)255***(cid:20)’(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:20)(cid:8)(cid:10)’5(cid:12)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:7)(cid:15)(cid:17) N NOTE1 E1 1 2 3 D E A A2 L c A1 b1 b e eB 6(cid:15)(cid:7)&! (cid:19)7,8.(cid:22) (cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)(cid:2)9(cid:7)’(cid:7)&! (cid:6)(cid:19)7 7:(cid:6) (cid:6)(cid:25); 7"’)(cid:14)(cid:9)(cid:2)(cid:10)%(cid:2)(cid:31)(cid:7)(cid:15)! 7 (cid:3)< (cid:31)(cid:7)&(cid:8)(cid:11) (cid:14) (cid:20)(cid:30)(cid:4)(cid:4)(cid:2)1(cid:22), (cid:13)(cid:10)(cid:12)(cid:2)&(cid:10)(cid:2)(cid:22)(cid:14)(cid:28)&(cid:7)(cid:15)(cid:17)(cid:2)(cid:31)(cid:16)(cid:28)(cid:15)(cid:14) (cid:25) = = (cid:20)(cid:3)(cid:4)(cid:4) (cid:6)(cid:10)(cid:16)#(cid:14)#(cid:2)(cid:31)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:14)(cid:2)(cid:13)(cid:11)(cid:7)(cid:8)4(cid:15)(cid:14)!! (cid:25)(cid:3) (cid:20)(cid:30)(cid:3)(cid:4) (cid:20)(cid:30)-(cid:29) (cid:20)(cid:30)(cid:29)(cid:4) 1(cid:28)!(cid:14)(cid:2)&(cid:10)(cid:2)(cid:22)(cid:14)(cid:28)&(cid:7)(cid:15)(cid:17)(cid:2)(cid:31)(cid:16)(cid:28)(cid:15)(cid:14) (cid:25)(cid:30) (cid:20)(cid:4)(cid:30)(cid:29) = = (cid:22)(cid:11)(cid:10)"(cid:16)#(cid:14)(cid:9)(cid:2)&(cid:10)(cid:2)(cid:22)(cid:11)(cid:10)"(cid:16)#(cid:14)(cid:9)(cid:2)>(cid:7)#&(cid:11) . (cid:20)(cid:3)(cid:24)(cid:4) (cid:20)-(cid:30)(cid:4) (cid:20)--(cid:29) (cid:6)(cid:10)(cid:16)#(cid:14)#(cid:2)(cid:31)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:14)(cid:2)>(cid:7)#&(cid:11) .(cid:30) (cid:20)(cid:3)(cid:23)(cid:4) (cid:20)(cid:3)<(cid:29) (cid:20)(cid:3)(cid:24)(cid:29) : (cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)9(cid:14)(cid:15)(cid:17)&(cid:11) (cid:21) (cid:30)(cid:20)-(cid:23)(cid:29) (cid:30)(cid:20)-?(cid:29) (cid:30)(cid:20)(cid:23)(cid:4)(cid:4) (cid:13)(cid:7)(cid:12)(cid:2)&(cid:10)(cid:2)(cid:22)(cid:14)(cid:28)&(cid:7)(cid:15)(cid:17)(cid:2)(cid:31)(cid:16)(cid:28)(cid:15)(cid:14) 9 (cid:20)(cid:30)(cid:30)(cid:4) (cid:20)(cid:30)-(cid:4) (cid:20)(cid:30)(cid:29)(cid:4) 9(cid:14)(cid:28)#(cid:2)(cid:13)(cid:11)(cid:7)(cid:8)4(cid:15)(cid:14)!! (cid:8) (cid:20)(cid:4)(cid:4)< (cid:20)(cid:4)(cid:30)(cid:4) (cid:20)(cid:4)(cid:30)(cid:29) 6(cid:12)(cid:12)(cid:14)(cid:9)(cid:2)9(cid:14)(cid:28)#(cid:2)>(cid:7)#&(cid:11) )(cid:30) (cid:20)(cid:4)(cid:23)(cid:4) (cid:20)(cid:4)(cid:29)(cid:4) (cid:20)(cid:4)(cid:5)(cid:4) 9(cid:10)*(cid:14)(cid:9)(cid:2)9(cid:14)(cid:28)#(cid:2)>(cid:7)#&(cid:11) ) (cid:20)(cid:4)(cid:30)(cid:23) (cid:20)(cid:4)(cid:30)< (cid:20)(cid:4)(cid:3)(cid:3) : (cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)(cid:26)(cid:10)*(cid:2)(cid:22)(cid:12)(cid:28)(cid:8)(cid:7)(cid:15)(cid:17)(cid:2)(cid:2)+ (cid:14)1 = = (cid:20)(cid:23)-(cid:4) (cid:31)(cid:27)(cid:13)(cid:6)(cid:12) (cid:30)(cid:20) (cid:31)(cid:7)(cid:15)(cid:2)(cid:30)(cid:2) (cid:7)!"(cid:28)(cid:16)(cid:2)(cid:7)(cid:15)#(cid:14)$(cid:2)%(cid:14)(cid:28)&"(cid:9)(cid:14)(cid:2)’(cid:28)(cid:18)(cid:2) (cid:28)(cid:9)(cid:18)((cid:2))"&(cid:2)’"!&(cid:2))(cid:14)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)&(cid:14)#(cid:2)*(cid:7)&(cid:11)(cid:7)(cid:15)(cid:2)&(cid:11)(cid:14)(cid:2)(cid:11)(cid:28)&(cid:8)(cid:11)(cid:14)#(cid:2)(cid:28)(cid:9)(cid:14)(cid:28)(cid:20) (cid:3)(cid:20) +(cid:2)(cid:22)(cid:7)(cid:17)(cid:15)(cid:7)%(cid:7)(cid:8)(cid:28)(cid:15)&(cid:2),(cid:11)(cid:28)(cid:9)(cid:28)(cid:8)&(cid:14)(cid:9)(cid:7)!&(cid:7)(cid:8)(cid:20) -(cid:20) (cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)!(cid:2)(cid:21)(cid:2)(cid:28)(cid:15)#(cid:2).(cid:30)(cid:2)#(cid:10)(cid:2)(cid:15)(cid:10)&(cid:2)(cid:7)(cid:15)(cid:8)(cid:16)"#(cid:14)(cid:2)’(cid:10)(cid:16)#(cid:2)%(cid:16)(cid:28)!(cid:11)(cid:2)(cid:10)(cid:9)(cid:2)(cid:12)(cid:9)(cid:10)&(cid:9)"!(cid:7)(cid:10)(cid:15)!(cid:20)(cid:2)(cid:6)(cid:10)(cid:16)#(cid:2)%(cid:16)(cid:28)!(cid:11)(cid:2)(cid:10)(cid:9)(cid:2)(cid:12)(cid:9)(cid:10)&(cid:9)"!(cid:7)(cid:10)(cid:15)!(cid:2)!(cid:11)(cid:28)(cid:16)(cid:16)(cid:2)(cid:15)(cid:10)&(cid:2)(cid:14)$(cid:8)(cid:14)(cid:14)#(cid:2)(cid:20)(cid:4)(cid:30)(cid:4)/(cid:2)(cid:12)(cid:14)(cid:9)(cid:2)!(cid:7)#(cid:14)(cid:20) (cid:23)(cid:20) (cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)(cid:7)(cid:15)(cid:17)(cid:2)(cid:28)(cid:15)#(cid:2)&(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:7)(cid:15)(cid:17)(cid:2)(cid:12)(cid:14)(cid:9)(cid:2)(cid:25)(cid:22)(cid:6).(cid:2)0(cid:30)(cid:23)(cid:20)(cid:29)(cid:6)(cid:20) 1(cid:22),2 1(cid:28)!(cid:7)(cid:8)(cid:2)(cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)(cid:20)(cid:2)(cid:13)(cid:11)(cid:14)(cid:10)(cid:9)(cid:14)&(cid:7)(cid:8)(cid:28)(cid:16)(cid:16)(cid:18)(cid:2)(cid:14)$(cid:28)(cid:8)&(cid:2) (cid:28)(cid:16)"(cid:14)(cid:2)!(cid:11)(cid:10)*(cid:15)(cid:2)*(cid:7)&(cid:11)(cid:10)"&(cid:2)&(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:14)!(cid:20) (cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:13)(cid:14)(cid:8)(cid:11)(cid:15)(cid:10)(cid:16)(cid:10)(cid:17)(cid:18)(cid:21)(cid:9)(cid:28)*(cid:7)(cid:15)(cid:17),(cid:4)(cid:23)(cid:27)(cid:4)(cid:5)(cid:4)1 DS70139G-page 192 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 )(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:7)(cid:12)(cid:13)(cid:14)(cid:15)(cid:9)!(cid:25)(cid:7)(cid:11)(cid:11)(cid:9)"(cid:17)(cid:13)(cid:11)(cid:14)(cid:19)(cid:6)(cid:9)(cid:20)!"(cid:21)(cid:9)(cid:22)(cid:9)#(cid:14)(cid:8)(cid:6)$(cid:9)%&’(cid:24)(cid:9)(cid:25)(cid:25)(cid:9)(cid:26)(cid:27)(cid:8)(cid:28)(cid:9)(cid:29)!"(cid:18)((cid:30) (cid:31)(cid:27)(cid:13)(cid:6) 3(cid:10)(cid:9)(cid:2)&(cid:11)(cid:14)(cid:2)’(cid:10)!&(cid:2)(cid:8)"(cid:9)(cid:9)(cid:14)(cid:15)&(cid:2)(cid:12)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:14)(cid:2)#(cid:9)(cid:28)*(cid:7)(cid:15)(cid:17)!((cid:2)(cid:12)(cid:16)(cid:14)(cid:28)!(cid:14)(cid:2)!(cid:14)(cid:14)(cid:2)&(cid:11)(cid:14)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:2)(cid:31)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:7)(cid:15)(cid:17)(cid:2)(cid:22)(cid:12)(cid:14)(cid:8)(cid:7)%(cid:7)(cid:8)(cid:28)&(cid:7)(cid:10)(cid:15)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)&(cid:14)#(cid:2)(cid:28)&(cid:2) (cid:11)&&(cid:12)255***(cid:20)’(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:20)(cid:8)(cid:10)’5(cid:12)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:7)(cid:15)(cid:17) D N E E1 NOTE1 1 2 3 e b h α h φ c A A2 L A1 L1 β 6(cid:15)(cid:7)&! (cid:6)(cid:19)99(cid:19)(cid:6).(cid:13).(cid:26)(cid:22) (cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)(cid:2)9(cid:7)’(cid:7)&! (cid:6)(cid:19)7 7:(cid:6) (cid:6)(cid:25); 7"’)(cid:14)(cid:9)(cid:2)(cid:10)%(cid:2)(cid:31)(cid:7)(cid:15)! 7 (cid:3)< (cid:31)(cid:7)&(cid:8)(cid:11) (cid:14) (cid:30)(cid:20)(cid:3)(cid:5)(cid:2)1(cid:22), : (cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)8(cid:14)(cid:7)(cid:17)(cid:11)& (cid:25) = = (cid:3)(cid:20)?(cid:29) (cid:6)(cid:10)(cid:16)#(cid:14)#(cid:2)(cid:31)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:14)(cid:2)(cid:13)(cid:11)(cid:7)(cid:8)4(cid:15)(cid:14)!! (cid:25)(cid:3) (cid:3)(cid:20)(cid:4)(cid:29) = = (cid:22)&(cid:28)(cid:15)#(cid:10)%%(cid:2)(cid:2)+ (cid:25)(cid:30) (cid:4)(cid:20)(cid:30)(cid:4) = (cid:4)(cid:20)-(cid:4) : (cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)>(cid:7)#&(cid:11) . (cid:30)(cid:4)(cid:20)-(cid:4)(cid:2)1(cid:22), (cid:6)(cid:10)(cid:16)#(cid:14)#(cid:2)(cid:31)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:14)(cid:2)>(cid:7)#&(cid:11) .(cid:30) (cid:5)(cid:20)(cid:29)(cid:4)(cid:2)1(cid:22), : (cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)9(cid:14)(cid:15)(cid:17)&(cid:11) (cid:21) (cid:30)(cid:5)(cid:20)(cid:24)(cid:4)(cid:2)1(cid:22), ,(cid:11)(cid:28)’%(cid:14)(cid:9)(cid:2)@(cid:10)(cid:12)&(cid:7)(cid:10)(cid:15)(cid:28)(cid:16)A (cid:11) (cid:4)(cid:20)(cid:3)(cid:29) = (cid:4)(cid:20)(cid:5)(cid:29) 3(cid:10)(cid:10)&(cid:2)9(cid:14)(cid:15)(cid:17)&(cid:11) 9 (cid:4)(cid:20)(cid:23)(cid:4) = (cid:30)(cid:20)(cid:3)(cid:5) 3(cid:10)(cid:10)&(cid:12)(cid:9)(cid:7)(cid:15)& 9(cid:30) (cid:30)(cid:20)(cid:23)(cid:4)(cid:2)(cid:26).3 3(cid:10)(cid:10)&(cid:2)(cid:25)(cid:15)(cid:17)(cid:16)(cid:14)(cid:2)(cid:13)(cid:10)(cid:12) (cid:3) (cid:4)B = <B 9(cid:14)(cid:28)#(cid:2)(cid:13)(cid:11)(cid:7)(cid:8)4(cid:15)(cid:14)!! (cid:8) (cid:4)(cid:20)(cid:30)< = (cid:4)(cid:20)-- 9(cid:14)(cid:28)#(cid:2)>(cid:7)#&(cid:11) ) (cid:4)(cid:20)-(cid:30) = (cid:4)(cid:20)(cid:29)(cid:30) (cid:6)(cid:10)(cid:16)#(cid:2)(cid:21)(cid:9)(cid:28)%&(cid:2)(cid:25)(cid:15)(cid:17)(cid:16)(cid:14)(cid:2)(cid:13)(cid:10)(cid:12) (cid:4) (cid:29)B = (cid:30)(cid:29)B (cid:6)(cid:10)(cid:16)#(cid:2)(cid:21)(cid:9)(cid:28)%&(cid:2)(cid:25)(cid:15)(cid:17)(cid:16)(cid:14)(cid:2)1(cid:10)&&(cid:10)’ (cid:5) (cid:29)B = (cid:30)(cid:29)B (cid:31)(cid:27)(cid:13)(cid:6)(cid:12) (cid:30)(cid:20) (cid:31)(cid:7)(cid:15)(cid:2)(cid:30)(cid:2) (cid:7)!"(cid:28)(cid:16)(cid:2)(cid:7)(cid:15)#(cid:14)$(cid:2)%(cid:14)(cid:28)&"(cid:9)(cid:14)(cid:2)’(cid:28)(cid:18)(cid:2) (cid:28)(cid:9)(cid:18)((cid:2))"&(cid:2)’"!&(cid:2))(cid:14)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)&(cid:14)#(cid:2)*(cid:7)&(cid:11)(cid:7)(cid:15)(cid:2)&(cid:11)(cid:14)(cid:2)(cid:11)(cid:28)&(cid:8)(cid:11)(cid:14)#(cid:2)(cid:28)(cid:9)(cid:14)(cid:28)(cid:20) (cid:3)(cid:20) +(cid:2)(cid:22)(cid:7)(cid:17)(cid:15)(cid:7)%(cid:7)(cid:8)(cid:28)(cid:15)&(cid:2),(cid:11)(cid:28)(cid:9)(cid:28)(cid:8)&(cid:14)(cid:9)(cid:7)!&(cid:7)(cid:8)(cid:20) -(cid:20) (cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)!(cid:2)(cid:21)(cid:2)(cid:28)(cid:15)#(cid:2).(cid:30)(cid:2)#(cid:10)(cid:2)(cid:15)(cid:10)&(cid:2)(cid:7)(cid:15)(cid:8)(cid:16)"#(cid:14)(cid:2)’(cid:10)(cid:16)#(cid:2)%(cid:16)(cid:28)!(cid:11)(cid:2)(cid:10)(cid:9)(cid:2)(cid:12)(cid:9)(cid:10)&(cid:9)"!(cid:7)(cid:10)(cid:15)!(cid:20)(cid:2)(cid:6)(cid:10)(cid:16)#(cid:2)%(cid:16)(cid:28)!(cid:11)(cid:2)(cid:10)(cid:9)(cid:2)(cid:12)(cid:9)(cid:10)&(cid:9)"!(cid:7)(cid:10)(cid:15)!(cid:2)!(cid:11)(cid:28)(cid:16)(cid:16)(cid:2)(cid:15)(cid:10)&(cid:2)(cid:14)$(cid:8)(cid:14)(cid:14)#(cid:2)(cid:4)(cid:20)(cid:30)(cid:29)(cid:2)’’(cid:2)(cid:12)(cid:14)(cid:9)(cid:2)!(cid:7)#(cid:14)(cid:20) (cid:23)(cid:20) (cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)(cid:7)(cid:15)(cid:17)(cid:2)(cid:28)(cid:15)#(cid:2)&(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:7)(cid:15)(cid:17)(cid:2)(cid:12)(cid:14)(cid:9)(cid:2)(cid:25)(cid:22)(cid:6).(cid:2)0(cid:30)(cid:23)(cid:20)(cid:29)(cid:6)(cid:20) 1(cid:22),2 1(cid:28)!(cid:7)(cid:8)(cid:2)(cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)(cid:20)(cid:2)(cid:13)(cid:11)(cid:14)(cid:10)(cid:9)(cid:14)&(cid:7)(cid:8)(cid:28)(cid:16)(cid:16)(cid:18)(cid:2)(cid:14)$(cid:28)(cid:8)&(cid:2) (cid:28)(cid:16)"(cid:14)(cid:2)!(cid:11)(cid:10)*(cid:15)(cid:2)*(cid:7)&(cid:11)(cid:10)"&(cid:2)&(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:14)!(cid:20) (cid:26).32 (cid:26)(cid:14)%(cid:14)(cid:9)(cid:14)(cid:15)(cid:8)(cid:14)(cid:2)(cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)((cid:2)"!"(cid:28)(cid:16)(cid:16)(cid:18)(cid:2)*(cid:7)&(cid:11)(cid:10)"&(cid:2)&(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:14)((cid:2)%(cid:10)(cid:9)(cid:2)(cid:7)(cid:15)%(cid:10)(cid:9)’(cid:28)&(cid:7)(cid:10)(cid:15)(cid:2)(cid:12)"(cid:9)(cid:12)(cid:10)!(cid:14)!(cid:2)(cid:10)(cid:15)(cid:16)(cid:18)(cid:20) (cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:13)(cid:14)(cid:8)(cid:11)(cid:15)(cid:10)(cid:16)(cid:10)(cid:17)(cid:18)(cid:21)(cid:9)(cid:28)*(cid:7)(cid:15)(cid:17),(cid:4)(cid:23)(cid:27)(cid:4)(cid:29)(cid:3)1 © 2010 Microchip Technology Inc. DS70139G-page 193

dsPIC30F2011/2012/3012/3013 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS70139G-page 194 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 )(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:7)(cid:12)(cid:13)(cid:14)(cid:15)(cid:9)+(cid:17)(cid:7)(cid:8)(cid:9),(cid:11)(cid:7)(cid:13)$(cid:9)(cid:31)(cid:27)(cid:9)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:7)(cid:15)*(cid:7)-(cid:6)(cid:9)(cid:20)..(cid:21)(cid:9)(cid:22)(cid:9)/0/0(cid:24)&1(cid:9)(cid:25)(cid:25)(cid:9)(cid:26)(cid:27)(cid:8)(cid:28)(cid:9)(cid:29)+,(cid:31)(cid:4)!(cid:30) 2(cid:14)(cid:13)3(cid:9)(cid:24)&4(cid:24)(cid:9)(cid:25)(cid:25)(cid:9)((cid:27)(cid:19)(cid:13)(cid:7)(cid:15)(cid:13)(cid:9)(cid:5)(cid:6)(cid:19)-(cid:13)3 (cid:31)(cid:27)(cid:13)(cid:6) 3(cid:10)(cid:9)(cid:2)&(cid:11)(cid:14)(cid:2)’(cid:10)!&(cid:2)(cid:8)"(cid:9)(cid:9)(cid:14)(cid:15)&(cid:2)(cid:12)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:14)(cid:2)#(cid:9)(cid:28)*(cid:7)(cid:15)(cid:17)!((cid:2)(cid:12)(cid:16)(cid:14)(cid:28)!(cid:14)(cid:2)!(cid:14)(cid:14)(cid:2)&(cid:11)(cid:14)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:2)(cid:31)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:7)(cid:15)(cid:17)(cid:2)(cid:22)(cid:12)(cid:14)(cid:8)(cid:7)%(cid:7)(cid:8)(cid:28)&(cid:7)(cid:10)(cid:15)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)&(cid:14)#(cid:2)(cid:28)&(cid:2) (cid:11)&&(cid:12)255***(cid:20)’(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:20)(cid:8)(cid:10)’5(cid:12)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:7)(cid:15)(cid:17) D D2 EXPOSED PAD e E2 E b 2 2 1 1 K N N L TOPVIEW NOTE1 BOTTOMVIEW A A3 A1 6(cid:15)(cid:7)&! (cid:6)(cid:19)99(cid:19)(cid:6).(cid:13).(cid:26)(cid:22) (cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)(cid:2)9(cid:7)’(cid:7)&! (cid:6)(cid:19)7 7:(cid:6) (cid:6)(cid:25); 7"’)(cid:14)(cid:9)(cid:2)(cid:10)%(cid:2)(cid:31)(cid:7)(cid:15)! 7 (cid:3)< (cid:31)(cid:7)&(cid:8)(cid:11) (cid:14) (cid:4)(cid:20)?(cid:29)(cid:2)1(cid:22), : (cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)8(cid:14)(cid:7)(cid:17)(cid:11)& (cid:25) (cid:4)(cid:20)<(cid:4) (cid:4)(cid:20)(cid:24)(cid:4) (cid:30)(cid:20)(cid:4)(cid:4) (cid:22)&(cid:28)(cid:15)#(cid:10)%%(cid:2) (cid:25)(cid:30) (cid:4)(cid:20)(cid:4)(cid:4) (cid:4)(cid:20)(cid:4)(cid:3) (cid:4)(cid:20)(cid:4)(cid:29) ,(cid:10)(cid:15)&(cid:28)(cid:8)&(cid:2)(cid:13)(cid:11)(cid:7)(cid:8)4(cid:15)(cid:14)!! (cid:25)- (cid:4)(cid:20)(cid:3)(cid:4)(cid:2)(cid:26).3 : (cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)>(cid:7)#&(cid:11) . ?(cid:20)(cid:4)(cid:4)(cid:2)1(cid:22), .$(cid:12)(cid:10)!(cid:14)#(cid:2)(cid:31)(cid:28)#(cid:2)>(cid:7)#&(cid:11) .(cid:3) -(cid:20)?(cid:29) -(cid:20)(cid:5)(cid:4) (cid:23)(cid:20)(cid:5)(cid:4) : (cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)9(cid:14)(cid:15)(cid:17)&(cid:11) (cid:21) ?(cid:20)(cid:4)(cid:4)(cid:2)1(cid:22), .$(cid:12)(cid:10)!(cid:14)#(cid:2)(cid:31)(cid:28)#(cid:2)9(cid:14)(cid:15)(cid:17)&(cid:11) (cid:21)(cid:3) -(cid:20)?(cid:29) -(cid:20)(cid:5)(cid:4) (cid:23)(cid:20)(cid:5)(cid:4) ,(cid:10)(cid:15)&(cid:28)(cid:8)&(cid:2)>(cid:7)#&(cid:11) ) (cid:4)(cid:20)(cid:3)- (cid:4)(cid:20)-< (cid:4)(cid:20)(cid:23)- ,(cid:10)(cid:15)&(cid:28)(cid:8)&(cid:2)9(cid:14)(cid:15)(cid:17)&(cid:11) 9 (cid:4)(cid:20)-(cid:4) (cid:4)(cid:20)(cid:23)(cid:4) (cid:4)(cid:20)(cid:29)(cid:4) ,(cid:10)(cid:15)&(cid:28)(cid:8)&(cid:27)&(cid:10)(cid:27).$(cid:12)(cid:10)!(cid:14)#(cid:2)(cid:31)(cid:28)# C (cid:4)(cid:20)(cid:3)(cid:4) = = (cid:31)(cid:27)(cid:13)(cid:6)(cid:12) (cid:30)(cid:20) (cid:31)(cid:7)(cid:15)(cid:2)(cid:30)(cid:2) (cid:7)!"(cid:28)(cid:16)(cid:2)(cid:7)(cid:15)#(cid:14)$(cid:2)%(cid:14)(cid:28)&"(cid:9)(cid:14)(cid:2)’(cid:28)(cid:18)(cid:2) (cid:28)(cid:9)(cid:18)((cid:2))"&(cid:2)’"!&(cid:2))(cid:14)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)&(cid:14)#(cid:2)*(cid:7)&(cid:11)(cid:7)(cid:15)(cid:2)&(cid:11)(cid:14)(cid:2)(cid:11)(cid:28)&(cid:8)(cid:11)(cid:14)#(cid:2)(cid:28)(cid:9)(cid:14)(cid:28)(cid:20) (cid:3)(cid:20) (cid:31)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:14)(cid:2)(cid:7)!(cid:2)!(cid:28)*(cid:2)!(cid:7)(cid:15)(cid:17)"(cid:16)(cid:28)&(cid:14)#(cid:20) -(cid:20) (cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)(cid:7)(cid:15)(cid:17)(cid:2)(cid:28)(cid:15)#(cid:2)&(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:7)(cid:15)(cid:17)(cid:2)(cid:12)(cid:14)(cid:9)(cid:2)(cid:25)(cid:22)(cid:6).(cid:2)0(cid:30)(cid:23)(cid:20)(cid:29)(cid:6)(cid:20) 1(cid:22),2 1(cid:28)!(cid:7)(cid:8)(cid:2)(cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)(cid:20)(cid:2)(cid:13)(cid:11)(cid:14)(cid:10)(cid:9)(cid:14)&(cid:7)(cid:8)(cid:28)(cid:16)(cid:16)(cid:18)(cid:2)(cid:14)$(cid:28)(cid:8)&(cid:2) (cid:28)(cid:16)"(cid:14)(cid:2)!(cid:11)(cid:10)*(cid:15)(cid:2)*(cid:7)&(cid:11)(cid:10)"&(cid:2)&(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:14)!(cid:20) (cid:26).32 (cid:26)(cid:14)%(cid:14)(cid:9)(cid:14)(cid:15)(cid:8)(cid:14)(cid:2)(cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)((cid:2)"!"(cid:28)(cid:16)(cid:16)(cid:18)(cid:2)*(cid:7)&(cid:11)(cid:10)"&(cid:2)&(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:14)((cid:2)%(cid:10)(cid:9)(cid:2)(cid:7)(cid:15)%(cid:10)(cid:9)’(cid:28)&(cid:7)(cid:10)(cid:15)(cid:2)(cid:12)"(cid:9)(cid:12)(cid:10)!(cid:14)!(cid:2)(cid:10)(cid:15)(cid:16)(cid:18)(cid:20) (cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:13)(cid:14)(cid:8)(cid:11)(cid:15)(cid:10)(cid:16)(cid:10)(cid:17)(cid:18)(cid:21)(cid:9)(cid:28)*(cid:7)(cid:15)(cid:17),(cid:4)(cid:23)(cid:27)(cid:30)(cid:3)(cid:23)1 © 2010 Microchip Technology Inc. DS70139G-page 195

dsPIC30F2011/2012/3012/3013 )(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:7)(cid:12)(cid:13)(cid:14)(cid:15)(cid:9)+(cid:17)(cid:7)(cid:8)(cid:9),(cid:11)(cid:7)(cid:13)$(cid:9)(cid:31)(cid:27)(cid:9)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:7)(cid:15)*(cid:7)-(cid:6)(cid:9)(cid:20)..(cid:21)(cid:9)(cid:22)(cid:9)/0/0(cid:24)&1(cid:9)(cid:25)(cid:25)(cid:9)(cid:26)(cid:27)(cid:8)(cid:28)(cid:9)(cid:29)+,(cid:31)(cid:4)!(cid:30) 2(cid:14)(cid:13)3(cid:9)(cid:24)&4(cid:24)(cid:9)(cid:25)(cid:25)(cid:9)((cid:27)(cid:19)(cid:13)(cid:7)(cid:15)(cid:13)(cid:9)(cid:5)(cid:6)(cid:19)-(cid:13)3 (cid:31)(cid:27)(cid:13)(cid:6) 3(cid:10)(cid:9)(cid:2)&(cid:11)(cid:14)(cid:2)’(cid:10)!&(cid:2)(cid:8)"(cid:9)(cid:9)(cid:14)(cid:15)&(cid:2)(cid:12)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:14)(cid:2)#(cid:9)(cid:28)*(cid:7)(cid:15)(cid:17)!((cid:2)(cid:12)(cid:16)(cid:14)(cid:28)!(cid:14)(cid:2)!(cid:14)(cid:14)(cid:2)&(cid:11)(cid:14)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:2)(cid:31)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:7)(cid:15)(cid:17)(cid:2)(cid:22)(cid:12)(cid:14)(cid:8)(cid:7)%(cid:7)(cid:8)(cid:28)&(cid:7)(cid:10)(cid:15)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)&(cid:14)#(cid:2)(cid:28)&(cid:2) (cid:11)&&(cid:12)255***(cid:20)’(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:20)(cid:8)(cid:10)’5(cid:12)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:7)(cid:15)(cid:17) DS70139G-page 196 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 44(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:7)(cid:12)(cid:13)(cid:14)(cid:15)(cid:9)+(cid:17)(cid:7)(cid:8)(cid:9),(cid:11)(cid:7)(cid:13)$(cid:9)(cid:31)(cid:27)(cid:9)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:7)(cid:15)*(cid:7)-(cid:6)(cid:9)(cid:20).(cid:5)(cid:21)(cid:9)(cid:22)(cid:9)(cid:3)0(cid:3)(cid:9)(cid:25)(cid:25)(cid:9)(cid:26)(cid:27)(cid:8)(cid:28)(cid:9)(cid:29)+,(cid:31)(cid:30) (cid:31)(cid:27)(cid:13)(cid:6) 3(cid:10)(cid:9)(cid:2)&(cid:11)(cid:14)(cid:2)’(cid:10)!&(cid:2)(cid:8)"(cid:9)(cid:9)(cid:14)(cid:15)&(cid:2)(cid:12)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:14)(cid:2)#(cid:9)(cid:28)*(cid:7)(cid:15)(cid:17)!((cid:2)(cid:12)(cid:16)(cid:14)(cid:28)!(cid:14)(cid:2)!(cid:14)(cid:14)(cid:2)&(cid:11)(cid:14)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:2)(cid:31)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:7)(cid:15)(cid:17)(cid:2)(cid:22)(cid:12)(cid:14)(cid:8)(cid:7)%(cid:7)(cid:8)(cid:28)&(cid:7)(cid:10)(cid:15)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)&(cid:14)#(cid:2)(cid:28)&(cid:2) (cid:11)&&(cid:12)255***(cid:20)’(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:20)(cid:8)(cid:10)’5(cid:12)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:7)(cid:15)(cid:17) D D2 EXPOSED PAD e E E2 b 2 2 1 1 N NOTE1 N L K TOPVIEW BOTTOMVIEW A A3 A1 6(cid:15)(cid:7)&! (cid:6)(cid:19)99(cid:19)(cid:6).(cid:13).(cid:26)(cid:22) (cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)(cid:2)9(cid:7)’(cid:7)&! (cid:6)(cid:19)7 7:(cid:6) (cid:6)(cid:25); 7"’)(cid:14)(cid:9)(cid:2)(cid:10)%(cid:2)(cid:31)(cid:7)(cid:15)! 7 (cid:23)(cid:23) (cid:31)(cid:7)&(cid:8)(cid:11) (cid:14) (cid:4)(cid:20)?(cid:29)(cid:2)1(cid:22), : (cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)8(cid:14)(cid:7)(cid:17)(cid:11)& (cid:25) (cid:4)(cid:20)<(cid:4) (cid:4)(cid:20)(cid:24)(cid:4) (cid:30)(cid:20)(cid:4)(cid:4) (cid:22)&(cid:28)(cid:15)#(cid:10)%%(cid:2) (cid:25)(cid:30) (cid:4)(cid:20)(cid:4)(cid:4) (cid:4)(cid:20)(cid:4)(cid:3) (cid:4)(cid:20)(cid:4)(cid:29) ,(cid:10)(cid:15)&(cid:28)(cid:8)&(cid:2)(cid:13)(cid:11)(cid:7)(cid:8)4(cid:15)(cid:14)!! (cid:25)- (cid:4)(cid:20)(cid:3)(cid:4)(cid:2)(cid:26).3 : (cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)>(cid:7)#&(cid:11) . <(cid:20)(cid:4)(cid:4)(cid:2)1(cid:22), .$(cid:12)(cid:10)!(cid:14)#(cid:2)(cid:31)(cid:28)#(cid:2)>(cid:7)#&(cid:11) .(cid:3) ?(cid:20)-(cid:4) ?(cid:20)(cid:23)(cid:29) ?(cid:20)<(cid:4) : (cid:14)(cid:9)(cid:28)(cid:16)(cid:16)(cid:2)9(cid:14)(cid:15)(cid:17)&(cid:11) (cid:21) <(cid:20)(cid:4)(cid:4)(cid:2)1(cid:22), .$(cid:12)(cid:10)!(cid:14)#(cid:2)(cid:31)(cid:28)#(cid:2)9(cid:14)(cid:15)(cid:17)&(cid:11) (cid:21)(cid:3) ?(cid:20)-(cid:4) ?(cid:20)(cid:23)(cid:29) ?(cid:20)<(cid:4) ,(cid:10)(cid:15)&(cid:28)(cid:8)&(cid:2)>(cid:7)#&(cid:11) ) (cid:4)(cid:20)(cid:3)(cid:29) (cid:4)(cid:20)-(cid:4) (cid:4)(cid:20)-< ,(cid:10)(cid:15)&(cid:28)(cid:8)&(cid:2)9(cid:14)(cid:15)(cid:17)&(cid:11) 9 (cid:4)(cid:20)-(cid:4) (cid:4)(cid:20)(cid:23)(cid:4) (cid:4)(cid:20)(cid:29)(cid:4) ,(cid:10)(cid:15)&(cid:28)(cid:8)&(cid:27)&(cid:10)(cid:27).$(cid:12)(cid:10)!(cid:14)#(cid:2)(cid:31)(cid:28)# C (cid:4)(cid:20)(cid:3)(cid:4) = = (cid:31)(cid:27)(cid:13)(cid:6)(cid:12) (cid:30)(cid:20) (cid:31)(cid:7)(cid:15)(cid:2)(cid:30)(cid:2) (cid:7)!"(cid:28)(cid:16)(cid:2)(cid:7)(cid:15)#(cid:14)$(cid:2)%(cid:14)(cid:28)&"(cid:9)(cid:14)(cid:2)’(cid:28)(cid:18)(cid:2) (cid:28)(cid:9)(cid:18)((cid:2))"&(cid:2)’"!&(cid:2))(cid:14)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)&(cid:14)#(cid:2)*(cid:7)&(cid:11)(cid:7)(cid:15)(cid:2)&(cid:11)(cid:14)(cid:2)(cid:11)(cid:28)&(cid:8)(cid:11)(cid:14)#(cid:2)(cid:28)(cid:9)(cid:14)(cid:28)(cid:20) (cid:3)(cid:20) (cid:31)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:14)(cid:2)(cid:7)!(cid:2)!(cid:28)*(cid:2)!(cid:7)(cid:15)(cid:17)"(cid:16)(cid:28)&(cid:14)#(cid:20) -(cid:20) (cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)(cid:7)(cid:15)(cid:17)(cid:2)(cid:28)(cid:15)#(cid:2)&(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:7)(cid:15)(cid:17)(cid:2)(cid:12)(cid:14)(cid:9)(cid:2)(cid:25)(cid:22)(cid:6).(cid:2)0(cid:30)(cid:23)(cid:20)(cid:29)(cid:6)(cid:20) 1(cid:22),2 1(cid:28)!(cid:7)(cid:8)(cid:2)(cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)(cid:20)(cid:2)(cid:13)(cid:11)(cid:14)(cid:10)(cid:9)(cid:14)&(cid:7)(cid:8)(cid:28)(cid:16)(cid:16)(cid:18)(cid:2)(cid:14)$(cid:28)(cid:8)&(cid:2) (cid:28)(cid:16)"(cid:14)(cid:2)!(cid:11)(cid:10)*(cid:15)(cid:2)*(cid:7)&(cid:11)(cid:10)"&(cid:2)&(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:14)!(cid:20) (cid:26).32 (cid:26)(cid:14)%(cid:14)(cid:9)(cid:14)(cid:15)(cid:8)(cid:14)(cid:2)(cid:21)(cid:7)’(cid:14)(cid:15)!(cid:7)(cid:10)(cid:15)((cid:2)"!"(cid:28)(cid:16)(cid:16)(cid:18)(cid:2)*(cid:7)&(cid:11)(cid:10)"&(cid:2)&(cid:10)(cid:16)(cid:14)(cid:9)(cid:28)(cid:15)(cid:8)(cid:14)((cid:2)%(cid:10)(cid:9)(cid:2)(cid:7)(cid:15)%(cid:10)(cid:9)’(cid:28)&(cid:7)(cid:10)(cid:15)(cid:2)(cid:12)"(cid:9)(cid:12)(cid:10)!(cid:14)!(cid:2)(cid:10)(cid:15)(cid:16)(cid:18)(cid:20) (cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:13)(cid:14)(cid:8)(cid:11)(cid:15)(cid:10)(cid:16)(cid:10)(cid:17)(cid:18)(cid:21)(cid:9)(cid:28)*(cid:7)(cid:15)(cid:17),(cid:4)(cid:23)(cid:27)(cid:30)(cid:4)-1 © 2010 Microchip Technology Inc. DS70139G-page 197

dsPIC30F2011/2012/3012/3013 44(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:7)(cid:12)(cid:13)(cid:14)(cid:15)(cid:9)+(cid:17)(cid:7)(cid:8)(cid:9),(cid:11)(cid:7)(cid:13)$(cid:9)(cid:31)(cid:27)(cid:9)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:7)(cid:15)*(cid:7)-(cid:6)(cid:9)(cid:20).(cid:5)(cid:21)(cid:9)(cid:22)(cid:9)(cid:3)0(cid:3)(cid:9)(cid:25)(cid:25)(cid:9)(cid:26)(cid:27)(cid:8)(cid:28)(cid:9)(cid:29)+,(cid:31)(cid:30) (cid:31)(cid:27)(cid:13)(cid:6) 3(cid:10)(cid:9)(cid:2)&(cid:11)(cid:14)(cid:2)’(cid:10)!&(cid:2)(cid:8)"(cid:9)(cid:9)(cid:14)(cid:15)&(cid:2)(cid:12)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:14)(cid:2)#(cid:9)(cid:28)*(cid:7)(cid:15)(cid:17)!((cid:2)(cid:12)(cid:16)(cid:14)(cid:28)!(cid:14)(cid:2)!(cid:14)(cid:14)(cid:2)&(cid:11)(cid:14)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:2)(cid:31)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:7)(cid:15)(cid:17)(cid:2)(cid:22)(cid:12)(cid:14)(cid:8)(cid:7)%(cid:7)(cid:8)(cid:28)&(cid:7)(cid:10)(cid:15)(cid:2)(cid:16)(cid:10)(cid:8)(cid:28)&(cid:14)#(cid:2)(cid:28)&(cid:2) (cid:11)&&(cid:12)255***(cid:20)’(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:7)(cid:12)(cid:20)(cid:8)(cid:10)’5(cid:12)(cid:28)(cid:8)4(cid:28)(cid:17)(cid:7)(cid:15)(cid:17) DS70139G-page 198 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 APPENDIX A: REVISION HISTORY Revision F (May 2008) This revision reflects these updates: Revision D (August 2006) • Added FUSE Configuration Register (FICD) Previous versions of this data sheet contained details (see Section17.7 “Device Configuration Advance or Preliminary Information. They were Registers” and Table17-8) distributed with incomplete characterization data. • Added Note 2 to Device Configuration Registers This revision reflects these updates: table (Table17-8) • Supported I2C Slave Addresses • Updated Bit 10 in the UART2 Register Map (see Table15-2). This bit is unimplemented. (see Table14-1) • Electrical Specifications: • ADC Conversion Clock selection to allow 200 kHz sampling rate (see Section16.0 “12-bit - Resolved TBD values for parameters DO10, Analog-to-Digital Converter (ADC) Module”) DO16, DO20, and DO26 (see Table20-9) • Operating Current (IDD) Specifications - 10-bit High-Speed ADC tPDU timing (see Table20-5) parameter (time to stabilize) has been updated from 20 µs typical to 20 µs maximum • Idle Current (IIDLE) Specifications (see Table20-37) (see Table20-6) - Parameter OS65 (Internal RC Accuracy) has • Power-Down Current (IPD) Specifications been expanded to reflect multiple Min and (see Table20-7) Max values for different temperatures (see • I/O pin Input Specifications Table20-19) (see Table20-8) - Parameter DC12 (RAM Data Retention • BOR voltage limits Voltage) has been updated to include a Min (see Table20-11) value (see Table20-4) • Watchdog Timer time-out limits - Parameter D134 (Erase/Write Cycle Time) (see Table20-21) has been updated to include Min and Max values and the Typ value has been removed Revision E (December 2006) (see Table20-12) This revision includes updates to the packaging - Removed parameters OS62 (Internal FRC diagrams. Jitter) and OS64 (Internal FRC Drift) and Note 2 from AC Characteristics (see Table20-18) - Parameter OS63 (Internal FRC Accuracy) has been expanded to reflect multiple Min and Max values for different temperatures (see Table20-18) - Updated Min and Max values and Conditions for parameter SY11 and updated Min, Typ, and Max values and Conditions for parameter SY20 (see Table20-21) • Additional minor corrections throughout the document © 2010 Microchip Technology Inc. DS70139G-page 199

dsPIC30F2011/2012/3012/3013 Revision G (November 2010) This revision includes minor typographical and formatting changes throughout the data sheet text. The major changes are referenced by their respective section in TableA-1. TABLE A-1: MAJOR SECTION UPDATES Section Name Update Description “High-Performance, 16-Bit Digital Added Note 1 to all QFN pin diagrams (see “Pin Diagrams”). Signal Controllers” Section1.0 “Device Overview” Updated the Pinout I/O Descriptions for AVDD and AVSS (see Table1-1). Section17.0 “System Integration” Added a shaded note on OSCTUN functionality in Section17.2.5 “Fast RC Oscillator (FRC)”. Section20.0 “Electrical Updated the maximum value for parameter DI19 and the minimum value for Characteristics” parameter DI29 in the I/O Pin Input Specifications (see Table20-8). Removed parameter D136 and updated the minimum, typical, maximum, and conditions for parameters D122 and D134 in the Program and EEPROM specifications (see Table20-12). Renamed parameter AD56 to AD56a and added parameter AD56b to the 12-bit A/D Conversion Timing Requirements (see Table20-37). “Product Identification System” Added the “MM” package definition. DS70139G-page 200 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 INDEX I2C..............................................................................98 Input Capture Mode....................................................83 Numerics Oscillator System......................................................125 Output Compare Mode...............................................87 12-bit Analog-to-Digital Converter (A/D) Module..............113 Reset System...........................................................129 A Shared Port Structure.................................................59 SPI..............................................................................94 A/D....................................................................................113 SPI Master/Slave Connection.....................................95 Aborting a Conversion..............................................115 UART Receiver.........................................................106 ADCHS Register.......................................................113 UART Transmitter.....................................................105 ADCON1 Register.....................................................113 BOR Characteristics.........................................................158 ADCON2 Register.....................................................113 BOR. See Brown-out Reset. ADCON3 Register.....................................................113 Brown-out Reset ADCSSL Register.....................................................113 Characteristics..........................................................158 ADPCFG Register.....................................................113 Timing Requirements...............................................165 Configuring Analog Port Pins..............................60, 119 Connection Considerations.......................................119 C Conversion Operation...............................................114 C Compilers Effects of a Reset......................................................118 MPLAB C18..............................................................146 Operation During CPU Idle Mode.............................118 CAN Module Operation During CPU Sleep Mode..........................118 I/O Timing Characteristics........................................181 Output Formats.........................................................118 I/O Timing Requirements..........................................181 Power-Down Modes..................................................118 CLKOUT and I/O Timing Programming the Sample Trigger.............................115 Characteristics..........................................................164 Register Map.............................................................121 Requirements...........................................................164 Result Buffer.............................................................114 Code Examples Sampling Requirements............................................117 Data EEPROM Block Erase.......................................56 Selecting the Conversion Sequence.........................114 Data EEPROM Block Write........................................58 AC Characteristics............................................................160 Data EEPROM Read..................................................55 Load Conditions........................................................160 Data EEPROM Word Erase.......................................56 AC Temperature and Voltage Specifications....................160 Data EEPROM Word Write........................................57 ADC Erasing a Row of Program Memory...........................51 Selecting the Conversion Clock................................115 Initiating a Programming Sequence...........................52 ADC Conversion Speeds..................................................116 Loading Write Latches................................................52 Address Generator Units....................................................43 Code Protection................................................................123 Alternate Vector Table........................................................69 Control Registers................................................................50 Analog-to-Digital Converter. See ADC. NVMADR....................................................................50 Assembler NVMADRU.................................................................50 MPASM Assembler...................................................146 NVMCON....................................................................50 Automatic Clock Stretch....................................................100 NVMKEY....................................................................50 During 10-bit Addressing (STREN = 1).....................100 Core Architecture During 7-bit Addressing (STREN = 1).......................100 Overview.....................................................................19 Receive Mode...........................................................100 CPU Architecture Overview................................................19 Transmit Mode..........................................................100 Customer Change Notification Service.............................205 B Customer Notification Service..........................................205 Customer Support.............................................................205 Bandgap Start-up Time Requirements............................................................166 D Timing Characteristics..............................................166 Data Accumulators and Adder/Subtractor..........................25 Barrel Shifter.......................................................................27 Data Space Write Saturation......................................27 Bit-Reversed Addressing....................................................46 Overflow and Saturation.............................................25 Example......................................................................47 Round Logic...............................................................26 Implementation...........................................................46 Write-Back..................................................................26 Modifier Values Table.................................................47 Data Address Space...........................................................35 Sequence Table (16-Entry).........................................47 Alignment....................................................................38 Block Diagrams Alignment (Figure)......................................................38 12-bit ADC Functional...............................................113 Effect of Invalid Memory Accesses (Table)................38 16-bit Timer1 Module..................................................73 MCU and DSP (MAC Class) Instructions Example....37 16-bit Timer2...............................................................79 Memory Map.........................................................35, 36 16-bit Timer3...............................................................79 Near Data Space........................................................39 32-bit Timer2/3............................................................78 Software Stack...........................................................39 DSP Engine................................................................24 Spaces........................................................................38 dsPIC30F2011............................................................12 Width..........................................................................38 dsPIC30F2012............................................................13 Data EEPROM Memory......................................................55 dsPIC30F3013............................................................15 Erasing.......................................................................56 External Power-on Reset Circuit...............................131 Erasing, Block.............................................................56 © 2010 Microchip Technology Inc. DS70139G-page 201

dsPIC30F2011/2012/3012/3013 Erasing, Word.............................................................56 Input..........................................................................156 Protection Against Spurious Write..............................58 Output.......................................................................156 Reading.......................................................................55 I/O Ports..............................................................................59 Write Verify.................................................................58 Parallel (PIO)..............................................................59 Writing.........................................................................57 I2C 10-bit Slave Mode Operation........................................99 Writing, Block..............................................................57 Reception.................................................................100 Writing, Word..............................................................57 Transmission............................................................100 DC Characteristics............................................................150 I2C 7-bit Slave Mode Operation..........................................99 BOR..........................................................................158 Reception...................................................................99 Brown-out Reset.......................................................158 Transmission..............................................................99 I/O Pin Input Specifications.......................................156 I2C Master Mode Operation..............................................101 I/O Pin Output Specifications....................................156 Baud Rate Generator...............................................102 Idle Current (IIDLE)....................................................153 Clock Arbitration.......................................................102 Low-Voltage Detect...................................................157 Multi-Master Communication, LVDL.........................................................................157 Bus Collision and Bus Arbitration.....................102 Operating Current (IDD).............................................152 Reception.................................................................102 Power-Down Current (IPD)........................................154 Transmission............................................................101 Program and EEPROM.............................................159 I2C Master Mode Support.................................................101 Temperature and Voltage Specifications..................150 I2C Module Development Support.......................................................145 Addresses...................................................................99 Device Configuration Bus Data Timing Characteristics Register Map.............................................................136 Master Mode.....................................................177 Device Configuration Registers Slave Mode.......................................................179 FBORPOR................................................................134 Bus Data Timing Requirements FGS...........................................................................134 Master Mode.....................................................178 FOSC........................................................................134 Slave Mode.......................................................179 FWDT........................................................................134 Bus Start/Stop Bits Timing Characteristics Device Overview...........................................................11, 19 Master Mode.....................................................177 Disabling the UART...........................................................107 Slave Mode.......................................................179 Divide Support.....................................................................22 General Call Address Support..................................101 Instructions (Table).....................................................22 Interrupts..................................................................101 DSP Engine.........................................................................23 IPMI Support.............................................................101 Multiplier......................................................................25 Operating Function Description..................................97 Dual Output Compare Match Mode....................................88 Operation During CPU Sleep and Idle Modes..........102 Continuous Pulse Mode..............................................88 Pin Configuration........................................................97 Single Pulse Mode......................................................88 Programmer’s Model..................................................97 Register Map............................................................103 E Registers....................................................................97 Electrical Characteristics Slope Control............................................................101 AC.............................................................................160 Software Controlled Clock Stretching (STREN = 1).100 DC.............................................................................150 Various Modes............................................................97 Enabling and Setting Up UART Idle Current (IIDLE)............................................................153 Alternate I/O..............................................................107 In-Circuit Serial Programming (ICSP).........................49, 123 Setting Up Data, Parity and Stop Bit Selections.......107 Input Capture (CAPX) Timing Characteristics..................169 Enabling the UART...........................................................107 Input Capture Module.........................................................83 Equations Interrupts....................................................................84 ADC Conversion Clock.............................................115 Register Map..............................................................85 Baud Rate.................................................................109 Input Capture Operation During Sleep and Idle Modes......84 Serial Clock Rate......................................................102 CPU Idle Mode...........................................................84 Errata....................................................................................9 CPU Sleep Mode........................................................84 Exception Sequence Input Capture Timing Requirements.................................169 Trap Sources..............................................................67 Input Change Notification Module.......................................63 External Clock Timing Characteristics dsPIC30F2012/3013 Register Map (Bits 7-0).............63 Type A, B and C Timer.............................................167 Instruction Addressing Modes............................................43 External Clock Timing Requirements................................161 File Register Instructions............................................43 Type A Timer............................................................167 Fundamental Modes Supported.................................43 Type B Timer............................................................168 MAC Instructions........................................................44 Type C Timer............................................................168 MCU Instructions........................................................43 External Interrupt Requests................................................70 Move and Accumulator Instructions............................44 Other Instructions.......................................................44 F Instruction Set Fast Context Saving............................................................70 Overview...................................................................140 Flash Program Memory.......................................................49 Summary..................................................................137 I Internal Clock Timing Examples.......................................163 Internet Address...............................................................205 I/O Pin Specifications DS70139G-page 202 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 Interrupt Controller PLL Clock Timing Specifications......................................162 Register Map.........................................................71, 72 POR. See Power-on Reset. Interrupt Priority..................................................................66 Port Write/Read Example...................................................60 Traps...........................................................................67 PORTB Interrupt Sequence.............................................................69 Register Map for dsPIC30F2011/3012.......................61 Interrupt Stack Frame.................................................69 Register Map for dsPIC30F2012/3013.......................61 Interrupts.............................................................................65 PORTC Register Map for dsPIC30F2011/2012/3012/3013.....61 L PORTD Load Conditions................................................................160 Register Map for dsPIC30F2011/3012.......................61 Low Voltage Detect (LVD)................................................133 Register Map for dsPIC30F2012/3013.......................62 Low-Voltage Detect Characteristics..................................157 PORTF LVDL Characteristics........................................................157 Register Map for dsPIC30F2012/3013.......................62 Power Saving Modes........................................................133 M Idle............................................................................134 Memory Organization..........................................................29 Sleep........................................................................133 Core Register Map......................................................39 Sleep and Idle...........................................................123 Microchip Internet Web Site..............................................205 Power-Down Current (IPD)................................................154 Modulo Addressing.............................................................44 Power-up Timer Applicability.................................................................46 Timing Characteristics..............................................165 Incrementing Buffer Operation Example.....................45 Timing Requirements...............................................165 Start and End Address................................................45 Program Address Space.....................................................29 W Address Register Selection....................................45 Construction...............................................................31 MPLAB ASM30 Assembler, Linker, Librarian...................146 Data Access from Program Memory Using MPLAB Integrated Development Environment Software..145 Program Space Visibility.....................................33 MPLAB PM3 Device Programmer....................................148 Data Access From Program Memory Using MPLAB REAL ICE In-Circuit Emulator System.................147 Table Instructions...............................................32 MPLINK Object Linker/MPLIB Object Librarian................146 Data Access from, Address Generation.....................31 N Data Space Window into Operation...........................34 Data Table Access (LS Word)....................................32 NVM Data Table Access (MS Byte)....................................33 Register Map...............................................................53 Memory Maps.............................................................30 O Table Instructions TBLRDH.............................................................32 OC/PWM Module Timing Characteristics..........................171 TBLRDL..............................................................32 Operating Current (IDD).....................................................152 TBLWTH.............................................................32 Operating Frequency vs Voltage TBLWTL.............................................................32 dsPIC30FXXXX-20 (Extended).................................150 Program and EEPROM Characteristics............................159 Oscillator Program Counter................................................................20 Configurations...........................................................126 Programmable..................................................................123 Fail-Safe Clock Monitor....................................128 Programmer’s Model..........................................................20 Fast RC (FRC)..................................................127 Diagram......................................................................21 Initial Clock Source Selection...........................126 Programming Operations....................................................51 Low-Power RC (LPRC).....................................127 Algorithm for Program Flash.......................................51 LP Oscillator Control.........................................127 Erasing a Row of Program Memory...........................51 Phase Locked Loop (PLL)................................127 Initiating the Programming Sequence........................52 Start-up Timer (OST)........................................126 Loading Write Latches................................................52 Operating Modes (Table)..........................................124 Protection Against Accidental Writes to OSCCON...........128 System Overview......................................................123 Oscillator Selection...........................................................123 R Oscillator Start-up Timer Reader Response.............................................................206 Timing Characteristics..............................................165 Reset........................................................................123, 129 Timing Requirements................................................165 BOR, Programmable................................................131 Output Compare Interrupts.................................................90 Brown-out Reset (BOR)............................................123 Output Compare Module.....................................................87 Oscillator Start-up Timer (OST)................................123 Register Map...............................................................91 POR Timing Characteristics..............................................170 Operating without FSCM and PWRT................131 Timing Requirements................................................170 With Long Crystal Start-up Time......................131 Output Compare Operation During CPU Idle Mode............90 POR (Power-on Reset).............................................129 Output Compare Sleep Mode Operation............................90 Power-on Reset (POR).............................................123 P Power-up Timer (PWRT)..........................................123 Reset Sequence.................................................................67 Packaging Information......................................................187 Reset Sources............................................................67 Marking.............................................................187, 188 Reset Sources Peripheral Module Disable (PMD) Registers....................135 Brown-out Reset (BOR)..............................................67 Pinout Descriptions.............................................................16 Illegal Instruction Trap................................................67 © 2010 Microchip Technology Inc. DS70139G-page 203

dsPIC30F2011/2012/3012/3013 Trap Lockout...............................................................67 Register Map..............................................................75 Uninitialized W Register Trap.....................................67 Timer2 and Timer3 Selection Mode....................................88 Watchdog Time-out.....................................................67 Timer2/3 Module Reset Timing Characteristics............................................165 16-bit Timer Mode.......................................................77 Reset Timing Requirements..............................................165 32-bit Synchronous Counter Mode.............................77 Run-Time Self-Programming (RTSP).................................49 32-bit Timer Mode.......................................................77 ADC Event Trigger......................................................80 S Gate Operation...........................................................80 Simple Capture Event Mode...............................................83 Interrupt......................................................................80 Buffer Operation..........................................................84 Operation During Sleep Mode....................................80 Hall Sensor Mode.......................................................84 Register Map..............................................................81 Prescaler.....................................................................83 Timer Prescaler..........................................................80 Timer2 and Timer3 Selection Mode............................84 Timing Characteristics Simple OC/PWM Mode Timing Requirements..................171 A/D Conversion Simple Output Compare Match Mode.................................88 Low-speed (ASAM = 0, SSRC = 000)..............184 Simple PWM Mode.............................................................88 Bandgap Start-up Time.............................................166 Input Pin Fault Protection............................................88 CAN Module I/O........................................................181 Period..........................................................................89 CLKOUT and I/O......................................................164 Software Simulator (MPLAB SIM).....................................147 External Clock...........................................................160 Software Stack Pointer, Frame Pointer...............................20 I2C Bus Data CALL Stack Frame......................................................39 Master Mode.....................................................177 SPI Module..........................................................................93 Slave Mode.......................................................179 Framed SPI Support...................................................94 I2C Bus Start/Stop Bits Operating Function Description..................................93 Master Mode.....................................................177 Operation During CPU Idle Mode...............................95 Slave Mode.......................................................179 Operation During CPU Sleep Mode............................95 Input Capture (CAPX)...............................................169 SDOx Disable.............................................................94 OC/PWM Module......................................................171 Slave Select Synchronization.....................................95 Oscillator Start-up Timer...........................................165 SPI1 Register Map......................................................96 Output Compare Module..........................................170 Timing Characteristics Power-up Timer........................................................165 Master Mode (CKE = 0)....................................172 Reset........................................................................165 Master Mode (CKE = 1)....................................173 SPI Module Slave Mode (CKE = 1)..............................174, 175 Master Mode (CKE = 0)....................................172 Timing Requirements Master Mode (CKE = 1)....................................173 Master Mode (CKE = 0)....................................172 Slave Mode (CKE = 0)......................................174 Master Mode (CKE = 1)....................................173 Slave Mode (CKE = 1)......................................175 Slave Mode (CKE = 0)......................................174 Type A, B and C Timer External Clock.....................167 Slave Mode (CKE = 1)......................................176 Watchdog Timer.......................................................165 Word and Byte Communication..................................94 Timing Diagrams Status Bits, Their Significance and the Initialization Condition PWM Output Timing...................................................89 for Time-out Sequence on Power-up RCON Register, Case 1............................................132 (MCLR Not Tied to VDD), Case 1.....................130 Status Bits, Their Significance and the Initialization Condition Time-out Sequence on Power-up for RCON Register, Case 2......................................132 (MCLR Status Register....................................................................20 Not Tied to VDD), Case 2..................................130 Symbols Used in Opcode Descriptions.............................138 Time-out Sequence on Power-up System Integration (MCLR Register Map.............................................................136 Tied to VDD)......................................................130 Timing Diagrams and Specifications T DC Characteristics - Internal RC Accuracy...............163 Table Instruction Operation Summary................................49 Timing Diagrams.See Timing Characteristics Temperature and Voltage Specifications Timing Requirements AC.............................................................................160 A/D Conversion DC.............................................................................150 Low-speed........................................................185 Timer 2/3 Module................................................................77 Bandgap Start-up Time.............................................166 Timer1 Module....................................................................73 Brown-out Reset.......................................................165 16-bit Asynchronous Counter Mode...........................73 CAN Module I/O........................................................181 16-bit Synchronous Counter Mode.............................73 CLKOUT and I/O......................................................164 16-bit Timer Mode.......................................................73 External Clock...........................................................161 Gate Operation...........................................................74 I2C Bus Data (Master Mode)....................................178 Interrupt.......................................................................74 I2C Bus Data (Slave Mode)......................................179 Operation During Sleep Mode....................................74 Input Capture............................................................169 Prescaler.....................................................................74 Oscillator Start-up Timer...........................................165 Real-Time Clock.........................................................74 Output Compare Module..........................................170 Interrupts.............................................................74 Power-up Timer........................................................165 Oscillator Operation............................................74 DS70139G-page 204 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 Reset.........................................................................165 Simple OC/PWM Mode.............................................171 SPI Module Master Mode (CKE = 0)....................................172 Master Mode (CKE = 1)....................................173 Slave Mode (CKE = 0)......................................174 Slave Mode (CKE = 1)......................................176 Type A Timer External Clock....................................167 Type B Timer External Clock....................................168 Type C Timer External Clock....................................168 Watchdog Timer........................................................165 Timing Specifications PLL Clock..................................................................162 Trap Vectors.......................................................................69 U UART Module Address Detect Mode...............................................109 Auto-Baud Support...................................................109 Baud Rate Generator................................................109 Enabling and Setting Up...........................................107 Framing Error (FERR)...............................................109 Idle Status.................................................................109 Loopback Mode........................................................109 Operation During CPU Sleep and Idle Modes..........110 Overview...................................................................105 Parity Error (PERR)..................................................109 Receive Break...........................................................109 Receive Buffer (UxRXB)...........................................108 Receive Buffer Overrun Error (OERR Bit)................108 Receive Interrupt.......................................................108 Receiving Data..........................................................108 Receiving in 8-bit or 9-bit Data Mode........................108 Reception Error Handling..........................................108 Transmit Break..........................................................108 Transmit Buffer (UxTXB)...........................................107 Transmit Interrupt......................................................108 Transmitting Data......................................................107 Transmitting in 8-bit Data Mode................................107 Transmitting in 9-bit Data Mode................................107 UART1 Register Map................................................111 UART2 Register Map................................................111 UART Operation Idle Mode..................................................................110 Sleep Mode...............................................................110 Unit ID Locations...............................................................123 Universal Asynchronous Receiver Transmitter (UART) Module.........................................................105 W Wake-up from Sleep.........................................................123 Wake-up from Sleep and Idle.............................................70 Watchdog Timer Timing Characteristics..............................................165 Timing Requirements................................................165 Watchdog Timer (WDT)............................................123, 133 Enabling and Disabling.............................................133 Operation..................................................................133 WWW Address..................................................................205 WWW, On-Line Support.......................................................9 © 2010 Microchip Technology Inc. DS70139G-page 205

dsPIC30F2011/2012/3012/3013 NOTES: DS70139G-page 206 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 THE MICROCHIP WEB SITE CUSTOMER SUPPORT Microchip provides online support via our WWW site at Users of Microchip products can receive assistance www.microchip.com. This web site is used as a means through several channels: to make files and information easily available to • Distributor or Representative customers. Accessible by using your favorite Internet • Local Sales Office browser, the web site contains the following information: • Field Application Engineer (FAE) • Technical Support • Product Support – Data sheets and errata, application notes and sample programs, design • Development Systems Information Line resources, user’s guides and hardware support Customers should contact their distributor, documents, latest software releases and archived representative or field application engineer (FAE) for software support. Local sales offices are also available to help • General Technical Support – Frequently Asked customers. A listing of sales offices and locations is Questions (FAQ), technical support requests, included in the back of this document. online discussion groups, Microchip consultant Technical support is available through the web site program member listing at: http://support.microchip.com • Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives CUSTOMER CHANGE NOTIFICATION SERVICE Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions. © 2010 Microchip Technology Inc. DS70139G-page 207

dsPIC30F2011/2012/3012/3013 READER RESPONSE It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480)792-4150. Please list the following information, and use this outline to provide us with your comments about this document. TO: Technical Publications Manager Total Pages Sent ________ RE: Reader Response From: Name Company Address City / State / ZIP / Country Telephone: (_______) _________ - _________ FAX: (______) _________ - _________ Application (optional): Would you like a reply? Y N Device: dsPIC30F2011/2012/3012/3013 Literature Number: DS70139G Questions: 1. What are the best features of this document? 2. How does this document meet your hardware and software development needs? 3. Do you find the organization of this document easy to follow? If not, why? 4. What additions to the document do you think would enhance the structure and subject? 5. What deletions from the document could be made without affecting the overall usefulness? 6. Is there any incorrect or misleading information (what and where)? 7. How would you improve this document? DS70139G-page 208 © 2010 Microchip Technology Inc.

dsPIC30F2011/2012/3012/3013 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. dsPIC30F3013AT-30I/SP-ES Custom ID (3 digits) or Trademark Engineering Sample (ES) Architecture Package P = DIP Flash SO = SOIC SP = SPDIP Memory Size in Bytes ML = QFN (8x8) 0 = ROMless MM = QFN-S (6x6) 1 = 1K to 6K 2 = 7K to 12K 3 = 13K to 24K 4 = 25K to 48K Temperature 5 = 49K to 96K I = Industrial -40°C to +85°C 6 = 97K to 192K E = Extended High Temp -40°C to +125°C 7 = 193K to 384K 8 = 385K to 768K Speed 9 = 769K and Up 20 = 20 MIPS 30 = 30 MIPS Device ID T = Tape and Reel A,B,C… = Revision Level Example: dsPIC30F3013AT-30I/SP = 30 MIPS, Industrial temp., SPDIP package, Rev. A © 2010 Microchip Technology Inc. DS70139G-page 209

Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office Asia Pacific Office India - Bangalore Austria - Wels 2355 West Chandler Blvd. Suites 3707-14, 37th Floor Tel: 91-80-3090-4444 Tel: 43-7242-2244-39 Chandler, AZ 85224-6199 Tower 6, The Gateway Fax: 91-80-3090-4123 Fax: 43-7242-2244-393 Tel: 480-792-7200 Harbour City, Kowloon India - New Delhi Denmark - Copenhagen Fax: 480-792-7277 Hong Kong Tel: 91-11-4160-8631 Tel: 45-4450-2828 Technical Support: Tel: 852-2401-1200 Fax: 91-11-4160-8632 Fax: 45-4485-2829 http://support.microchip.com Web Address: Fax: 852-2401-3431 India - Pune France - Paris www.microchip.com Australia - Sydney Tel: 91-20-2566-1512 Tel: 33-1-69-53-63-20 Tel: 61-2-9868-6733 Fax: 33-1-69-30-90-79 Fax: 91-20-2566-1513 Atlanta Fax: 61-2-9868-6755 Germany - Munich Duluth, GA Japan - Yokohama China - Beijing Tel: 49-89-627-144-0 Tel: 678-957-9614 Tel: 81-45-471- 6166 Tel: 86-10-8528-2100 Fax: 49-89-627-144-44 Fax: 678-957-1455 Fax: 81-45-471-6122 Fax: 86-10-8528-2104 Italy - Milan Boston Korea - Daegu Westborough, MA China - Chengdu Tel: 82-53-744-4301 Tel: 39-0331-742611 Tel: 774-760-0087 Tel: 86-28-8665-5511 Fax: 82-53-744-4302 Fax: 39-0331-466781 Fax: 774-760-0088 Fax: 86-28-8665-7889 Korea - Seoul Netherlands - Drunen Chicago China - Chongqing Tel: 82-2-554-7200 Tel: 31-416-690399 Itasca, IL Tel: 86-23-8980-9588 Fax: 82-2-558-5932 or Fax: 31-416-690340 Tel: 630-285-0071 Fax: 86-23-8980-9500 82-2-558-5934 Spain - Madrid Fax: 630-285-0075 China - Hong Kong SAR Malaysia - Kuala Lumpur Tel: 34-91-708-08-90 Cleveland Tel: 852-2401-1200 Tel: 60-3-6201-9857 Fax: 34-91-708-08-91 Independence, OH Fax: 852-2401-3431 Fax: 60-3-6201-9859 UK - Wokingham Tel: 216-447-0464 China - Nanjing Malaysia - Penang Tel: 44-118-921-5869 Fax: 216-447-0643 Tel: 86-25-8473-2460 Tel: 60-4-227-8870 Fax: 44-118-921-5820 Dallas Fax: 86-25-8473-2470 Fax: 60-4-227-4068 Addison, TX China - Qingdao Philippines - Manila Tel: 972-818-7423 Tel: 86-532-8502-7355 Tel: 63-2-634-9065 Fax: 972-818-2924 Fax: 86-532-8502-7205 Fax: 63-2-634-9069 Detroit China - Shanghai Singapore Farmington Hills, MI Tel: 86-21-5407-5533 Tel: 65-6334-8870 Tel: 248-538-2250 Fax: 86-21-5407-5066 Fax: 65-6334-8850 Fax: 248-538-2260 China - Shenyang Taiwan - Hsin Chu Kokomo Tel: 86-24-2334-2829 Tel: 886-3-6578-300 Kokomo, IN Fax: 86-24-2334-2393 Fax: 886-3-6578-370 Tel: 765-864-8360 Fax: 765-864-8387 China - Shenzhen Taiwan - Kaohsiung Tel: 86-755-8203-2660 Tel: 886-7-213-7830 Los Angeles Fax: 86-755-8203-1760 Fax: 886-7-330-9305 Mission Viejo, CA Tel: 949-462-9523 China - Wuhan Taiwan - Taipei Fax: 949-462-9608 Tel: 86-27-5980-5300 Tel: 886-2-2500-6610 Fax: 86-27-5980-5118 Fax: 886-2-2508-0102 Santa Clara Santa Clara, CA China - Xian Thailand - Bangkok Tel: 408-961-6444 Tel: 86-29-8833-7252 Tel: 66-2-694-1351 Fax: 408-961-6445 Fax: 86-29-8833-7256 Fax: 66-2-694-1350 Toronto China - Xiamen Mississauga, Ontario, Tel: 86-592-2388138 Canada Fax: 86-592-2388130 Tel: 905-673-0699 China - Zhuhai Fax: 905-673-6509 Tel: 86-756-3210040 Fax: 86-756-3210049 08/04/10 DS70139G-page 210 © 2010 Microchip Technology Inc.

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: M icrochip: DSPIC30F3012-30I/ML DSPIC30F3012-30I/SO DSPIC30F3012-30I/P DSPIC30F3013-30I/ML DSPIC30F3013- 30I/SP DSPIC30F3013-30I/SO DSPIC30F2011-20E/ML DSPIC30F2011-20E/P DSPIC30F2011-20E/SO DSPIC30F2011-20I/ML DSPIC30F2011-20I/P DSPIC30F2011-20I/SO DSPIC30F2011-30I/ML DSPIC30F2011-30I/P DSPIC30F2011-30I/SO DSPIC30F2011T-20E/ML DSPIC30F2011T-20E/SO DSPIC30F2011T-30I/ML DSPIC30F2011T-30I/SO DSPIC30F2012-20E/ML DSPIC30F2012-20E/SO DSPIC30F2012-20E/SP DSPIC30F2012- 20I/ML DSPIC30F2012-20I/SO DSPIC30F2012-20I/SP DSPIC30F2012-30I/ML DSPIC30F2012-30I/SO DSPIC30F2012-30I/SP DSPIC30F2012T-20E/ML DSPIC30F2012T-20E/SO DSPIC30F2012T-30I/ML DSPIC30F2012T-30I/SO DSPIC30F3012-20E/ML DSPIC30F3012-20E/P DSPIC30F3012-20E/SO DSPIC30F3012- 20I/ML DSPIC30F3012-20I/P DSPIC30F3012-20I/SO DSPIC30F3012T-20E/ML DSPIC30F3012T-20E/SO DSPIC30F3012T-30I/ML DSPIC30F3012T-30I/SO DSPIC30F3013-20E/ML DSPIC30F3013-20E/SO DSPIC30F3013- 20E/SP DSPIC30F3013-20I/ML DSPIC30F3013-20I/SO DSPIC30F3013-20I/SP DSPIC30F3013T-20E/ML DSPIC30F3013T-20E/SO DSPIC30F3013T-20I/ML DSPIC30F3013T-30I/ML DSPIC30F3013T-30I/SO DSPIC30F3012-30I/ML DSPIC30F3012-30I/SO DSPIC30F3012-30I/P DSPIC30F3013-30I/ML DSPIC30F3013-30I/SP DSPIC30F3013-30I/SO DSPIC30F2012T-20I/ML