图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: BA10358FV-E2
  • 制造商: ROHM Semiconductor
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

BA10358FV-E2产品简介:

ICGOO电子元器件商城为您提供BA10358FV-E2由ROHM Semiconductor设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 BA10358FV-E2价格参考。ROHM SemiconductorBA10358FV-E2封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 2 电路 8-SSOPB。您可以下载BA10358FV-E2参考资料、Datasheet数据手册功能说明书,资料中有BA10358FV-E2 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)半导体

描述

IC OPAMP GP 500KHZ 8SSOP运算放大器 - 运放 OPAMP DUAL 32V

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Rohm Semiconductor

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,运算放大器 - 运放,ROHM Semiconductor BA10358FV-E2-

数据手册

点击此处下载产品Datasheet点击此处下载产品Datasheet

产品型号

BA10358FV-E2

产品目录页面

点击此处下载产品Datasheet

产品种类

Amplifiers - Op Amps, Buffer Amps

供应商器件封装

8-SSOP

共模抑制比—最小值

65 dB

关闭

No Shutdown

其它名称

BA10358FV-E2CT

包装

剪切带 (CT)

压摆率

0.2 V/µs

双重电源电压

+/- 3 V, +/- 5 V, +/- 9 V

商标

ROHM Semiconductor

增益带宽生成

0.5 MHz

增益带宽积

500kHz

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

8-LSSOP(0.173",4.40mm 宽)

封装/箱体

SSOP-8

工作温度

-40°C ~ 85°C

工作电源电压

3 V to 32 V, +/- 1.5 V to +/- 16 V

工厂包装数量

2500

技术

Bipolar

放大器类型

通用

最大双重电源电压

+/- 16 V

最大工作温度

+ 85 C

最小双重电源电压

+/- 1.5 V

最小工作温度

- 40 C

标准包装

1

电压-电源,单/双 (±)

3 V ~ 32 V, ±1.5 V ~ 16 V

电压-输入失调

2mV

电流-电源

700µA

电流-输入偏置

45nA

电流-输出/通道

20mA

电源电流

0.7 mA

电路数

2

转换速度

0.2 V/us

输入偏压电流—最大

250 nA

输入补偿电压

7 mV

输出电流

20 mA

输出类型

-

通道数量

2 Channel

推荐商品

型号:LM358D

品牌:STMicroelectronics

产品名称:集成电路(IC)

获取报价

型号:LMV931IDCKRE4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:AD847ARZ-REEL7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:LMC6464BIN/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT1211IS8#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LTC6242HVCDHC#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:TLC071CDGNR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LMV751M5/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
BA10358FV-E2 相关产品

AD8506ARMZ-R7

品牌:Analog Devices Inc.

价格:

TLV2404IDRG4

品牌:Texas Instruments

价格:

AD8099ACPZ-REEL7

品牌:Analog Devices Inc.

价格:

LT1813IDD#TRPBF

品牌:Linear Technology/Analog Devices

价格:

TLE2081CP

品牌:Texas Instruments

价格:¥7.56-¥17.11

ADA4692-4ARUZ-RL

品牌:Analog Devices Inc.

价格:

LT6011IMS8#PBF

品牌:Linear Technology/Analog Devices

价格:

MCP6024-E/ST

品牌:Microchip Technology

价格:

PDF Datasheet 数据手册内容提取

Datasheet Operational Amplifiers Ground Sense Operational Amplifiers BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx General Description Key Specification General purpose BA10358 / BA10324A and high  Wide Operating Supply Voltage (single supply): reliability BA2904 / BA2902 integrate two or four BA10358/BA10324A +3.0V to +32.0V independent Op-Amps on a single chip and have some BA2904/BA2902 +3.0V to +36.0V features of high-gain, low power consumption, and  Wide Temperature Range: wide operating voltage range of 3V to 36V (single BA10358/ BA10324A -40°C~+85°C power supply ). BA2904S/ BA2902S -40°C~+105°C BA2904W have low input offset voltage(2mV max.). BA2904/ BA2902 -40°C~+125°C BA2904W -40°C~+125°C Features  Input Offset Voltage:  Operable with a single power supply BA10358/ BA10324A 7mV (Max)  Wide operating supply voltage range BA2904S/ BA2902S 7mV (Max)  Input and output are operable GND sense BA2904/ BA2902 7mV (Max)  Low supply current BA2904W 2mV (Max)  High open loop voltage gain  Low Input Bias Current:  Wide temperature range BA10358 45nA (Typ) BA10324A 20nA (Typ) Application BA2904S/ BA2902S 20nA (Typ)  Current sense application BA2904/ BA2902 20nA (Typ)  Buffer application amplifier BA2904W 20nA (Typ)  Active filter  Consumer electronics Packages W(Typ) x D(Typ) x H(Max) SOP8 5.00mm x 6.20mm x 1.71mm SOP-J8 4.90mm x 6.00mm x 1.65mm SSOP-B8 3.00mm x 6.40mm x 1.35mm MSOP8 2.90mm x 4.00mm x 0.90mm SOP14 8.70mm x 6.20mm x 1.71mm SOP-J14 8.65mm x 6.00mm x 1.65mm SSOP-B14 5.00mm x 6.40mm x 1.35mm Selection Guide Maximum operating temperature Output Current Input Offset +85°C +105°C +125°C Source/Sink Voltage BA10358F Normal Dual 20mA/20mA 7mV BA10358FV BA10358FJ BA10324AF Quad 35mA/20mA 7mV BA10324AFV BA10324AFJ BA2904SF BA2904F High-reliability Dual 30mA/20mA 7mV BA2904SFV BA2904FV BA2904SFVM BA2904FVM 2mV BA2904WF BA2904WFV Quad 30mA/20mA 7mV BA2902SF BA2902F BA2902SFV BA2902FV ○Product structure:Silicon monolithic integrated circuit ○This product is not designed protection against radioactive rays. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 1/52 23.Jan.2014 Rev.003 TSZ22111・14・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Simplified schematic VCC - IN OUT + IN VEE Figure 1. Simplified schematic(one channel only) Pin Configuration BA10358F,BA2904SF,BA2904F,BA2904WF :SOP8 BA10358FV,BA2904SFV,BA2904FV,BA2904WFV :SSOP-B8 BA2904SFVM,BA2904FVM :MSOP8 BA10358FJ :SOP-J8 Pin No. Pin Name 1 OUT1 OUT1 1 8 VCC 2 -IN1 3 +IN1 -IN1 2 CH1 7 OUT2 - + 4 VEE +IN1 3 6 -IN2 5 +IN2 CH2 + - 6 -IN2 VEE 4 5 +IN2 7 OUT2 8 VCC BA10324AF,BA2902SF,BA2902F :SOP14 BA10324AFV,BA2902SFV,BA2902FV :SSOP-B14 BA10324AFJ :SOP-J14 Pin No. Pin Name 1 OUT1 OUT1 1 14 OUT4 2 -IN1 -IN1 2 CH1 CH4 13 -IN4 3 +IN1 - + + - 4 VCC +IN1 3 12 +IN4 5 +IN2 VCC 4 11 VEE 6 -IN2 +IN2 5 10 +IN3 7 OUT2 - + + - -IN2 6 CH2 CH3 9 -IN3 8 OUT3 9 -IN3 OUT2 7 8 OUT3 10 +IN3 11 VEE 12 +IN4 13 -IN4 14 OUT4 www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 2/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Package SOP8 SSOP-B8 MSOP8 SOP-J8 SOP14 SSOP-B14 SOP-J14 BA10358F BA10358FV BA2904SFVM BA10358FJ BA10324AF BA10324AFV BA10324AFJ BA2904SF BA2904SFV BA2904FVM BA2902SF BA2902SFV BA2904F BA2904FV BA2902F BA2902FV BA2904WF BA2904WFV Ordering Information B A x x x x x x x x - x x Part Number. Package Packaging and forming specification BA10358xx F : SOP8 E2: Embossed tape and reel BA10324Axx SOP14 (SOP8/SOP14/SSOP-B8/ BA2904xxx FV : SSOP-B8 SSOP-B14/SOP-J8/SOP-J14) BA2904Sxxx SSOP-B14 TR: Embossed tape and reel BA2904Wxx FVM : MSOP8 (MSOP8) BA2902xx FJ : SOP-J8 BA2902Sxx SOP-J14 Line-up Input Offset Supply Orderable Topr Voltage Current Package Part Number (Max) (Typ) SOP8 Reel of 2500 BA10358F-E2 0.5mA SOP-J8 Reel of 2500 BA10358FJ-E2 SSOP-B8 Reel of 2500 BA10358FV-E2 -40°C to +85°C SOP14 Reel of 2500 BA10324AF-E2 0.6mA SOP-J14 Reel of 2500 BA10324AFJ-E2 SSOP-B14 Reel of 2500 BA10324AFV-E2 SOP8 Reel of 2500 BA2904SF-E2 0.5mA SSOP-B8 Reel of 2500 BA2904SFV-E2 7mV -40°C to +105°C MSOP8 Reel of 3000 BA2904SFVM-TR SOP14 Reel of 2500 BA2902SF-E2 0.7mA SSOP-B14 Reel of 2500 BA2902SFV-E2 SOP8 Reel of 2500 BA2904F-E2 0.5mA SSOP-B8 Reel of 2500 BA2904FV-E2 MSOP8 Reel of 3000 BA2904FVM-TR -40°C to +125°C SOP14 Reel of 2500 BA2902F-E2 0.7mA SSOP-B14 Reel of 2500 BA2902FV-E2 SOP8 Reel of 2500 BA2904WF-E2 2mV 0.5mA SSOP-B8 Reel of 2500 BA2904WFV-E2 www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 3/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Absolute Maximum Ratings (T =25°C) A ○BA10358, BA10324A Parameter Symbol Ratings Unit Supply Voltage VCC-VEE +32 V SOP8 620(Note 1,7) SOP-J8 540(Note 2,7) SSOP-B8 500(Note 3,7) Power dissipation P mW D SOP14 450(Note 4,7) SOP-J14 820(Note 5,7) SSOP-B14 700(Note 6,7) Differential Input Voltage(Note 8) VID +32 V Input Common-mode Voltage Range VICM (VEE-0.3) to (VEE+32) V Input Current(Note 9) I -10 mA I Wide Operating Supply Voltage Vopr +3.0 to +32.0 V Operating Temperature Range Topr -40 to +85 °C Storage Temperature Range Tstg -55 to +125 °C Maximum Junction Temperature TJmax +125 °C Note: Absolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (Note 1) To use at temperature above T=25°C reduce 6.2mW. A (Note 2) To use at temperature above T=25°C reduce 5.4mW A (Note 3) To use at temperature above T=25°C reduce 5.0mW. A (Note 4) To use at temperature above T=25°C reduce 4.5mW. A (Note 5) To use at temperature above T=25°C reduce 8.2mW A (Note 6) To use at temperature above T=25°C reduce 7.0mW. A (Note 7) Mounted on a FR4 glass epoxy PCB 70mm×70mm×1.6mm (Copper foil area less than 3%). (Note 8) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE. (Note 9) An excessive input current will flow when input voltages of less than VEE-0.6V are applied. The input current can be set to less than the rated current by adding a limiting resistor. Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 4/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Absolute Maximum Ratings (T =25°C) A ○BA2904, BA2902 Ratings Parameter Symbol BA2904S BA2904, BA2904W Unit BA2902S BA2902 Supply Voltage VCC-VEE +36 V SOP8 775(Note 10,15) SSOP-B8 625(Note 11,15) Power dissipation P MSOP8 600(Note 12,15) mW D SOP14 560(Note 13,15) SSOP-B14 870(Note 14,15) Differential Input Voltage(Note 16) VID +36 V Input Common-mode Voltage Range VICM (VEE-0.3) to (VEE+36) V Input Current(Note 17) I -10 mA I Wide Operating Supply Voltage Vopr +3.0 to +36.0 V Operating Temperature Range Topr -40 to +105 -40 to +125 °C Storage Temperature Range Tstg -55 to +150 °C Maximum Junction Temperature TJmax +150 °C (Note 10) To use at temperature above T=25°C reduce 6.2mW. A (Note 11) To use at temperature above T =25°C reduce 5.0mW. A (Note 12) To use at temperature above T=25°C reduce 4.8mW. A (Note 13) To use at temperature above T=25°C reduce 4.5mW. A (Note 14) To use at temperature above T=25°C reduce 7.0mW. A (Note 15) Mounted on a FR4 glass epoxy PCB 70mm×70mm×1.6mm (Copper foil area less than 3%). (Note 16) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE. (Note 17) An excessive input current will flow when input voltages of less than VEE-0.6V are applied. The input current can be set to less than the rated current by adding a limiting resistor. Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 5/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Electrical Characteristics ○BA10358 (Unless otherwise specified VCC=+5V, VEE=0V, T =25°C) A Limits Parameter Symbol Unit Condition Min. Typ. Max. Input Offset Voltage (Note 18) V - 2 7 mV OUT=1.4V IO Input Offset Current (Note 18) I - 5 50 nA OUT=1.4V IO Input Bias Current (Note 19) I - 45 250 nA OUT=1.4V B Supply Current I - 0.5 1.2 mA RL=∞, All Op-Amps CC Maximum Output Voltage(High) V 3.5 - - V RL=2kΩ OH Maximum Output Voltage(Low) V - - 250 mV RL=∞, All Op-Amps OL 25 100 - V/mV RL≧2kΩ, VCC=15V Large Signal Voltage Gain A V OUT=1.4 to 11.4V 88 100 - dB (VCC-VEE)=5V Input Common-mode Voltage Range V 0 - VCC-1.5 V ICM OUT=VEE+1.4V Common-mode Rejection Ratio CMRR 65 80 - dB OUT=1.4V Power Supply Rejection Ratio PSRR 65 100 - dB VCC=5 to 30V VIN+=1V, VIN-=0V Output Source Current I 10 20 - mA OUT=0V, SOURCE 1CH is short circuit VIN+=0V, VIN-=1V Output Sink Current I 10 20 - mA OUT=5V, SINK 1CH is short circuit Channel Separation CS - 120 - dB f=1kHz, input referred VCC=15V, Av=0dB Slew Rate SR - 0.2 - V/μs RL=2kΩ, CL=100pF VCC=30V, RL=2kΩ Gain Band Width GBW - 0.5 - MHz CL=100pF (Note 18) Absolute value (Note 19) Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 6/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA10324A (Unless otherwise specified VCC=+5V, VEE=0V, T =25°C) A Limits Parameter Symbol Unit Condition Min. Typ. Max. Input Offset Voltage (Note 20) V - 2 7 mV OUT=1.4V IO Input Offset Current (Note 20) I - 5 50 nA OUT=1.4V IO Input Bias Current (Note 21) I - 20 250 nA OUT=1.4V B Supply Current I - 0.6 2 mA RL=∞, All Op-Amps CC Maximum Output Voltage(High) V 3.5 - - V RL=2kΩ OH Maximum Output Voltage(Low) V - - 250 mV RL=∞, All Op-Amps OL 25 100 - V/mV RL≧2kΩ, VCC=15V Large Signal Voltage Gain A V OUT=1.4 to 11.4V 88 100 - dB (VCC-VEE)=5V Input Common-mode Voltage range V 0 - VCC-1.5 V ICM OUT=VEE+1.4V Common-mode Rejection Ratio CMRR 65 75 - dB OUT=1.4V Power Supply Rejection Ratio PSRR 65 100 - dB VCC=5 to 30V VIN+=1V, VIN-=0V Output Source Current I 20 35 - mA OUT=0V, SOURCE 1CH is short circuit VIN+=0V, VIN-=1V Output Sink Current I 10 20 - mA OUT=5V, SINK 1CH is short circuit Channel Separation CS - 120 - dB f=1kHz, input referred VCC=15V, Av=0dB Slew Rate SR - 0.2 - V/μs RL=2kΩ, CL=100pF VCC=30V, RL=2kΩ Gain Band Width GBW - 0.5 - MHz CL=100pF (Note 20) Absolute value (Note 21) Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 7/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA2904, BA2904S (Unless otherwise specified VCC=+5V, VEE=0V) Temperature Limits Parameter Symbol Unit Condition Range Min. Typ. Max. 25°C - 2 7 OUT=1.4V Input Offset Voltage (Note 22,23) V mV IO Full range - - 10 VCC=5 to 30V, OUT=1.4V Input Offset Voltage Drift △V /△T - - ±7 - μV/°C OUT=1.4V IO 25°C - 2 50 Input Offset Current (Note 22,23) I nA OUT=1.4V IO Full range - - 200 Input Offset Current Drift △I /△T - - ±10 - pA/°C OUT=1.4V IO 25°C - 20 250 Input Bias Current (Note 22,23) I nA OUT=1.4V B Full range - - 250 25°C - 0.5 1.2 Supply Current (Note 23) I mA RL=∞, All Op-Amps CC Full range - - 2 25°C 3.5 - - RL=2kΩ Maximum Output Voltage(High) (Note 23) V V OH Full range 27 28 - VCC=30V, RL=10kΩ Maximum Output Voltage(Low) (Note 23) V Full range - 5 20 mV RL=∞, All Op-Amps OL 25 100 - V/mV RL≧2kΩ, VCC=15V Large Signal Voltage Gain A 25°C V OUT=1.4 to 11.4V 88 100 - dB Input Common-mode (VCC-VEE)=5V V 25°C 0 - VCC-1.5 V Voltage Range ICM OUT=VEE+1.4V Common-mode Rejection Ratio CMRR 25°C 50 80 - dB OUT=1.4V Power Supply Rejection Ratio PSRR 25°C 65 100 - dB VCC=5 to 30V Output Source Current (Note 23,24) I 25°C 20 30 - mA VIN+=1V, VIN-=0V SOURCE Full range 10 - - OUT=0V, 1CH is short circuit 25°C 10 20 - VIN+=0V, VIN-=1V mA Full range 2 - - OUT=5V, 1CH is short circuit Output Sink Current (Note 23,24) I SINK VIN+=0V, VIN-=1V 25°C 12 40 - μA OUT=200mV Channel Separation CS 25°C - 120 - dB f=1kHz, input referred VCC=15V, Av=0dB Slew rate SR 25°C - 0.2 - V/μs RL=2kΩ, CL=100pF VCC=30V, RL=2kΩ Gain Band Width GBW 25°C - 0.5 - MHz CL=100pF VCC=15V, VEE=-15V Input referred noise voltage VN 25°C - 40 - nV/ Hz RS=100Ω, Vi=0V, f=1kHz (Note 22) Absolute value (Note 23) BA2904S :Full range -40 to +105°C BA2904 :Full range -40 to +125°C (Note 24) Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 8/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA2904W (Unless otherwise specified VCC=+5V, VEE=0V) Temperature Limits Parameter Symbol Unit Condition Range Min. Typ. Max. Input Offset Voltage (Note 25) V 25°C - 0.5 2 mV OUT=1.4V IO Input Offset Voltage Drift △V /△T - - ±7 - μV/°C OUT=1.4V IO Input Offset Current (Note 25) I 25°C - 2 50 nA OUT=1.4V IO Input Offset Current Drift △I /△T - - ±10 - pA/°C OUT=1.4V IO 25°C - 20 250 Input Bias Current (Note 25) I nA OUT=1.4V B Full range - - 250 25°C - 0.5 1.2 Supply Current I mA RL=∞, All Op-Amps CC Full range - - 1.2 25°C 3.5 - - RL=2kΩ Maximum Output Voltage(High) V V OH Full range 27 28 - VCC=30V, RL=10kΩ Maximum Output Voltage(Low) V Full range - 5 20 mV RL=∞, All Op-Amps OL 25 100 - V/mV RL≧2kΩ, VCC=15V Large Signal Voltage Gain A 25°C V OUT=1.4 to 11.4V 88 100 - dB Input Common-mode (VCC-VEE)=5V V 25°C 0 - VCC-1.5 V Voltage Range ICM OUT=VEE+1.4V Common-mode Rejection Ratio CMRR 25°C 50 80 - dB OUT=1.4V Power Supply Rejection Ratio PSRR 25°C 65 100 - dB VCC=5 to 30V Output Source Current (Note 26) I 25°C 20 30 - mA VIN+=1V, VIN-=0V SOURCE Full range 10 - - OUT=0V, 1CH is short circuit 25°C 10 20 - VIN+=0V, VIN-=1V mA Output Sink Current (Note 26) I Full range 2 - - OUT=5V, 1CH is short circuit SINK VIN+=0V, VIN-=1V 25°C 12 40 - μA OUT=200mV Channel Separation CS 25°C - 120 - dB f=1kHz, input referred VCC=15V, Av=0dB Slew rate SR 25°C - 0.2 - V/μs RL=2kΩ, CL=100pF VCC=30V, RL=2kΩ Gain Band Width GBW 25°C - 0.5 - MHz CL=100pF VCC=15V, VEE=-15V Input referred noise voltage VN 25°C - 40 - nV/ Hz RS=100Ω, Vi=0V, f=1kHz (Note 25) Absolute value (Note 26) Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 9/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA2902, BA2902S (Unless otherwise specified VCC=+5V, VEE=0V) Temperature Limits Parameter Symbol Unit Condition Range Min. Typ. Max. 25°C - 2 7 OUT=1.4V Input Offset Voltage (Note 27,28) V mV IO Full range - - 10 VCC=5 to 30V, OUT=1.4V Input Offset Voltage Drift △V /△T - - ±7 - μV/°C OUT=1.4V IO 25°C - 2 50 Input Offset Current (Note 27,28) I nA OUT=1.4V IO Full range - - 200 Input Offset Current Drift △I /△T - - ±10 - pA/°C OUT=1.4V IO 25°C - 20 250 Input Bias Current (Note 27,28) I nA OUT=1.4V B Full range - - 250 25°C - 0.7 2 Supply Current (Note 28) I mA RL=∞, All Op-Amps CC Full range - - 3 25°C 3.5 - - RL=2kΩ Maximum Output Voltage(High) (Note 28) V V OH Full range 27 28 - VCC=30V, RL=10kΩ Maximum Output Voltage(Low) (Note 28) V Full range - 5 20 mV RL=∞, All Op-Amps OL 25 100 - V/mV RL≧2kΩ, VCC=15V Large Signal Voltage Gain A 25°C V OUT=1.4 to 11.4V 88 100 - dB (VCC-VEE)=5V Input Common-mode Voltage Range V 25°C 0 - VCC-1.5 V ICM OUT=VEE+1.4V Common-mode Rejection Ratio CMRR 25°C 50 80 - dB OUT=1.4V Power Supply Rejection Ratio PSRR 25°C 65 100 - dB VCC=5 to 30V 25°C 20 30 - VIN+=1V, VIN-=0V Output Source Current (Note 28,29) I mA OUT=0V SOURCE Full range 10 - - 1CH is short circuit 25°C 10 20 - VIN+=0V, VIN-=1V mA Full range 2 - - OUT=5V, 1CH is short circuit Output Sink Current (Note 28,29) I SINK VIN+=0V, VIN-=1V 25°C 12 40 - μA OUT=200mV Channel Separation CS 25°C - 120 - dB f=1kHz, input referred VCC=15V, Av=0dB Slew rate SR 25°C - 0.2 - V/μs RL=2kΩ, CL=100pF VCC=30V, RL=2kΩ Gain Band Width GBW 25°C - 0.5 - MHz CL=100p VCC=15V, VEE=-15V Input referred noise voltage VN 25°C - 40 - nV/ Hz RS=100Ω, Vi=0V, f=1kHz (Note 27) Absolute value (Note 28) BA2902S :Full range -40 to +105°C ,BA2902 :Full range -40 to +125°C (Note 29) Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 10/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Description of Electrical Characteristics Described below are descriptions of the relevant electrical terms used in this datasheet. Items and symbols used are also shown. Note that item name and symbol and their meaning may differ from those on another manufacturer’s document or general document. 1. Absolute maximum ratings Absolute maximum rating items indicate the condition which must not be exceeded. Application of voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (1) Supply Voltage (VCC/VEE) Indicates the maximum voltage that can be applied between the positive power supply terminal and negative power supply terminal without deterioration or destruction of characteristics of internal circuit. (2) Differential Input Voltage (V ) ID Indicates the maximum voltage that can be applied between non-inverting and inverting terminals without damaging the IC. (3) Input Common-mode Voltage Range (V ) ICM Indicates the maximum voltage that can be applied to the non-inverting and inverting terminals without deterioration or destruction of electrical characteristics. Input common-mode voltage range of the maximum ratings does not assure normal operation of IC. For normal operation, use the IC within the input common-mode voltage range characteristics. (4) Power dissipation (P ) D Indicates the power that can be consumed by the IC when mounted on a specific board at the ambient temperature 25℃ (normal temperature). As for package product, Pd is determined by the temperature that can be permitted by the IC in the package (maximum junction temperature) and the thermal resistance of the package. 2. Electrical characteristics (1) Input Offset Voltage (V ) IO Indicates the voltage difference between non-inverting terminal and inverting terminals. It can be translated into the input voltage difference required for setting the output voltage at 0 V. (2) Input Offset Voltage drift (△V /△T) IO Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation. (3) Input Offset Current (I ) IO Indicates the difference of input bias current between the non-inverting and inverting terminals. (4) Input Offset Current Drift (△Iio/△T) Signifies the ratio of the input offset current fluctuation to the ambient temperature fluctuation. (4) Input Bias Current (I ) B Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias currents at the non-inverting and inverting terminals. (5) Supply Current (ICC) Indicates the current that flows within the IC under specified no-load conditions. (7) Maximum Output Voltage(High) / Maximum Output Voltage(Low) (VOH/VOL) Indicates the voltage range of the output under specified load condition. It is typically divided into maximum output voltage High and low. Maximum output voltage high indicates the upper limit of output voltage. Maximum output voltage low indicates the lower limit. (8) Large Signal Voltage Gain (Av) Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal and inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage. Av = (Output voltage) / (Differential Input voltage) (9) Input Common-mode Voltage Range (V ) ICM Indicates the input voltage range where IC normally operates. (10) Common-mode Rejection Ratio (CMRR) Indicates the ratio of fluctuation of input offset voltage when the input common mode voltage is changed. It is normally the fluctuation of DC. CMRR = (Change of Input common-mode voltage)/(Input offset fluctuation) www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 11/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet (11) Power Supply Rejection Ratio (PSRR) Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed. It is normally the fluctuation of DC. PSRR= (Change of power supply voltage)/(Input offset fluctuation) (12) Output Source Current/ Output Sink Current (I / I ) source sink The maximum current that can be output from the IC under specific output conditions. The output source current indicates the current flowing out from the IC, and the output sink current indicates the current flowing into the IC. indicates the current flowing out from the IC, and the output sink current indicates the current flowing into the IC. (13) Channel Separation (CS) Indicates the fluctuation in the output voltage of the driven channel with reference to the change of output voltage of the channel which is not driven. (14) Slew Rate (SR) Indicates the ratio of the change in output voltage with time when a step input signal is applied. (15) Gain Bandwidth (GBW) The product of the open-loop voltage gain and the frequency at which the voltage gain decreases 6dB/octave. (16) Input Referred Noise Voltage (V ) N Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in series with input terminal. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 12/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Typical Performance Curves ○BA10358 1000 1.0 . W] 800 A] 0.8 m m N [ BA10358F T [ 25℃ N ATIO 600 BA10358FJ RRE 0.6 P SI BA10358FV CU DIS 400 Y 0.4 R PL -40℃ E P 85℃ W U 0.2 O 200 S P 0.0 0 85 0 5 10 15 20 25 30 35 0 25 50 75 100 125 AMBIENT TEMPERATURE [℃] . SUPPLY VOLTAGE [V] Figure 2. Figure 3. Derating Curve Supply Current – Supply Voltage 1.0 35 ] V E [ 30 A] 0.8 G m A [ T 25 NT 32V OL 85℃ E 0.6 V R T 20 R U U P C T 15 Y 0.4 OU PL M 10 25℃ P U -40℃ U 0.2 M S 5V 3V XI 5 A M 0.0 0 -50 -25 0 25 50 75 100 0 5 10 15 20 25 30 35 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 4. Figure 5. Supply Current – Ambient Temperature Maximum Output Voltage - Supply Voltage (RL=10kΩ) (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 13/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA10358 5 40 V] A] E [ [m G T A 4 N LT RE 30 -40℃ O R V 3 U T C U E P C 20 T R OU 2 OU 25℃ M S U T 10 85℃ M 1 U XI TP A U M O 0 0 -50 -25 0 25 50 75 100 0 1 2 3 4 5 AMBIENT TEMPERATURE [℃] OUTPUT VOLTAGE [V] Figure 6. Figure 7. Maximum Output Voltage - Ambient Temperature Output Source Current - Output Voltage (VCC=5V, RL=2kΩ) (VCC=5V) 40 100 A] ] m A m [ NT T [ 10 E 30 N R E CUR 15V URR 1 85℃ E 20 C C K R N 25℃ U SI 0.1 O 5V T S UT 10 3V TPU 0.01 -40℃ P U UT O O 0 0.001 -50 -25 0 25 50 75 100 0 0.4 0.8 1.2 1.6 2 AMBIENT TEMPERATURE [℃] OUTPUT VOLTAGE [V] Figure 8. Figure 9. Output Source Current - Ambient Temperature Output Sink Current - Output Voltage (OUT=0V) (VCC=5V) (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 14/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA10358 40 60 A] A] μ m T [ 50 T [ 30 EN N 15V R E R 40 R R U U C 25℃ C 20 K 30 NK SIN SI L 5V E 20 T V U 10 3V E -40℃ P L 85℃ T - U W 10 O O L 0 0 -50 -25 0 25 50 75 100 0 5 10 15 20 25 30 35 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 11. Figure 10. Low Level Sink Current - Supply Voltage Output Sink Current - Ambient Temperature (OUT=0.2V) (OUT=VCC) 60 8 A] V] NT [μ 50 E [m 6 E 32V G 4 RR 40 TA U L 2 O C -40℃ NK 30 5V ET V 0 SI S EL 20 FF -2 V O E T -4 W-L 10 3V PU 25℃ 85℃ O N -6 L I 0 -8 -50 -25 0 25 50 75 100 0 5 10 15 20 25 30 35 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 12. Figure 13. Low Level Sink Current - Ambient Temperature Input Offset Voltage - Supply Voltage (OUT=0.2V) (VICM=0V, OUT=1.4V) (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 15/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA10358 8 50 V] 6 m A] E [ [n 40 G 4 T A N T E L 2 R 30 VO UR 25℃ 0 C T E 3V S OFFS -2 5V T BIA 20 85℃ -4 U -40℃ UT P 10 P 32V N N -6 I I -8 0 -50 -25 0 25 50 75 100 0 5 10 15 20 25 30 35 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 14. Figure 15. Input Offset Voltage - Ambient Temperature Input Bias Current - Supply Voltage (VICM=0V, OUT=1.4V) (VICM=0V, OUT=1.4V) 50 50 nA] 40 A] 40 [ n NT T [ E 32V N 30 RR 30 RE U R C U 20 AS 20 5V S C UT BI T BIA 10 P 10 U IN 3V NP 0 I 0 -10 -50 -25 0 25 50 75 100 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] AMBIENT TEMPERATURE [℃] Figure 16. Figure 17. Input Bias Current - Ambient Temperature Input Bias Current - Ambient Temperature (V =0V, OUT=1.4V) (VCC=30V, V =28V, OUT=1.4V) ICM ICM (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 16/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA10358 8 10 V] . 6 A] m [n E [ 4 NT 5 G E A R T 2 R L T VO 0 -40℃ T CU 0 -40℃ 25℃ E 25℃ E FS -2 FS F F UT O -4 UT O -5 85℃ NP -6 85℃ NP I I -8 -10 -1 0 1 2 3 4 5 0 5 10 15 20 25 30 35 INPUT VOLTAGE [V] SUPPLY VOLTAGE [V] Figure 18. Figure 19. Input Offset Voltage - Common Mode Input Voltage Input Offset Current - Supply Voltage (VCC=5V) (V =0V, OUT=1.4V) ICM 10 B] 140 d A] N [ 130 T [n GAI -40℃ 25℃ N 5 E 120 E G R R A 110 T U 3V 5V L T C 0 VO 100 E L S A 90 FF N 85℃ G O T -5 32V SI 80 U E NP RG 70 I A -10 L 60 -50 -25 0 25 50 75 100 4 6 8 10 12 14 16 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 20. Figure 21. Input Offset Current - Ambient Temperature Large Signal Voltage Gain - Supply Voltage (VICM=0V, OUT=1.4V) (RL=2kΩ) (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 17/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA10358 ] B] 140 dB 140 N [d 130 TIO [ AI A 120 G R E 120 N G 5V O TA 110 CTI 100 OL E V 100 EJ -40℃ L R A 90 15V E 80 GN OD SI 80 M 25℃ 85℃ E N 60 G 70 O R M A M L 60 40 O -50 -25 0 25 50 75 100 C 0 5 10 15 20 25 30 35 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Figure 23. Figure 22. Common Mode Rejection Ratio Large Signal Voltage Gain - Ambient Temperature - Supply Voltage (RL=2kΩ) ] B dB] 140 O [d 140 TIO [ ATI 130 A 120 R R N 120 N O O TI TI 100 C 110 C E JE 32V EJ 100 E R R 80 Y DE PL 90 O P U 80 N M 60 3V 5V S R O E 70 M W M 40 O 60 CO -50 -25 0 25 50 75 100 P -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] AMBIENT TEMPERATURE [℃] Figure 25. Figure 24. Power Supply Rejection Ratio Common Mode Rejection Ratio - Ambient Temperature - Ambient Temperature (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 18/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA10324A 1000 2.0 W] . 800 BA10324AFJ A] 1.6 m m N [ T [ BA10324AFV N O 600 E 1.2 TI R A R P DISSI 400 BA10324AF Y CU 0.8 25℃ 85℃ R PL E P -40℃ OW 200 SU 0.4 P 0 0.0 85 0 5 10 15 20 25 30 35 0 25 50 75 100 125 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] . Figure 26. Figure 27. Derating Curve Supply Current - Supply Voltage 2.0 35 ] V [ E 30 ] G A 1.6 m A T NT [ OL 25 85℃ RE 1.2 32V T V 20 R U U P C T 15 0.8 U Y O 25℃ PL M 10 -40℃ P U U 0.4 M S 5V 3V XI 5 A M 0.0 0 -50 -25 0 25 50 75 100 0 5 10 15 20 25 30 35 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 28. Figure 29. Supply Current - Ambient Temperature Maximum Output Voltage - Supply Voltage (RL=10kΩ) (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 19/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA10324A 5 50 V] A] m [ -40℃ GE T [ A 4 N 40 T E L R O R V U T 3 C 30 U E P C 25℃ UT R M O 2 SOU 20 85℃ U T M 1 U 10 I P X T A U M O 0 0 -50 -25 0 25 50 75 100 0 1 2 3 4 5 AMBIENT TEMPERATURE [℃] OUTPUT VOLTAGE [V] Figure 30. Figure 31. Maximum Output Voltage - Ambient Output Source Current - Output Voltage Temperature (VCC=5V) (VCC=5V, RL=2kΩ) 50 100 ] A m A] NT [ 40 T [m 10 E 15V N R E R 5V R 85℃ U R C 30 U 1 C E C K R 3V N 25℃ U 20 SI 0.1 O T S U -40℃ T P U 10 T 0.01 P U T O U O 0 0.001 -50 -25 0 25 50 75 100 0 0.4 0.8 1.2 1.6 2 AMBIENT TEMPERATURE [℃] OUTPUT VOLTAGE [V] Figure 32. Figure 33. Output Source Current - Ambient Temperature Output Sink Current - Output Voltage (OUT=0V) (VCC=5V) (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 20/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA10324A 40 60 ] A A] μ 85℃ m 15V T [ 50 T [ 5V N N 30 E E R R R 40 R U U C C K 25℃ 20 N 30 K I N S SI 3V EL 20 -40℃ T V U 10 E P L T W- 10 U O O L 0 0 -50 -25 0 25 50 75 100 0 5 10 15 20 25 30 35 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 34. Figure 35. Output Sink Current - Ambient Temperature Low Level Sink Current - Supply Voltage (OUT=VCC) (OUT=0.2V) 60 8 A] V] μ m 6 NT [ 50 E [ E G 4 RR 40 32V TA 25℃ 85℃ U L 2 O C NK 30 ET V 0 SI S -40℃ EL 20 FF -2 V 5V 3V O E T -4 L U W- 10 P N -6 O L I 0 -8 -50 -25 0 25 50 75 100 0 5 10 15 20 25 30 35 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 36. Figure 37. Low Level Sink Current - Ambient Temperature Input Offset Voltage - Supply Voltage (OUT=0.2V) (VICM=0V, OUT=1.4V) (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 21/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA10324A 8 50 ] mV 6 A] AGE [ 4 32V NT [n 40 T E L 2 R O R 30 V U T 0 C 85℃ SE 5V 3V S 25℃ F -2 A 20 I F B O T T -4 U U P 10 P N -40℃ -6 N I I -8 0 -50 -25 0 25 50 75 100 0 5 10 15 20 25 30 35 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 39. Figure 38. Input Bias Current - Supply Voltage Input Offset Voltage - Ambient Temperature (V =0V, OUT=1.4V) (VICM=0V, OUT=1.4V) ICM 50 50 A] A] 40 T [n 40 T [n N E N 30 RR 30 RE U R 32V U C 20 C S A 20 S BI 5V IA 10 T B U T P 10 U N P 0 I 3V N I 0 -10 -50 -25 0 25 50 75 100 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] AMBIENT TEMPERATURE [℃] Figure 40. Figure 41. Input Bias Current - Ambient Temperature Input Bias Current - Ambient Temperature (VICM=0V, OUT=1.4V) (VCC=30V, VICM=28V, OUT=1.4V) (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 22/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA10324A 8 10 V] A] m 6 n E [ 4 -40℃ NT [ 5 G E A 25℃ R LT 2 R 25℃ 85℃ U O 85℃ C V ET 0 ET 0 FS -2 FS -40℃ F F O O T -4 T -5 U U P P N -6 N I I -8 -10 -1 0 1 2 3 4 5 0 5 10 15 20 25 30 35 INPUT VOLTAGE [V] SUPPLY VOLTAGE [V] Figure 42. Figure 43. Input Offset Voltage Input Offset Current - Supply Voltage - Common Mode Input Voltage (V =0V, OUT=1.4V) ICM (VCC=5V) 10 B] 140 d A] N [ 130 n I T [ GA N 5 120 RE GE -40℃ R 5V 32V A 110 U T C OL FFSET 0 3V NAL V 10900 25℃ 85℃ O G T -5 SI 80 U E P G 70 N I R -10 LA 60 -50 -25 0 25 50 75 100 4 6 8 10 12 14 16 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 44. Figure 45. Input Offset Current - Ambient Temperature Large Signal Voltage Gain - Supply Voltage (VICM=0V, OUT=1.4V) (RL=2kΩ) (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 23/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA10324A B] dB]140 O [d 140 N [130 TI AI A G120 N R 120 E O TAG110 15V CTI 100 L E O J V100 E -40℃ L R NA 90 5V DE 80 G O SI 80 M 25℃ 85℃ E N 60 G O R 70 M A M L 60 O 40 -50 -25 0 25 50 75 100 C 0 5 10 15 20 25 30 35 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 46. Figure 47. Large Signal Voltage Gain Common Mode Rejection Ratio - Ambient Temperature - Supply Voltage (RL=2kΩ) ] B TIO [dB] 140 ATIO [d 113400 A 120 R N R ON 120 O TI TI 100 C 110 C E E J J 32V E 100 E R R 80 Y E L 90 D P O P M 5V 3V U 80 N 60 S O R 70 E M W M 40 O 60 O C -50 -25 0 25 50 75 100 P -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] AMBIENT TEMPERATURE [℃] Figure 48. Figure 49. Common Mode Rejection Ratio Power Supply Rejection Ratio - Ambient Temperature - Ambient Temperature (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 24/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA2904, BA2904S, BA2904W 1000 1.0 BA2904F . BBAA22990044WSFF W] 800 A] 0.8 m m N [ BBAA22990044WFVF V T [ ATIO 600 BA2904SFV REN 0.6 -40℃ 25℃ R SSIP 400 BBAA22990044FSVFMVM CU 0.4 DI Y R PL POWE 200 SUP 0.2 105℃ 125℃ 0 0.0 105 0 25 50 75 100 125 150 0 10 20 30 40 AMBIENT TEMPERATURE [℃] . SUPPLY VOLTAGE [V] Figure 50. Figure 51. Derating Curve Supply Current- Supply Voltage 1.0 40 ] V [ E A] 0.8 G m A T 30 T [ OL -40℃ N E 0.6 V R T R 36V U 20 125℃ U P C T 0.4 U 25℃ Y O PL M P 5V U 10 105℃ U 0.2 3V M S I X A M 0.0 0 -50 -25 0 25 50 75 100 125 150 0 10 20 30 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 52. Figure 53. Supply Current – Ambient Temperature Maximum Output Voltage - Supply Voltage (RL=10kΩ) (*) The above data is measurement value of typical sample, it is not guaranteed. BA2904, BA2904W:-40°C to +125°C BA2904S:-40°C to +105°C www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 25/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA2904, BA2904S, BA2904W 5 50 V] A] m GE [ T [ -40℃ TA 4 EN 40 L R O R 25℃ V U T 3 C 30 U E P C 105℃ UT R O 2 U 20 M SO U T M 1 U 10 125℃ XI P T A U M O 0 0 -50 -25 0 25 50 75 100 125 150 0 1 2 3 4 5 AMBIENT TEMPERATURE [℃] OUTPUT VOLTAGE [V] Figure 54. Figure 55. Maximum Output Voltage - Ambient Temperature Output Source Current - Output Voltage (VCC=5V, RL=2kΩ) (VCC=5V) 50 100 ] mA A] NT [ 40 T [m 10 105℃ E N R 3V E R R 125℃ CU 30 5V UR 1 CE 15V K C -40℃ R N 25℃ U 20 SI 0.1 O T S U T P U 10 T 0.01 P U T O U O 0 0.001 -50 -25 0 25 50 75 100 125 150 0 0.4 0.8 1.2 1.6 2 AMBIENT TEMPERATURE [℃] OUTPUT VOLTAGE [V] Figure 56. Figure 57. Output Source Current - Ambient Temperature Output Sink Current - Output Voltage (OUT=0V) (VCC=5V) (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 26/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA2904, BA2904S, BA2904W 30 80 ] A A] μ 70 m 15V T [ T [ EN 60 25℃ -40℃ N R E 20 R R R U 50 CU 3V 5V NK C 40 105℃ 125℃ K I N S I L 30 T S 10 VE U E 20 P L T - W U 10 O O L 0 0 -50 -25 0 25 50 75 100 125 150 0 5 10 15 20 25 30 35 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 58. Figure 59. Output Sink Current - Ambient Temperature Low Level Sink Current - Supply Voltage (OUT=VCC) (OUT=0.2V) 80 8 μA] 70 36V mV] 6 NT [ E [ E 60 G 4 R A R T -40℃ 25℃ U 50 L 2 C O V NK 40 5V T 0 3V E SI S L 30 F -2 105℃ 125℃ E F V O LE 20 UT -4 W- P O 10 N -6 L I 0 -8 -50 -25 0 25 50 75 100 125 150 0 5 10 15 20 25 30 35 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 60. Figure 61. Low Level Sink Current - Ambient Temperature Input Offset Voltage - Supply Voltage (OUT=0.2V) (VICM=0V, OUT=1.4V) (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 27/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA2904, BA2904S, BA2904W 8 50 ] mV 6 A] GE [ 4 T [n 40 A N T 3V E L 2 R O R 30 V U 25℃ T 0 C -40℃ SE 5V 36V S F -2 A 20 F BI O T T -4 U 105℃ U P 10 P N N -6 I 125℃ I -8 0 -50 -25 0 25 50 75 100 125 150 0 5 10 15 20 25 30 35 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 62. Figure 63. Input Offset Voltage - Ambient Temperature Input Bias Current - Supply Voltage (VICM=0V, OUT=1.4V) (VICM=0V, OUT=1.4V) 50 50 A] A] 40 n 40 n T [ T [ EN EN 30 R 30 R R 36V R U U C C 20 S S A 20 A BI BI 10 T T 5V U 3V U P 10 P N N 0 I I 0 -10 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] AMBIENT TEMPERATURE [℃] Figure 64. Figure 65. Input Bias Current - Ambient Temperature Input Bias Current - Ambient Temperature (V =0V, OUT=1.4V) (VCC=30V, V =28V, OUT=1.4V) ICM ICM (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 28/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA2904, BA2904S, BA2904W 8 10 V] 6 A] m n E [ 4 -40℃ 105℃ NT [ 5 LTAG 2 25℃ 125℃ RRE -40℃ 25℃ O U V C T 0 T 0 E E S S 125℃ F -2 F 105℃ F F O O T -4 T -5 U U P P -6 N N I I -8 -10 -1 0 1 2 3 4 5 0 5 10 15 20 25 30 35 40 INPUT VOLTAGE [V] SUPPLY VOLTAGE [V] Figure 66. Figure 67. Input Offset Voltage - Common Mode Input Voltage Input Offset Current - Supply Voltage (VCC=5V) (VICM=0V, OUT=1.4V) 10 ] 140 B d A] N [ 130 n I T [ GA -40℃ 25℃ N 5 120 RE 36V GE R A 110 U T L T C 0 VO 100 SE 5V 3V AL 90 105℃ 125℃ F N F O G T -5 SI 80 U E P G 70 N R I A -10 L 60 -50 -25 0 25 50 75 100 125 150 4 6 8 10 12 14 16 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 68. Figure 69. Input Offset Current - Ambient Temperature Large Signal Voltage Gain - Supply Voltage (V =0V, OUT=1.4V) (RL=2kΩ) ICM (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 29/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA2904, BA2904S, BA2904W B] ] 140 d 140 dB O [ N [ 130 TI I A GA 120 15V N R 120 -40℃ 25℃ E O G TA 110 CTI 100 L E AL VO 10900 5V E REJ 80 105℃ 125℃ N D G O I 80 M S N 60 E G 70 O R M A M L 60 O 40 -50 -25 0 25 50 75 100 125 150 C 0 10 20 30 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 70. Figure 71. Large Signal Voltage Gain Common Mode Rejection Ratio - Ambient Temperature - Supply Voltage (RL=2kΩ) ] B] 140 dB 140 d [ O [ O TI ATI 130 A 120 R R 36V N 120 N O TIO 100 CTI 110 C E E J J E 100 E R R 80 5V Y E 3V L 90 D P O P M U 80 N 60 S O R 70 E M W M 40 O 60 CO -50 -25 0 25 50 75 100 125 150 P -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] AMBIENT TEMPERATURE [℃] Figure 72. Figure 73. Common Mode Rejection Ratio Power Supply Rejection Ratio - Ambient Temperature - Ambient Temperature (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 30/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA2902, BA2902S 1000 2.0 . W] 800 A] 1.6 m m BA2902FV N [ BA2902SFV T [ O N TI 600 E 1.2 A R -40℃ 25℃ P BA2902F R SI BA2902SF U DIS 400 Y C 0.8 R L E P W P O 200 U 0.4 105℃ 125℃ P S 0 105 0.0 0 25 50 75 100 125 150 0 10 20 30 40 AMBIENT TEMPERATURE [℃] . SUPPLY VOLTAGE [V] Figure 74. Figure 75. Derating Curve Supply Current - Supply Voltage 2.0 40 ] V [ E ] G mA 1.6 TA 30 T [ OL -40℃ N RRE 1.2 36V UT V 20 125℃ U P T C 0.8 U 25℃ Y O PL M P U 10 105℃ U 0.4 5V M S 3V XI A M 0.0 0 -50 -25 0 25 50 75 100 125 150 0 10 20 30 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 76. Figure 77. Supply Current - Ambient Temperature Maximum Output Voltage - Supply Voltage (RL=10kΩ) (*) The above data is measurement value of typical sample, it is not guaranteed. BA2902:-40°C to +125°C BA2902S:-40°C to +105°C www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 31/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA2902, BA2902S 5 50 V] A] m [ GE T [ -40℃ TA 4 EN 40 L R O R 25℃ V U T 3 C 30 U E P C 105℃ UT R O 2 U 20 M O S U T M 1 U 10 125℃ XI P T A U M O 0 0 -50 -25 0 25 50 75 100 125 150 0 1 2 3 4 5 AMBIENT TEMPERATURE [℃] OUTPUT VOLTAGE [V] Figure 78. Figure 79. Maximum Output Voltage - Ambient Output Source Current - Output Voltage Temperature (VCC=5V, RL=2kΩ) (VCC=5V) 50 100 ] mA A] NT [ 40 T [m 10 105℃ E N R 3V E R R 125℃ CU 30 5V UR 1 CE 15V K C -40℃ R N 25℃ U 20 SI 0.1 O T S U T P U 10 T 0.01 P U T O U O 0 0.001 -50 -25 0 25 50 75 100 125 150 0 0.4 0.8 1.2 1.6 2 AMBIENT TEMPERATURE [℃] OUTPUT VOLTAGE [V] Figure 80. Figure 81. Output Source Current - Ambient Output Sink Current - Output Voltage Temperature (OUT=0V) (VCC=5V) (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 32/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA2902, BA2902S 30 80 ] A A] μ 70 m 15V T [ T [ EN 60 25℃ -40℃ N R E 20 R R R U 50 U C C 3V 5V NK 40 105℃ 125℃ K I N S I L 30 T S 10 VE U E 20 P L T - W U 10 O O L 0 0 -50 -25 0 25 50 75 100 125 150 0 5 10 15 20 25 30 35 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 82. Figure 83. Output Sink Current - Ambient Temperature Low Level Sink Current - Supply Voltage (OUT=VCC) (OUT=0.2V) 80 8 μA] 70 36V mV] 6 NT [ E [ E 60 G 4 R A R T -40℃ 25℃ U 50 L 2 C O V NK 40 5V T 0 3V E SI S L 30 F -2 105℃ 125℃ E F V O E 20 T -4 L U - W P O 10 N -6 L I 0 -8 -50 -25 0 25 50 75 100 125 150 0 5 10 15 20 25 30 35 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 84. Figure 85. Low Level Sink Current - Ambient Temperature Input Offset Voltage - Supply Voltage (OUT=0.2V) (V =0V, OUT=1.4V) ICM (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 33/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA2902, BA2902S 8 50 ] mV 6 A] GE [ 4 T [n 40 A N T 3V E L 2 R O R 30 V U 25℃ T 0 C -40℃ SE 5V 36V S F -2 A 20 F BI O T T -4 U 105℃ U P 10 P N N -6 I 125℃ I -8 0 -50 -25 0 25 50 75 100 125 150 0 5 10 15 20 25 30 35 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 86. Figure 87. Input Offset Voltage - Ambient Temperature Input Bias Current - Supply Voltage (V =0V, OUT=1.4V) (V =0V, OUT=1.4V) ICM ICM 50 50 A] A] 40 n 40 n T [ T [ N N E E 30 R 30 R R 36V R U U C C 20 S S A 20 A BI BI 10 T T 5V U 3V U P 10 P N N 0 I I 0 -10 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] AMBIENT TEMPERATURE [℃] Figure 88. Figure 89. Input Bias Current - Ambient Temperature Input Bias Current - Ambient Temperature (V =0V, OUT=1.4V) (VCC=30V, V =28V, OUT=1.4V) ICM ICM (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 34/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA2902, BA2902S 8 10 V] A] 6 E [m 4 -40℃ 105℃ NT [n 5 AG 125℃ RE -40℃ 25℃ LT 2 25℃ R O U V C T 0 T 0 E E FS -2 FS 105℃ 125℃ F F O O T -4 T -5 U U P P -6 N N I I -8 -10 -1 0 1 2 3 4 5 0 5 10 15 20 25 30 35 40 INPUT VOLTAGE [V] SUPPLY VOLTAGE [V] Figure 90. Figure 91. Input Offset Voltage - Common Mode Input Voltage Input Offset Current - Supply Voltage (VCC=5V) (V =0V, OUT=1.4V) ICM 10 B] 140 d A] N [ 130 n I T [ GA -40℃ 25℃ N 5 120 E E R 36V G R A 110 U T L C O T 0 V 100 SE 5V 3V AL 90 105℃ 125℃ F N F G O T -5 SI 80 U E P G 70 N R I A -10 L 60 -50 -25 0 25 50 75 100 125 150 4 6 8 10 12 14 16 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 92. Figure 93. Input Offset Current - Ambient Temperature Large Signal Voltage Gain - Supply Voltage (V =0V, OUT=1.4V) (RL=2kΩ) ICM (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 35/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet ○BA2902, BA2902S B] ] 140 d 140 dB O [ N [ 130 TI I A E GA 120 15V N R 120 -40℃ 25℃ O AG 110 TI T C 100 L E VO 100 5V EJ L R 80 105℃ 125℃ A 90 E N D G O I 80 M S N 60 GE 70 O R M A M L 60 O 40 -50 -25 0 25 50 75 100 125 150 C 0 10 20 30 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 94. Figure 95. Large Signal Voltage Gain - Ambient Temperature Common Mode Rejection Ratio (RL=2kΩ) - Supply Voltage ] B] 140 dB 140 TIO [d ATIO [ 130 A 120 R N R 36V ON 120 O TI TI 100 C 110 C E JE EJ 100 E R R 80 5V Y DE 3V PL 90 O P M U 80 N 60 S O R 70 E M W M 40 O 60 O C -50 -25 0 25 50 75 100 125 150 P -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] AMBIENT TEMPERATURE [℃] Figure 96. Figure 97. Common Mode Rejection Ratio Power Supply Rejection Ratio - Ambient Temperature - Ambient Temperature (*) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 36/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Application Information NULL method condition for Test Circuit 1 VCC, VEE, E , V Unit : V K ICM BA10358 BA2904 Parameter VF S1 S2 S3 BA10324A BA2902 calculation VCC VEE EK VICM VCC VEE EK VICM Input Offset Voltage V ON ON OFF 5 0 -1.4 0 5 to 30 0 -1.4 0 1 F1 Input Offset Current V OFF OFF OFF 5 0 -1.4 0 5 0 -1.4 0 2 F2 V OFF ON F3 Input Bias Current OFF 5 0 -1.4 0 5 0 -1.4 0 3 V ON OFF F4 V 15 0 -1.4 0 15 0 -1.4 0 F5 Large Signal Voltage Gain ON ON ON 4 V 15 0 -11.4 0 15 0 -11.4 0 F6 Common-mode Rejection Ratio V 5 0 -1.4 0 5 0 -1.4 0 F7 (Input common-mode Voltage ON ON OFF 5 V 5 0 -1.4 3.5 5 0 -1.4 3.5 Range) F8 Power Supply VF9 5 0 -1.4 0 5 0 -1.4 0 ON ON OFF 6 Rejection Ratio V 30 0 -1.4 0 30 0 -1.4 0 F10 -Calculation- |V | 1. Input Offset Voltage (Vio) VIO= F1 [V] 1+R /R F S |V -V | F2 F1 2. Input Offset Current (Iio) IIO = R ×(1+R /R ) [A] I F S |V -V | F4 F3 3. Input Bias Current (Ib) IB = 2 × R ×(1+R /R ) [A] I F S 10 × (1+R /R ) 4. Large Signal Voltage Gain (Av) AV =20Log F S [dB] |VF5-VF6| 3.5 × (1+R /R ) 5. Common-mode Rejection Ration (CMRR) CMRR=20Log F S [dB] |V -V | F8 F7 25 × (1+ R /R ) PSRR=20Log F S [dB] 6. Power supply rejection ratio (PSRR) |V – V | F10 F9 0.1µF RF=50kΩ 500kΩ 0.1µF SW1 VCC EK 15V RS=50Ω Ri=10kΩ Vo 500kΩ DUT NULL SW3 RS=50Ω Ri=10kΩ 1000pF Vicm RL VF S W2 50kΩ VEE -15V Figure . 98 Test circuit1 (one channel only) www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 37/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Switch Condition for Test Circuit 2 SW SW SW SW SW SW SW SW SW SW SW SW SW SW SW No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Supply Current OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF Maximum Output Voltage(High) OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF Maximum Output Voltage(Low) OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF Output Source Current OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON Output Sink Current OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON Slew Rate OFF OFF OFF ON OFF OFF OFF ON ON ON OFF OFF OFF OFF Gain Bandwidth Product OFF ON OFF OFF ON ON OFF OFF ON ON OFF OFF OFF OFF Equivalent Input Noise Voltage ON OFF OFF OFF ON ON OFF OFF OFF OFF ON OFF OFF OFF SW4 Input voltage SW5 R2 ● VCC VH - VL SW1 SW2 SW3 t + Input wave SW6 SW7 SW8 SW9 SW10 SW11 SW12 SW13 SW14 Output voltage RS R1 90% SR=ΔV/Δt VEE VH C VIN- VIN+ RL CL OUT ΔV 10% VL Δt t Output wave Figure 99. Test Circuit 2 (each Op-Amp) Figure 100. Slew Rate Input Waveform VCC VCC OTHER R 1//R2 R1//R2 CH VEE VEE VINR 1 R2 V =O0U.5TV1rms R1 R2 V OUT 2 100×OUT 1 CS=20×log OUT2 Figure 101. Test Circuit 3(Channel Separation) (R1=1kΩ,R2=100kΩ) www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 38/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Examples of circuit ○Voltage follower Voltage gain is 0 dB. VCC This circuit controls output voltage (OUT) equal input voltage (IN), and keeps OUT with stable because of high input impedance and low output impedance. OUT is shown next formula. OUT OUT=IN IN VEE ○Inverting amplifier R2 VCC For inverting amplifier, IN is amplified by voltage gain R1 decided R1 and R2, and phase reversed voltage is IN output. OUT OUT is shown next formula. OUT=-(R2/R1)・IN Input impedance is R1. R1//R2 VEE ○Non-inverting amplifier For non-inverting amplifier, IN is amplified by voltage gain decided R1 and R2, and phase is same with IN. OUT is shown next formula. OUT= (1+R2/R1)・IN This circuit realizes high input impedance because Input impedance is operational amplifier’s input Impedance. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 39/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Power Dissipation Power dissipation (total loss) indicates the power that the IC can consume at T =25°C (normal temperature). As the IC A consumes power, it heats up, causing its temperature to be higher than the ambient temperature. The allowable temperature that the IC can accept is limited. This depends on the circuit configuration, manufacturing process, and consumable power. Power dissipation is determined by the allowable temperature within the IC (maximum junction temperature) and the thermal resistance of the package used (heat dissipation capability). Maximum junction temperature is typically equal to the maximum storage temperature. The heat generated through the consumption of power by the IC radiates from the mold resin or lead frame of the package. Thermal resistance, represented by the symbol θ °C/W, indicates this heat dissipation JA capability. Similarly, the temperature of an IC inside its package can be estimated by thermal resistance. Figure 102 (a) shows the model of the thermal resistance of a package. The equation below shows how to compute for the Thermal resistance (θ ), given the ambient temperature (T ), maximum junction temperature (T ), and power dissipation JA A Jmax (P ). D θ = (T -T ) / P °C/W JA Jmax A D The derating curve in Figure 102 (b) indicates the power that the IC can consume with reference to ambient temperature. Power consumption of the IC begins to attenuate at certain temperatures. This gradient is determined by Thermal resistance (θ ), which depends on the chip size, power consumption, package, ambient temperature, package condition, JA wind velocity, etc. This may also vary even when the same of package is used. Thermal reduction curve indicates a reference value measured at a specified condition. Figure 102. (c) to (f) show a derating curve for an example of BA10358, BA10324A, BA2904S, BA2904, BA2904W, BA2902S, BA2902. LPSoIwのe消r D費iss電ipa力tio [nW o]f LSI [W] PPDd(m (amx)a x) θJA=(TJmax-TA)/ PD °C/W P2 θθJjaA22 << θθJjaA11 C Ambient Temperature TA [ °C ] pation of I P1 θθ’'J Aja22 θθ JjA a22 Power Dissi θθ’J' Aj1a 1 θθ J jaA11 TTjJ ’'m (amx a x T)JmTajx ( m a x) 0 25 50 75 100 125 150 Chip Surface Temperature TJ [ °C ] Ambie周nt 囲Te温m度pe rTaat u[℃re] TA[C] (a) Thermal Resistance (b) Derating Curve 1000 1000 BA10324AFJ(Note 33) N [mW] . 800 BA10358F(Note 30) N [mW] . 800 BA10324AFV V(Note 34) DISSIPATIO 460000 BA10358BFAJ1(N0o3te5 381F) V(Note 32) DISSIPATIO 460000 BA10324AF(Note 35) R R WE WE PO 200 PO 200 0 0 0 25 50 75 100 125 0 25 50 75 100 125 AMBIENT TEMPERATURE [℃] . AMBIENT TEMPERATURE [℃] . (c)BA10358 (d)BA10324 1000 1000 BA2904F(Note 36) W] . 800 BBBAAA222999000444WFSVFF((NN(Noootteete 33 3676)) ) W] . 800 BBAA22990022FSVF(VN(oNteo t3e9 3) 9) N [m BBAA22990044WSFFVV(N(Nootete 3 377) ) N [m PATIO 600 BBAA22990044FSVFMVM(N(oNteo t3e8 3) 8) PATIO 600 BBAA22990022FS(F(N(Nootete 4 400) ) SI SI R DIS 400 R DIS 400 WE WE PO 200 PO 200 0 0 0 25 50 75 100 125 150 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] . AMBIENT TEMPERATURE [℃] . (e)BA2904 (f)BA2902 (Note 30) (Note 31) (Note 32)(Note 33) (Note 34)(Note 35)(Note 36)(Note 37)(Note 38)(Note 39) (Note 40) Unit 6.2 5.4 5.0 8.2 7.0 4.5 6.2 5.0 4.7 7.0 4.5 mW/°C When using the unit above T=25°C, subtract the value above per degree °C. A Permissible dissipation is the value when FR4 glass epoxy board 70mm ×70mm ×1.6mm (copper foil area below 3%) is mounted. Figure 102. Thermal resistance and derating www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 40/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Operational Notes 1. Reverse Connection of Power Supply Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply terminals. 2. Power Supply Lines Design the PCB layout pattern to provide low impedance ground and supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors. 3. Ground Voltage Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. 4. Ground Wiring Pattern When using both small-signal and large-current GND traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the GND traces of external components do not cause variations on the GND voltage. The power supply and ground lines must be as short and thick as possible to reduce line impedance. 5. Thermal Consideration Should by any chance the power dissipation rating be exceeded, the rise in temperature of the chip may result in deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the Pd rating. 6. Recommended Operating Conditions These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter. 7. Inrush Current When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of GND wiring, and routing of connections. 8. Operation Under Strong Electromagnetic Field Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction. 9. Testing on Application Boards When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage. 10. Inter-pin Short and Mounting Errors Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 41/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Operational Notes – continued 11. Regarding Input Pins of the IC This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below): When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic transistor. Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided. Resistor Transistor (NPN) Pin A Pin B B Pin B C Pin A E B C P+ P P+ P+ N P P+ N N N N Parasitic N N N E Element Parasitic P Substrate P Substrate Element GND GND GND GND Parasitic Parasitic Parasitic element Element Element or Transistor Figure 103. Example of Monolithic IC Structure 12. Unused Circuits When there are unused circuits it is recommended that they be connected as in Figure 104, setting the non-inverting input terminal to a potential within the in-phase input voltage range (V ). ICM VCC + - Keep this potential V in VICM ICM VEE Figure 104. Disable Circuit Example 13. Input Terminal Voltage (BA10358 / BA10324) Applying VEE + 32V, (BA2904 / BA2902) Applying VEE + 36V to the input terminal is possible without causing deterioration of the electrical characteristics or destruction, irrespective of the supply voltage. However, this does not ensure normal circuit operation. Please note that the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric characteristics. 14. Power Supply (signal / dual) The op-amp operates when the specified voltage supplied is between VCC and VEE. Therefore, the single supply op-amp can be used as a dual supply op-amp as well. 15. Terminal short-circuits When the output and VCC terminals are shorted, excessive output current may flow, resulting in undue heat generation and, subsequently, destruction. 16. IC Handling Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical characteristics due to piezo resistance effects. 17. Output Capacitor If a large capacitor is connected between the output pin and VEE pin, current from the charged capacitor will flow into the output pin and may destroy the IC when the VCC pin is shorted to ground or pulled down to 0V. Use a capacitor smaller than 0.1uF between output pin and VEE pin. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 42/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Physical Dimensions Tape and Reel Information Package Name SOP8 (Max 5.35 (include.BURR)) (UNIT : mm) PKG : SOP8 Drawing No. : EX112-5001-1 <Tape and Reel information> Tape Embossed carrier tape Quantity 2500pcs E2 Direction of feed (The direction is the 1pin of product is at the upper left when you hold ) reel on the left hand and you pull out the tape on the right hand Direction of feed 1pin Reel ∗ Order quantity needs to be multiple of the minimum quantity. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 43/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Physical Dimension, Tape and Reel Information – continued Package Name SOP-J8 <Tape and Reel information> Tape Embossed carrier tape Quantity 2500pcs E2 Direction of feed (The direction is the 1pin of product is at the upper left when you hold ) reel on the left hand and you pull out the tape on the right hand Direction of feed 1pin Reel ∗ Order quantity needs to be multiple of the minimum quantity. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 44/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Physical Dimension, Tape and Reel Information – continued Package Name SSOP-B8 <Tape and Reel information> Tape Embossed carrier tape Quantity 2500pcs E2 Direction of feed (The direction is the 1pin of product is at the upper left when you hold ) reel on the left hand and you pull out the tape on the right hand Direction of feed 1pin Reel ∗ Order quantity needs to be multiple of the minimum quantity. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 45/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Physical Dimension, Tape and Reel Information – continued Package Name MSOP8 <Tape and Reel information> Tape Embossed carrier tape Quantity 3000pcs TR Direction of feed (The direction is the 1pin of product is at the upper right when you hold ) reel on the left hand and you pull out the tape on the right hand 1pin Direction of feed Reel ∗ Order quantity needs to be multiple of the minimum quantity. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 46/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Physical Dimension, Tape and Reel Information – continued Package Name SOP14 (Max 9.05 (include.BURR)) (UNIT : mm) PKG : SOP14 Drawing No. : EX113-5001 <Tape and Reel information> Tape Embossed carrier tape Quantity 2500pcs E2 Direction of feed (The direction is the 1pin of product is at the upper left when you hold ) reel on the left hand and you pull out the tape on the right hand Direction of feed 1pin Reel ∗ Order quantity needs to be multiple of the minimum quantity. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 47/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Physical Dimension, Tape and Reel Information – continued Package Name SOP-J14 <Tape and Reel information> Tape Embossed carrier tape Quantity 2500pcs E2 Direction of feed (The direction is the 1pin of product is at the upper left when you hold ) reel on the left hand and you pull out the tape on the right hand Direction of feed 1pin Reel ∗ Order quantity needs to be multiple of the minimum quantity. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 48/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Physical Dimension, Tape and Reel Information – continued Package Name SSOP-B14 <Tape and Reel information> Tape Embossed carrier tape Quantity 2500pcs E2 Direction of feed (The direction is the 1pin of product is at the upper left when you hold ) reel on the left hand and you pull out the tape on the right hand Direction of feed 1pin Reel ∗ Order quantity needs to be multiple of the minimum quantity. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 49/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Marking Diagrams SOP8(TOP VIEW) SOP14(TOP VIEW) Part Number Marking Part Number Marking LOT Number LOT Number 1PIN MARK 1PIN MARK SSOP-B8(TOP VIEW) SSOP-B14(TOP VIEW) Part Number Marking Part Number Marking LOT Number LOT Number 1PIN MARK 1PIN MARK MSOP8(TOP VIEW) SOP-J14(TOP VIEW) Part Number Marking Part Number Marking LOT Number LOT Number 1PIN MARK 1PIN MARK SOP-J8(TOP VIEW) Part Number Marking LOT Number 1PIN MARK www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 50/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Product Name Package Type Marking F SOP8 10358 BA10358 FJ SOP-J8 FV SSOP-B8 358 F SOP14 BA10324AF BA10324A FJ SOP-J14 BA10324A FV SSOP-B14 324A F SOP8 BA2904 FV SSOP-B8 FVM MSOP8 2904 F SOP8 BA2904W FV SSOP-B8 F SOP8 2904S BA2904S FV SSOP-B8 04S FVM MSOP8 2904S F SOP14 BA2902F BA2902 FV SSOP-B14 2902 F SOP14 BA2902S 2902S FV SSOP-B14 Land pattern data all dimensions in mm Land pitch Land space Land length Land width PKG e MIE ≧ℓ 2 b2 SOP8 1.27 4.60 1.10 0.76 SSOP-B8 0.65 4.60 1.20 0.35 SOP-J8 1.27 3.90 1.35 0.76 MSOP8 0.65 2.62 0.99 0.35 SOP14 1.27 4.60 1.10 0.76 SSOP-B14 0.65 4.60 1.20 0.35 SOP-J14 1.27 3.90 1.35 0.76 MIE e 2 b ℓ2 SOP8, SSOP-B8, SOP-J8, MSOP8 SOP14, SSOP-B14, SOP-J14 www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 51/52 23.Jan.2014 Rev.003 TSZ22111・15・001

BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx BA2902xx, BA2902Sxx Datasheet Revision History Date Revision Changes 14.SEP.2012 001 New Release 11.Jan.2013 002 Land pattern data inserted. The Differential Input Voltage and Input Common-mode Voltage Range are updated in 23.Jan.2014 003 absolute maximum ratings for BA10358 and BA10324A. The input current is added in absolute maximum ratings. www.rohm.com TSZ02201-0RAR0G200130-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 52/52 23.Jan.2014 Rev.003 TSZ22111・15・001

DDaattaasshheeeett Notice Precaution on using ROHM Products 1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASSⅢ CLASSⅡb CLASSⅢ CLASSⅢ CLASSⅣ CLASSⅢ 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice - GE Rev.002 © 2014 ROHM Co., Ltd. All rights reserved.

DDaattaasshheeeett Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label QR code printed on ROHM Products label is for ROHM’s internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.: 2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice - GE Rev.002 © 2014 ROHM Co., Ltd. All rights reserved.

DDaattaasshheeeett General Precaution 1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM’s Products against warning, caution or note contained in this document. 2. All information contained in this document is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sale s representative. 3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information. Notice – WE Rev.001 © 2014 ROHM Co., Ltd. All rights reserved.