图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: XC3S50A-4VQG100I
  • 制造商: Xilinx
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

XC3S50A-4VQG100I产品简介:

ICGOO电子元器件商城为您提供XC3S50A-4VQG100I由Xilinx设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 XC3S50A-4VQG100I价格参考。XilinxXC3S50A-4VQG100I封装/规格:嵌入式 - FPGA(现场可编程门阵列), 。您可以下载XC3S50A-4VQG100I参考资料、Datasheet数据手册功能说明书,资料中有XC3S50A-4VQG100I 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)

描述

IC FPGA 68 I/O 100VQFP

产品分类

嵌入式 - FPGA(现场可编程门阵列)

I/O数

68

LAB/CLB数

176

品牌

Xilinx Inc

数据手册

点击此处下载产品Datasheet点击此处下载产品Datasheet点击此处下载产品Datasheet

产品图片

产品型号

XC3S50A-4VQG100I

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

Spartan®-3A

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=16177

产品目录页面

点击此处下载产品Datasheet

供应商器件封装

100-VQFP(14x14)

其它名称

122-1593
XC3S50A-4VQG100I-ND
XC3S50A4VQG100I

安装类型

表面贴装

封装/外壳

100-TQFP

工作温度

-40°C ~ 100°C

总RAM位数

55296

栅极数

50000

标准包装

90

电压-电源

1.14 V ~ 1.26 V

逻辑元件/单元数

1584

推荐商品

型号:XC2S200-5FGG256C

品牌:Xilinx Inc.

产品名称:集成电路(IC)

获取报价

型号:A54SX32A-TQG144A

品牌:Microsemi Corporation

产品名称:集成电路(IC)

获取报价

型号:EPF10K50VRI240-4N

品牌:Intel

产品名称:集成电路(IC)

获取报价

型号:EP20K30ETC144-3N

品牌:Intel

产品名称:集成电路(IC)

获取报价

型号:5CGXFC5C6F27C7N

品牌:Intel

产品名称:集成电路(IC)

获取报价

型号:XC6SLX16-N3CSG225C

品牌:Xilinx Inc.

产品名称:集成电路(IC)

获取报价

型号:A3PN015-1QNG68I

品牌:Microsemi Corporation

产品名称:集成电路(IC)

获取报价

型号:XC5VSX50T-2FFG665C

品牌:Xilinx Inc.

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
XC3S50A-4VQG100I 相关产品

EP2AGX125EF35C4N

品牌:Intel

价格:

EP3SL70F484I3

品牌:Intel

价格:

EPF6016TI144-2

品牌:Intel

价格:

5SGSMD5K2F40I2N

品牌:Intel

价格:

XC3S100E-4VQ100I

品牌:Xilinx Inc.

价格:

A54SX16A-FG256A

品牌:Microsemi Corporation

价格:

5CEBA4U15I7N

品牌:Intel

价格:

A42MX16-1PQ160M

品牌:Microsemi Corporation

价格:

PDF Datasheet 数据手册内容提取

0 Spartan-3A FPGA Family: Data Sheet DS529 December 18, 2018 Product Specification 0 0 Module 1: Module 3: Introduction and Ordering Information DC and Switching Characteristics DS529 (v2.1) December 18, 2018 DS529 (v2.1) December 18, 2018 (cid:129) Introduction (cid:129) DC Electrical Characteristics (cid:129) Features (cid:129) Absolute Maximum Ratings (cid:129) Supply Voltage Specifications (cid:129) Architectural and Configuration Overview (cid:129) Recommended Operating Conditions (cid:129) General I/O Capabilities (cid:129) Switching Characteristics (cid:129) Production Status (cid:129) I/O Timing (cid:129) Supported Packages and Package Marking (cid:129) Configurable Logic Block (CLB) Timing (cid:129) Ordering Information (cid:129) Multiplier Timing Module 2: (cid:129) Block RAM Timing (cid:129) Digital Clock Manager (DCM) Timing Spartan-3A FPGA Family: Functional (cid:129) Suspend Mode Timing Description (cid:129) Device DNA Timing DS529 (v2.1) December 18, 2018 (cid:129) Configuration and JTAG Timing The functionality of the Spartan®-3A FPGA family is Module 4: described in the following documents. Pinout Descriptions (cid:129) UG331: Spartan-3 Generation FPGA User Guide DS529 (v2.1) December 18, 2018 (cid:129) Clocking Resources (cid:129) Digital Clock Managers (DCMs) (cid:129) Pin Descriptions (cid:129) Block RAM (cid:129) Package Overview (cid:129) Configurable Logic Blocks (CLBs) (cid:129) Pinout Tables - Distributed RAM (cid:129) Footprint Diagrams - SRL16 Shift Registers - Carry and Arithmetic Logic (cid:129) I/O Resources For more information on the Spartan-3A FPGA family, go to (cid:129) Embedded Multiplier Blocks www.xilinx.com/spartan3a (cid:129) Programmable Interconnect (cid:129) ISE® Design Tools and IP Cores (cid:129) Embedded Processing and Control Solutions Spartan-3A FPGA Status (cid:129) Pin Types and Package Overview (cid:129) Package Drawings XC3S50A Production (cid:129) Powering FPGAs XC3S200A Production (cid:129) Power Management (cid:129) UG332: Spartan-3 Generation Configuration User Guide XC3S400A Production (cid:129) Configuration Overview (cid:129) Configuration Pins and Behavior XC3S700A Production (cid:129) Bitstream Sizes XC3S1400A Production (cid:129) Detailed Descriptions by Mode - Master Serial Mode using Platform Flash PROM - Master SPI Mode using Commodity Serial Flash - Master BPI Mode using Commodity Parallel Flash - Slave Parallel (SelectMAP) using a Processor - Slave Serial using a Processor - JTAG Mode (cid:129) ISE iMPACT Programming Examples (cid:129) MultiBoot Reconfiguration (cid:129) Design Authentication using Device DNA (cid:129) UG334: Spartan-3A/3AN FPGA Starter Kit User Guide © Copyright 2006–2018 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners. DS529 December 18, 2018 www.xilinx.com 1 Product Specification

Spartan-3A FPGA Family: Data Sheet 2 www.xilinx.com DS529 December 18, 2018 Product Specification

8 Spartan-3A FPGA Family: Introduction and Ordering Information DS529 (v2.1) December 18, 2018 Product Specification Introduction The Spartan®-3A family of Field-Programmable Gat e (cid:129) 640+ Mb/s data transfer rate per differential I/O Arrays (FPGAs) solves the design challenges in mos t (cid:129) LVDS, RSDS, mini-LVDS, HSTL/SSTL differential I/O with integrated differential termination resistors high-volume, cost-sensitive, I/O-intensive electroni c (cid:129) Enhanced Double Data Rate (DDR) support applications. The five-member family offers densities rangin g (cid:129) DDR/DDR2 SDRAM support up to 400 Mb/s from 50,000 to 1.4 million system gates, as shown in Table 1. (cid:129) Fully compliant 32-/64-bit, 33/66 MHz PCI® technology support The Spartan-3A FPGAs are part of the Extende d (cid:129) Abundant, flexible logic resources Spartan-3A family, which also include the non-volatile (cid:129) Densities up to 25,344 logic cells, including optional shift Spartan-3AN and the higher density Spartan-3A DS P register or distributed RAM support FPGAs. The Spartan-3A family builds on the success of th e (cid:129) Efficient wide multiplexers, wide logic earlier Spartan-3E and Spartan-3 FPGA families. Ne w (cid:129) Fast look-ahead carry logic (cid:129) Enhanced 18 x 18 multipliers with optional pipeline features improve system performance and reduce the cost (cid:129) IEEE 1149.1/1532 JTAG programming/debug port of configuration. These Spartan-3A family enhancements, (cid:129) Hierarchical SelectRAM™ memory architecture combined with proven 90 nm process technology, delive r (cid:129) Up to 576 Kbits of fast block RAM with byte write enables more functionality and bandwidth per dollar than ever before, for processor applications setting the new standard in the programmable logic industry. (cid:129) Up to 176 Kbits of efficient distributed RAM (cid:129) Up to eight Digital Clock Managers (DCMs) Because of their exceptionally low cost, Spartan-3A FPGA s (cid:129) Clock skew elimination (delay locked loop) are ideally suited to a wide range of consumer electronics (cid:129) Frequency synthesis, multiplication, division applications, including broadband access, home networking , (cid:129) High-resolution phase shifting display/projection, and digital television equipment. (cid:129) Wide frequency range (5 MHz to over 320 MHz) (cid:129) Eight low-skew global clock networks, eight additional The Spartan-3A family is a superior alternative to mask clocks per half device, plus abundant low-skew routing programmed ASICs. FPGAs avoid the high initial cost, (cid:129) Configuration interface to industry-standard PROMs lengthy development cycles, and the inherent inflexibility o f (cid:129) Low-cost, space-saving SPI serial Flash PROM conventional ASICs, and permit field design upgrades. (cid:129) x8 or x8/x16 BPI parallel NOR Flash PROM Features (cid:129) Low-cost Xilinx® Platform Flash with JTAG (cid:129) Unique Device DNA identifier for design authentication (cid:129) Very low cost, high-performance logic solution for (cid:129) Load multiple bitstreams under FPGA control high-volume, cost-conscious applications (cid:129) Post-configuration CRC checking (cid:129) Dual-range V supply simplifies 3.3V-only design (cid:129) Complete Xilinx ISE® and WebPACK™ development CCAUX system software support plus Spartan-3A Starter Kit (cid:129) Suspend, Hibernate modes reduce system power (cid:129) MicroBlaze™ and PicoBlaze embedded processors (cid:129) Multi-voltage, multi-standard SelectIO™ interface pins (cid:129) Low-cost QFP and BGA packaging, Pb-free options (cid:129) Up to 502 I/O pins or 227 differential signal pairs (cid:129) LVCMOS, LVTTL, HSTL, and SSTL single-ended I/O (cid:129) Common footprints support easy density migration (cid:129) 3.3V, 2.5V, 1.8V, 1.5V, and 1.2V signaling (cid:129) Compatible with select Spartan-3AN nonvolatile FPGAs (cid:129) Selectable output drive, up to 24 mA per pin (cid:129) Compatible with higher density Spartan-3A DSP FPGAs (cid:129) QUIETIO standard reduces I/O switching noise (cid:129) XA Automotive version available (cid:129) Full 3.3V ± 10% compatibility and hot swap compliance Table 1: Summary of Spartan-3A FPGA Attributes CLB Array (One CLB = Four Slices) Distributed Block Maximum System Equivalent RAM bits(1) RAM Dedicated Maximum Differential Device Gates Logic Cells Rows Columns CLBs Slices bits(1) Multipliers DCMs User I/O I/O Pairs XC3S50A 50K 1,584 16 12 176 704 11K 54K 3 2 144 64 XC3S200A 200K 4,032 32 16 448 1,792 28K 288K 16 4 248 112 XC3S400A 400K 8,064 40 24 896 3,584 56K 360K 20 4 311 142 XC3S700A 700K 13,248 48 32 1,472 5,888 92K 360K 20 8 372 165 XC3S1400A 1400K 25,344 72 40 2,816 11,264 176K 576K 32 8 502 227 Notes: 1. By convention, one Kb is equivalent to 1,024 bits. © Copyright 2006–2018 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners. DS529 (v2.1) December 18, 2018 www.xilinx.com 3

Introduction and Ordering Information Architectural Overview The Spartan-3A family architecture consists of five (cid:129) Digital Clock Manager (DCM) Blocks provide fundamental programmable functional elements: self-calibrating, fully digital solutions for distributing, delaying, multiplying, dividing, and phase-shifting clock (cid:129) Configurable Logic Blocks (CLBs) contain flexible signals. Look-Up Tables (LUTs) that implement logic plus storage elements used as flip-flops or latches. CLBs These elements are organized as shown in Figure 1. A dual perform a wide variety of logical functions as well as ring of staggered IOBs surrounds a regular array of CLBs. store data. Each device has two columns of block RAM except for the (cid:129) Input/Output Blocks (IOBs) control the flow of data XC3S50A, which has one column. Each RAM column between the I/O pins and the internal logic of the consists of several 18-Kbit RAM blocks. Each block RAM is device. IOBs support bidirectional data flow plus 3-state associated with a dedicated multiplier. The DCMs are operation. Supports a variety of signal standards, positioned in the center with two at the top and two at the including several high-performance differential bottom of the device. The XC3S50A has DCMs only at the standards. Double Data-Rate (DDR) registers are top, while the XC3S700A and XC3S1400A add two DCMs in included. the middle of the two columns of block RAM and multipliers. (cid:129) Block RAM provides data storage in the form of 18-Kbit dual-port blocks. The Spartan-3A family features a rich network of routing that (cid:129) Multiplier Blocks accept two 18-bit binary numbers as interconnect all five functional elements, transmitting signals inputs and calculate the product. among them. Each functional element has an associated switch matrix that permits multiple connections to the routing. IOBs CLB M A er DCM Block R Multipli IOOBBss DDCCMM er pli CLBs ulti OBs DCM M / M OBs I RA I k c o Bl IOBs DS312-1_01_032606 Notes: 1. The XC3S700A and XC3S1400A have two additional DCMs on both the left and right sides as indicated by the dashed lines. The XC3S50A has only two DCMs at the top and only one Block RAM/Multiplier column. Figure 1: Spartan-3A FPGA Architecture 4 www.xilinx.com DS529 (v2.1) December 18, 2018

Introduction and Ordering Information Configuration I/O Capabilities Spartan-3A FPGAs are programmed by loading The Spartan-3A FPGA SelectIO interface supports many configuration data into robust, reprogrammable, static popular single-ended and differential standards. Table 2 CMOS configuration latches (CCLs) that collectively control shows the number of user I/Os as well as the number of all functional elements and routing resources. The FPGA’s differential I/O pairs available for each device/package configuration data is stored externally in a PROM or some combination. Some of the user I/Os are unidirectional other non-volatile medium, either on or off the board. After input-only pins as indicated in Table 2. applying power, the configuration data is written to the Spartan-3A FPGAs support the following single-ended FPGA using any of seven different modes: standards: (cid:129) Master Serial from a Xilinx Platform Flash PROM (cid:129) 3.3V low-voltage TTL (LVTTL) (cid:129) Serial Peripheral Interface (SPI) from an (cid:129) Low-voltage CMOS (LVCMOS) at 3.3V, 2.5V, 1.8V, industry-standard SPI serial Flash 1.5V, or 1.2V (cid:129) Byte Peripheral Interface (BPI) Up from an (cid:129) 3.3V PCI at 33 MHz or 66 MHz industry-standard x8 or x8/x16 parallel NOR Flash (cid:129) HSTL I, II, and III at 1.5V and 1.8V, commonly used in (cid:129) Slave Serial, typically downloaded from a processor memory applications (cid:129) Slave Parallel, typically downloaded from a processor (cid:129) SSTL I and II at 1.8V, 2.5V, and 3.3V, commonly used (cid:129) Boundary Scan (JTAG), typically downloaded from a for memory applications processor or system tester Spartan-3A FPGAs support the following differential Furthermore, Spartan-3A FPGAs support MultiBoot standards: configuration, allowing two or more FPGA configuration bitstreams to be stored in a single SPI serial Flash or a BPI (cid:129) LVDS, mini-LVDS, RSDS, and PPDS I/O at 2.5V or parallel NOR Flash. The FPGA application controls which 3.3V configuration to load next and when to load it. (cid:129) Bus LVDS I/O at 2.5V (cid:129) TMDS I/O at 3.3V Additionally, each Spartan-3A FPGA contains a unique, (cid:129) Differential HSTL and SSTL I/O factory-programmed Device DNA identifier useful for (cid:129) LVPECL inputs at 2.5V or 3.3V tracking purposes, anti-cloning designs, or IP protection. Table 2: Available User I/Os and Differential (Diff) I/O Pairs VQ100 TQ144 FT256 FG320 FG400 FG484 FG676 Package VQG100 TQG144 FTG256 FGG320 FGG400 FGG484 FGG676 Body Size 14 x 14(2) 20 x 20(2) 17 x 17 19 x 19 21 x 21 23 x 23 27 x 27 (mm) Device User Diff User Diff User Diff User Diff User Diff User Diff User Diff 68 60 108 50 144 64 XC3S50A - - - - - - - - (13) (24) (7) (24) (32) (32) 68 60 195 90 248 112 XC3S200A - - - - - - - - (13) (24) (35) (50) (56) (64) 195 90 251 112 311 142 XC3S400A - - - - - - - - (35) (50) (59) (64) (63) (78) 161 74 311 142 372 165 XC3S700A - - - - - - - - (13) (36) (63) (78) (84) (93) 161 74 375 165 502 227 XC3S1400A - - - - - - - - (13) (36) (87) (93) (94) (131) Notes: 1. The number shown in bold indicates the maximum number of I/O and input-only pins. The number shown in (italics) indicates the number of input-only pins. The differential (Diff) input-only pin count includes both differential pairs on input-only pins and differential pairs on I/O pins within I/O banks that are restricted to differential inputs. 2. The footprints for the VQ/TQ packages are larger than the package body. See the Package Drawings for details. DS529 (v2.1) December 18, 2018 www.xilinx.com 5

Introduction and Ordering Information Production Status Table 3 indicates the production status of each Spartan-3A a production configuration bitstream. Later versions are also FPGA by temperature range and speed grade. The table supported. also lists the earliest speed file version required for creating Table 3: Spartan-3A FPGA Production Status (Production Speed File) Temperature Range Commercial (C) Industrial Speed Grade Standard (–4) High-Performance (–5) Standard (–4) Production Production Production XC3S50A (v1.35) (v1.35) (v1.35) Production Production Production er XC3S200A (v1.35) (v1.35) (v1.35) b m Production Production Production u XC3S400A N (v1.36) (v1.36) (v1.36) t r a Production Production Production P XC3S700A (v1.34) (v1.35) (v1.34) Production Production Production XC3S1400A (v1.34) (v1.35) (v1.34) Package Marking Figure 2 provides a top marking example for Spartan-3A The “5C” and “4I” Speed Grade/Temperature Range part FPGAs in the quad-flat packages. Figure 3 shows the top combinations may be dual marked as “5C/4I”. Devices with marking for Spartan-3A FPGAs in BGA packages. The a single mark are only guaranteed for the marked speed markings for the BGA packages are nearly identical to those grade and temperature range. for the quad-flat packages, except that the marking is rotated with respect to the ball A1 indicator. Mask Revision Code Fabrication Code R SPARTANR Process Technology Device Type XC3S50ATM Package TQ144AGQ0625 Date Code D1234567A Speed Grade 4C Lot Code Temperature Range Pin P1 DS529-1_03_080406 Figure 2: Spartan-3A QFP Package Marking Example Mask Revision Code BGA Ball A1 R Fabrication Code SPARTANR Process Code Device Type XC3S50ATM Package FT256AGQ0625 Date Code D1234567A 4C Lot Code Speed Grade Temperature Range DS529-1_02_021206 Figure 3: Spartan-3A BGA Package Marking Example 6 www.xilinx.com DS529 (v2.1) December 18, 2018

Introduction and Ordering Information Ordering Information Spartan-3A FPGAs are available in both standard and Pb-free packaging options for all device/package combinations. The Pb-free packages include a ‘G’ character in the ordering code. Example: XC3S50A -4 FT 256 C Device Type Temperature Range Speed Grade Package Type/Number of Pins DS529-1_05_011309 Device Speed Grade Package Type / Number of Pins(1) Temperature Range ( T ) J XC3S50A –4 Standard Performance VQ100/ 100-pin Very Thin Quad Flat Pack (VQFP) C Commercial (0°C to 85°C) VQG100 XC3S200A –5 High Performance TQ144/ 144-pin Thin Quad Flat Pack (TQFP) I Industrial (–40°C to 100°C) (Commercial only) TQG144 XC3S400A FT256/ 256-ball Fine-Pitch Thin Ball Grid Array (FTBGA) FTG256 XC3S700A FG320/ 320-ball Fine-Pitch Ball Grid Array (FBGA) FGG320 XC3S1400A FG400/ 400-ball Fine-Pitch Ball Grid Array (FBGA) FGG400 FG484/ 484-ball Fine-Pitch Ball Grid Array (FBGA) FGG484 FG676 676-ball Fine-Pitch Ball Grid Array (FBGA) FGG676 Notes: 1. See Table 2 for specific device/package combinations. 2. See DS681 for the XA Automotive Spartan-3A FPGAs. Revision History The following table shows the revision history for this document. Date Version Revision 12/05/06 1.0 Initial release. 02/02/07 1.1 Promoted to Preliminary status. Updated maximum differential I/O count for XC3S50A in Table 1. Updated differential input-only pin counts in Table 2. 03/16/07 1.2 Minor formatting updates. 04/23/07 1.3 Added "Production Status" section. 05/08/07 1.4 Updated XC3S400A to Production. 07/10/07 1.4.1 Minor updates. 04/15/08 1.6 Added VQ100 for XC3S50A and XC3S200A and extended FT256 to XC3S700A and XC3S1400A Added reference to SCD 4103 for 750 Mbps performance. 05/28/08 1.7 Added reference to XA Automotive version. 03/06/09 1.8 Simplified Ordering Information. Added references to Extended Spartan-3A Family. Removed reference to SCD 4103. 08/19/10 2.0 Updated Table 2 to clarify TQ/VQ size. 12/18/2018 2.1 Updated for Lead-Frame Plating Composition Change For Legacy Eutectic Products (XCN18024). DS529 (v2.1) December 18, 2018 www.xilinx.com 7

Introduction and Ordering Information 8 www.xilinx.com DS529 (v2.1) December 18, 2018

10 Spartan-3A FPGA Family : Functional Description DS529 (v2.1) December 18, 2018 Product Specification 0 Spartan-3A FPGA Design Documentation The functionality of the Spartan®-3A FPGA Family is (cid:129) Detailed Descriptions by Mode described in the following documents. The topics covered in - Master Serial Mode using Xilinx® Platform each guide is listed below. Flash PROM (cid:129) DS706: Extended Spartan-3A Family Overview - Master SPI Mode using Commodity SPI Serial www.xilinx.com/support/documentation/ Flash PROM data_sheets/ds706.pdf - Master BPI Mode using Commodity Parallel (cid:129) UG331: Spartan-3 Generation FPGA User Guide NOR Flash PROM www.xilinx.com/support/documentation/ - Slave Parallel (SelectMAP) using a Processor user_guides/ug331.pdf - Slave Serial using a Processor (cid:129) Clocking Resources - JTAG Mode (cid:129) Digital Clock Managers (DCMs) (cid:129) ISE iMPACT Programming Examples (cid:129) Block RAM (cid:129) MultiBoot Reconfiguration (cid:129) Configurable Logic Blocks (CLBs) (cid:129) Design Authentication using Device DNA - Distributed RAM For application examples, see the Spartan-3A FPGA - SRL16 Shift Registers application notes. - Carry and Arithmetic Logic (cid:129) Spartan-3A FPGA Application Notes (cid:129) I/O Resources www.xilinx.com/support/documentation/ (cid:129) Embedded Multiplier Blocks spartan-3a_application_notes.htm (cid:129) Programmable Interconnect For specific hardware examples, please see the Spartan-3A (cid:129) ISE® Software Design Tools FPGA Starter Kit board web page, which has links to various design examples and the user guide. (cid:129) IP Cores (cid:129) Embedded Processing and Control Solutions (cid:129) Spartan-3A/3AN FPGA Starter Kit Board Page www.xilinx.com/s3astarter (cid:129) Pin Types and Package Overview (cid:129) UG334: Spartan-3A/3AN FPGA Starter Kit User (cid:129) Package Drawings Guide (cid:129) Powering FPGAs www.xilinx.com/support/documentation/ (cid:129) Power Management boards_and_kits/ug334.pdf (cid:129) UG332: Spartan-3 Generation Configuration User For information on the XA Automotive version of the Guide Spartan-3A family, see the following data sheet. www.xilinx.com/support/documentation/ (cid:129) XA Spartan-3A Automotive FPGA Family Data Sheet user_guides/ug332.pdf www.xilinx.com/support/documentation/data_sheets/ (cid:129) Configuration Overview ds681.pdf - Configuration Pins and Behavior Create a Xilinx user account and sign up to receive - Bitstream Sizes automatic e-mail notification whenever this data sheet or the associated user guides are updated. (cid:129) Sign Up for Alerts www.xilinx.com/support/answers/18683.htm © Copyright 2006–2018 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners. DS529 (v2.1) December 18, 2018 www.xilinx.com 9

Spartan-3A FPGA Family: Functional Description Related Product Families The Spartan-3AN nonvolatile FPGA family is architecturally The compatible Spartan-3A DSP FPGA family replaces the identical to the Spartan-3A FPGA family, except that it has 18-bit multiplier with the DSP48A block, while also in-system flash memory and is offered in select increasing the block RAM capability and quantity. The two pin-compatible package options. members of the Spartan-3A DSP FPGA family extend the Spartan-3A density range up to 37,440 and 53,712 logic (cid:129) DS557: Spartan-3AN Family Data Sheet cells. www.xilinx.com/support/documentation/ data_sheets/ds557.pdf (cid:129) DS610: Spartan-3A DSP FPGA Family Data Sheet www.xilinx.com/support/documentation/ data_sheets/ds610.pdf (cid:129) UG431: XtremeDSP DSP48A for Spartan-3A DSP FPGAs www.xilinx.com/support/documentation/ user_guides/ug431.pdf Revision History The following table shows the revision history for this document. Date Version Revision 12/05/06 1.0 Initial release. 02/02/07 1.1 Promoted to Preliminary status. 03/16/07 1.2 Added cross-reference to nonvolatile Spartan-3AN FPGA family. 04/23/07 1.3 Added cross-reference to compatible Spartan-3A DSP family. 07/10/07 1.4 Updated Starter Kit reference to new UG334. 04/15/08 1.6 Updated trademarks. 05/28/08 1.7 Added reference to XA Automotive version. 03/06/09 1.8 Added link to DS706 on Extended Spartan-3A family. 08/19/10 2.0 Updated link to sign up for Alerts. 12/18/18 Updated for Lead-Frame Plating Composition Change For Legacy Eutectic Products (XCN18024). 10 www.xilinx.com DS529 (v2.1) December 18, 2018

64 Spartan-3A FPGA Family: DC and Switching Characteristics DS529 (v2.1) December 18, 2018 Product Specification 0 DC Electrical Characteristics In this section, specifications may be designated as All parameter limits are representative of worst-case supply Advance, Preliminary, or Production. These terms are voltage and junction temperature conditions. Unless defined as follows: otherwise noted, the published parameter values apply to all Spartan®-3A devices. AC and DC characteristics Advance: Initial estimates are based on simulation, early are specified using the same numbers for both characterization, and/or extrapolation from the commercial and industrial grades. characteristics of other families. Values are subject to change. Use as estimates, not for production. Absolute Maximum Ratings Preliminary: Based on characterization. Further changes are not expected. Stresses beyond those listed under Table 4: Absolute Maximum Ratings may cause permanent damage to the Production: These specifications are approved once the device. These are stress ratings only; functional operation silicon has been characterized over numerous production of the device at these or any other conditions beyond those lots. Parameter values are considered stable with no future listed under the Recommended Operating Conditions is not changes expected. implied. Exposure to absolute maximum conditions for extended periods of time adversely affects device reliability. Table 4: Absolute Maximum Ratings Symbol Description Conditions Min Max Units V Internal supply voltage –0.5 1.32 V CCINT V Auxiliary supply voltage –0.5 3.75 V CCAUX V Output driver supply voltage –0.5 3.75 V CCO V Input reference voltage –0.5 V + 0.5 V REF CCO Voltage applied to all User I/O pins and Driver in a high-impedance state –0.95 4.6 V dual-purpose pins V IN Voltage applied to all Dedicated pins –0.5 4.6 V I Input clamp current per I/O pin –0.5V < V < (V + 0.5V) (1) – ±100 mA IK IN CCO Human body model – ±2000 V V Electrostatic Discharge Voltage Charged device model – ±500 V ESD Machine model – ±200 V T Junction temperature – 125 °C J T Storage temperature –65 150 °C STG Notes: 1. Upper clamp applies only when using PCI IOSTANDARDs. 2. For soldering guidelines, see UG112: Device Packaging and Thermal Characteristics and XAPP427: Implementation and Solder Reflow Guidelines for Pb-Free Packages. © Copyright 2006–2018 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners. DS529 (v2.1) December 18, 2018 www.xilinx.com 11

DC and Switching Characteristics Power Supply Specifications Table 5: Supply Voltage Thresholds for Power-On Reset Symbol Description Min Max Units V Threshold for the V supply 0.4 1.0 V CCINTT CCINT V Threshold for the V supply 1.0 2.0 V CCAUXT CCAUX V Threshold for the V Bank 2 supply 1.0 2.0 V CCO2T CCO Notes: 1. V , V , and V supplies to the FPGA can be applied in any order. However, the FPGA’s configuration source (Platform Flash, CCINT CCAUX CCO SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source. Apply V last for lowest overall power consumption (see UG331 chapter “Powering Spartan-3 Generation FPGAs” for more CCINT information). 2. To ensure successful power-on, V , V Bank 2, and V supplies must rise through their respective threshold-voltage ranges with CCINT CCO CCAUX no dips at any point. Table 6: Supply Voltage Ramp Rate Symbol Description Min Max Units V Ramp rate from GND to valid V supply level 0.2 100 ms CCINTR CCINT V Ramp rate from GND to valid V supply level 0.2 100 ms CCAUXR CCAUX V Ramp rate from GND to valid V Bank 2 supply level 0.2 100 ms CCO2R CCO Notes: 1. V , V , and V supplies to the FPGA can be applied in any order. However, the FPGA’s configuration source (Platform Flash, CCINT CCAUX CCO SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source. Apply V last for lowest overall power consumption (see UG331 chapter "Powering Spartan-3 Generation FPGAs" for more CCINT information). 2. To ensure successful power-on, V , V Bank 2, and V supplies must rise through their respective threshold-voltage ranges with CCINT CCO CCAUX no dips at any point. Table 7: Supply Voltage Levels Necessary for Preserving CMOS Configuration Latch (CCL) Contents and RAM Data Symbol Description Min Units V V level required to retain CMOS Configuration Latch (CCL) and RAM data 1.0 V DRINT CCINT V V level required to retain CMOS Configuration Latch (CCL) and RAM data 2.0 V DRAUX CCAUX 12 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics General Recommended Operating Conditions Table 8: General Recommended Operating Conditions Symbol Description Min Nominal Max Units Commercial 0 – 85 °C T Junction temperature J Industrial –40 – 100 °C V Internal supply voltage 1.14 1.20 1.26 V CCINT V (1) Output driver supply voltage 1.10 – 3.60 V CCO V = 2.5 2.25 2.50 2.75 V CCAUX V Auxiliary supply voltage(2) CCAUX V = 3.3 3.00 3.30 3.60 V CCAUX PCI IOSTANDARD –0.5 – V +0.5 V CCO V Input voltage(3) IP or IO_# –0.5 – 4.10 V IN All other IOSTANDARDs IO_Lxxy_# (4) –0.5 – 4.10 V T Input signal transition time(5) – – 500 ns IN Notes: 1. This V range spans the lowest and highest operating voltages for all supported I/O standards. Table 11 lists the recommended V CCO CCO range specific to each of the single-ended I/O standards, and Table 13 lists that specific to the differential standards. 2. Define V selection using CONFIG VCCAUX constraint. CCAUX 3. See XAPP459, “Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins.” 4. For single-ended signals that are placed on a differential-capable I/O, V of –0.2V to –0.5V is supported but can cause increased leakage IN between the two pins. See Parasitic Leakage in UG331, Spartan-3 Generation FPGA User Guide . 5. Measured between 10% and 90% V . Follow Signal Integrity recommendations. CCO DS529 (v2.1) December 18, 2018 www.xilinx.com 13

DC and Switching Characteristics General DC Characteristics for I/O Pins Table 9: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins (1) Symbol Description Test Conditions Min Typ Max Units I (2) Leakage current at User I/O, Driver is in a high-impedance state, –10 – +10 µA L input-only, dual-purpose, and V = 0V or V max, sample-tested IN CCO dedicated pins, FPGA powered I Leakage current on pins during All pins except INIT_B, PROG_B, DONE, and JTAG –10 – +10 µA HS hot socketing, FPGA unpowered pins when PUDC_B = 1. INIT_B, PROG_B, DONE, and JTAG pins or other Add I + I µA HS RPU pins when PUDC_B = 0. I (3) Current through pull-up resistor V = GND V or V = –151 –315 –710 µA RPU IN CCO CCAUX at User I/O, dual-purpose, 3.0V to 3.6V input-only, and dedicated pins. Dedicated pins are powered by VCCO or VCCAUX = –82 –182 –437 µA V . 2.3V to 2.7V CCAUX V = 1.7V to 1.9V –36 –88 –226 µA CCO V = 1.4V to 1.6V –22 –56 –148 µA CCO V = 1.14V to 1.26V –11 –31 –83 µA CCO R (3) Equivalent pull-up resistor value V = GND V = 3.0V to 3.6V 5.1 11.4 23.9 kΩ PU IN CCO at User I/O, dual-purpose, input-only, and dedicated pins VCCO = 2.3V to 2.7V 6.2 14.8 33.1 kΩ (based on IRPU per Note 3) V = 1.7V to 1.9V 8.4 21.6 52.6 kΩ CCO V = 1.4V to 1.6V 10.8 28.4 74.0 kΩ CCO V = 1.14V to 1.26V 15.3 41.1 119.4 kΩ CCO I (3) Current through pull-down V = V V = 3.0V to 3.6V 167 346 659 µA RPD IN CCO CCAUX resistor at User I/O, dual-purpose, input-only, and VCCAUX = 2.25V to 2.75V dedicated pins. Dedicated pins 100 225 457 µA are powered by V . CCAUX R (3) Equivalent pull-down resistor V = 3.0V to 3.6V V = 3.0V to 3.6V 5.5 10.4 20.8 kΩ PD CCAUX IN value at User I/O, dual-purpose, input-only, and dedicated pins VIN = 2.3V to 2.7V 4.1 7.8 15.7 kΩ (based on IRPD per Note 3) V = 1.7V to 1.9V 3.0 5.7 11.1 kΩ IN V = 1.4V to 1.6V 2.7 5.1 9.6 kΩ IN V = 1.14V to 1.26V 2.4 4.5 8.1 kΩ IN V = 2.25V to 2.75V V = 3.0V to 3.6V 7.9 16.0 35.0 kΩ CCAUX IN V = 2.3V to 2.7V 5.9 12.0 26.3 kΩ IN V = 1.7V to 1.9V 4.2 8.5 18.6 kΩ IN V = 1.4V to 1.6V 3.6 7.2 15.7 kΩ IN V = 1.14V to 1.26V 3.0 6.0 12.5 kΩ IN I V current per pin All V levels –10 – +10 µA REF REF CCO C Input capacitance – – – 10 pF IN R Resistance of optional differential V = 3.3V ± 10% LVDS_33, 90 100 115 Ω DT CCO termination circuit within a MINI_LVDS_33, differential I/O pair. Not available RSDS_33 on Input-only pairs. V = 2.5V ± 10% LVDS_25, 90 110 – Ω CCO MINI_LVDS_25, RSDS_25 Notes: 1. The numbers in this table are based on the conditions set forth in Table 8. 2. For single-ended signals that are placed on a differential-capable I/O, V of –0.2V to –0.5V is supported but can cause increased leakage IN between the two pins. See "Parasitic Leakage" in UG331, Spartan-3 Generation FPGA User Guide . 3. This parameter is based on characterization. The pull-up resistance R = V / I . The pull-down resistance R = V / I . PU CCO RPU PD IN RPD 14 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Quiescent Current Requirements Table 10: Quiescent Supply Current Characteristics Commercial Industrial Symbol Description Device Typical(2) Maximum(2) Maximum(2) Units I Quiescent V supply current XC3S50A 2 20 30 mA CCINTQ CCINT XC3S200A 7 50 70 mA XC3S400A 10 85 125 mA XC3S700A 13 120 185 mA XC3S1400A 24 220 310 mA I Quiescent V supply current XC3S50A 0.2 2 3 mA CCOQ CCO XC3S200A 0.2 2 3 mA XC3S400A 0.3 3 4 mA XC3S700A 0.3 3 4 mA XC3S1400A 0.3 3 4 mA I Quiescent V supply current XC3S50A 3 8 10 mA CCAUXQ CCAUX XC3S200A 5 12 15 mA XC3S400A 5 18 24 mA XC3S700A 6 28 34 mA XC3S1400A 10 50 58 mA Notes: 1. The numbers in this table are based on the conditions set forth in Table 8. 2. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads disabled. Typical values are characterized using typical devices at room temperature (T of 25°C at V = 1.2V, V = 3.3V, and V J CCINT CCO CCAUX = 2.5V). The maximum limits are tested for each device at the respective maximum specified junction temperature and at maximum voltage limits with V = 1.26V, V = 3.6V, and V = 3.6V. The FPGA is programmed with a “blank” configuration data file (that is, a design CCINT CCO CCAUX with no functional elements instantiated). For conditions other than those described above (for example, a design including functional elements), measured quiescent current levels will be different than the values in the table. 3. For more accurate estimates for a specific design, use the Xilinx XPower tools. There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The Spartan-3A FPGA XPower Estimator provides quick, approximate, typical estimates, and does not require a netlist of the design. b) XPower Analyzer uses a netlist as input to provide maximum estimates as well as more accurate typical estimates. 4. The maximum numbers in this table indicate the minimum current each power rail requires in order for the FPGA to power-on successfully. 5. For information on the power-saving Suspend mode, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs. Suspend mode typically saves 40% total power consumption compared to quiescent current. DS529 (v2.1) December 18, 2018 www.xilinx.com 15

DC and Switching Characteristics Single-Ended I/O Standards Table 11: Recommended Operating Conditions for User I/Os Using Single-Ended Standards V for Drivers(2) V V V CCO REF IL IH IOSTANDARD Attribute Min (V) Nom (V) Max (V) Min (V) Nom (V) Max (V) Max (V) Min (V) LVTTL 3.0 3.3 3.6 0.8 2.0 LVCMOS33(4) 3.0 3.3 3.6 0.8 2.0 LVCMOS25(4,5) 2.3 2.5 2.7 0.7 1.7 LVCMOS18 1.65 1.8 1.95 0.4 0.8 V is not used for REF these I/O standards LVCMOS15 1.4 1.5 1.6 0.4 0.8 LVCMOS12 1.1 1.2 1.3 0.4 0.7 PCI33_3(6) 3.0 3.3 3.6 0.3 • V 0.5 • V CCO CCO PCI66_3(6) 3.0 3.3 3.6 0.3 • V 0.5 • V CCO CCO HSTL_I 1.4 1.5 1.6 0.68 0.75 0.9 V – 0.1 V + 0.1 REF REF HSTL_III 1.4 1.5 1.6 – 0.9 - V – 0.1 V + 0.1 REF REF HSTL_I_18 1.7 1.8 1.9 0.8 0.9 1.1 V – 0.1 V + 0.1 REF REF HSTL_II_18 1.7 1.8 1.9 – 0.9 – V – 0.1 V + 0.1 REF REF HSTL_III_18 1.7 1.8 1.9 – 1.1 – V – 0.1 V + 0.1 REF REF SSTL18_I 1.7 1.8 1.9 0.833 0.900 0.969 V – 0.125 V + 0.125 REF REF SSTL18_II 1.7 1.8 1.9 0.833 0.900 0.969 V – 0.125 V + 0.125 REF REF SSTL2_I 2.3 2.5 2.7 1.13 1.25 1.38 V – 0.150 V + 0.150 REF REF SSTL2_II 2.3 2.5 2.7 1.13 1.25 1.38 V – 0.150 V + 0.150 REF REF SSTL3_I 3.0 3.3 3.6 1.3 1.5 1.7 V – 0.2 V + 0.2 REF REF SSTL3_II 3.0 3.3 3.6 1.3 1.5 1.7 V – 0.2 V + 0.2 REF REF Notes: 1. Descriptions of the symbols used in this table are as follows: V – the supply voltage for output drivers CCO V – the reference voltage for setting the input switching threshold REF V – the input voltage that indicates a Low logic level IL V – the input voltage that indicates a High logic level IH 2. In general, the V rails supply only output drivers, not input circuits. The exceptions are for LVCMOS25 inputs when V = 3.3V range CCO CCAUX and for PCI I/O standards. 3. For device operation, the maximum signal voltage (V max) can be as high as V max. See Table 8. IH IN 4. There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards. 5. All Dedicated pins (PROG_B, DONE, SUSPEND, TCK, TDI, TDO, and TMS) draw power from the V rail and use the LVCMOS25 or CCAUX LVCMOS33 standard depending on V . The dual-purpose configuration pins use the LVCMOS standard before the User mode. When CCAUX using these pins as part of a standard 2.5V configuration interface, apply 2.5V to the V lines of Banks 0, 1, and 2 at power-on as well as CCO throughout configuration. 6. For information on PCI IP solutions, see www.xilinx.com/pci. The PCI IOSTANDARD is not supported on input-only pins. The PCIX IOSTANDARD is available and has equivalent characteristics but no PCI-X IP is supported. 16 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Table 12: DC Characteristics of User I/Os Using Table 12: DC Characteristics of User I/Os Using Single-Ended Standards Single-Ended Standards(Continued) Test Logic Level Test Logic Level Conditions Characteristics Conditions Characteristics IOSTANDARD IOL IOH VOL VOH IOSTANDARD IOL IOH VOL VOH Attribute (mA) (mA) Max (V) Min (V) Attribute (mA) (mA) Max (V) Min (V) LVTTL(3) 2 2 –2 0.4 2.4 PCI33_3(5) 1.5 –0.5 10% VCCO 90% VCCO 4 4 –4 PCI66_3(5) 1.5 –0.5 10% VCCO 90% VCCO 6 6 –6 HSTL_I(4) 8 –8 0.4 VCCO - 0.4 8 8 –8 HSTL_III(4) 24 –8 0.4 VCCO - 0.4 12 12 –12 HSTL_I_18 8 –8 0.4 VCCO - 0.4 16 16 –16 HSTL_II_18(4) 16 –16 0.4 VCCO - 0.4 24 24 –24 HSTL_III_18 24 –8 0.4 VCCO - 0.4 LVCMOS33(3) 2 2 –2 0.4 VCCO – 0.4 SSTL18_I 6.7 –6.7 VTT – 0.475 VTT + 0.475 4 4 –4 SSTL18_II(4) 13.4 –13.4 VTT – 0.603 VTT + 0.603 6 6 –6 SSTL2_I 8.1 –8.1 VTT – 0.61 VTT + 0.61 8 8 –8 SSTL2_II(4) 16.2 –16.2 VTT – 0.81 VTT + 0.81 12 12 –12 SSTL3_I 8 –8 VTT – 0.6 VTT + 0.6 16 16 –16 SSTL3_II 16 –16 VTT – 0.8 VTT + 0.8 24(4) 24 –24 Notes: 1. The numbers in this table are based on the conditions set forth in LVCMOS25(3) 2 2 –2 0.4 VCCO – 0.4 Table 8 and Table 11. 4 4 –4 2. Descriptions of the symbols used in this table are as follows: I – the output current condition under which V is tested OL OL 6 6 –6 I – the output current condition under which V is tested OH OH V – the output voltage that indicates a Low logic level 8 8 –8 OL V – the output voltage that indicates a High logic level OH 12 12 –12 V – the supply voltage for output drivers CCO – V the voltage applied to a resistor termination 16(4) 16 –16 TT 3. For the LVCMOS and LVTTL standards: the same V and V OL OH 24(4) 24 –24 limits apply for the Fast, Slow, and QUIETIO slew attributes. 4. These higher-drive output standards are supported only on LVCMOS18(3) 2 2 –2 0.4 VCCO – 0.4 FPGA banks 1 and 3. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331. 4 4 –4 5. Tested according to the relevant PCI specifications. For information on PCI IP solutions, see www.xilinx.com/pci. The 6 6 –6 PCIX IOSTANDARD is available and has equivalent characteristics but no PCI-X IP is supported. 8 8 –8 12(4) 12 –12 16(4) 16 –16 LVCMOS15(3) 2 2 –2 0.4 VCCO – 0.4 4 4 –4 6 6 –6 8(4) 8 –8 12(4) 12 –12 LVCMOS12(3) 2 2 –2 0.4 VCCO – 0.4 4(4) 4 –4 6(4) 6 –6 DS529 (v2.1) December 18, 2018 www.xilinx.com 17

DC and Switching Characteristics Differential I/O Standards Differential Input Pairs V INP P Differential Internal N I/O Pair Pins V Logic INN V INN 50% V V ID INP V ICM GND level VINP + VINN V = Input common mode voltage = ICM 2 VID= Differential input voltage = VINP - VINN DS529-3_10_012907 Figure 4: Differential Input Voltages Table 13: Recommended Operating Conditions for User I/Os Using Differential Signal Standards V for Drivers(1) V V (2) CCO ID ICM IOSTANDARD Attribute Min (V) Nom (V) Max (V) Min (mV) Nom (mV) Max (mV) Min (V) Nom (V) Max (V) LVDS_25(3) 2.25 2.5 2.75 100 350 600 0.3 1.25 2.35 LVDS_33(3) 3.0 3.3 3.6 100 350 600 0.3 1.25 2.35 BLVDS_25(4) 2.25 2.5 2.75 100 300 – 0.3 1.3 2.35 MINI_LVDS_25(3) 2.25 2.5 2.75 200 – 600 0.3 1.2 1.95 MINI_LVDS_33(3) 3.0 3.3 3.6 200 – 600 0.3 1.2 1.95 LVPECL_25(5) Inputs Only 100 800 1000 0.3 1.2 1.95 LVPECL_33(5) Inputs Only 100 800 1000 0.3 1.2 2.8(6) RSDS_25(3) 2.25 2.5 2.75 100 200 – 0.3 1.2 1.5 RSDS_33(3) 3.0 3.3 3.6 100 200 – 0.3 1.2 1.5 TMDS_33(3, 4, 7) 3.14 3.3 3.47 150 – 1200 2.7 – 3.23 PPDS_25(3) 2.25 2.5 2.75 100 – 400 0.2 – 2.3 PPDS_33(3) 3.0 3.3 3.6 100 – 400 0.2 – 2.3 DIFF_HSTL_I_18 1.7 1.8 1.9 100 – – 0.8 – 1.1 DIFF_HSTL_II_18(8) 1.7 1.8 1.9 100 – – 0.8 – 1.1 DIFF_HSTL_III_18 1.7 1.8 1.9 100 – – 0.8 – 1.1 DIFF_HSTL_I 1.4 1.5 1.6 100 – – 0.68 0.9 DIFF_HSTL_III 1.4 1.5 1.6 100 – – – 0.9 – DIFF_SSTL18_I 1.7 1.8 1.9 100 – – 0.7 – 1.1 DIFF_SSTL18_II(8) 1.7 1.8 1.9 100 – – 0.7 – 1.1 DIFF_SSTL2_I 2.3 2.5 2.7 100 – – 1.0 – 1.5 DIFF_SSTL2_II(8) 2.3 2.5 2.7 100 – – 1.0 – 1.5 DIFF_SSTL3_I 3.0 3.3 3.6 100 – – 1.1 – 1.9 DIFF_SSTL3_II 3.0 3.3 3.6 100 – – 1.1 – 1.9 Notes: 1. The VCCO rails supply only differential output drivers, not input circuits. 2. VICM must be less than VCCAUX. 3. These true differential output standards are supported only on FPGA banks 0 and 2. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331. 4. See "External Termination Requirements for Differential I/O," page 20. 5. LVPECL is supported on inputs only, not outputs. LVPECL_33 requires VCCAUX=3.3V ± 10%. 6. LVPECL_33 maximum VICM = the lower of 2.8V or VCCAUX – (VID / 2) 7. Requires VCCAUX = 3.3V ± 10% for inputs. (VCCAUX – 300 mV) ≤ VICM ≤ (VCCAUX – 37 mV) 8. These higher-drive output standards are supported only on FPGA banks 1 and 3. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331. 9. All standards except for LVPECL and TMDS can have VCCAUX at either 2.5V or 3.3V. Define your VCCAUX level using the CONFIG VCCAUX constraint. 18 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Differential Output Pairs V OUTP P Differential Internal N I/O Pair Pins V Logic OUTN V V OH OUTN V 50% VOD OUTP V V OL OCM GND level V +V OUTP OUTN V = Output common mode voltage = OCM 2 VOD= Output differential voltage = VOUTP-VOUTN V = Output voltage indicating a High logic level OH V = Output voltage indicating a Low logic level OL DS529-3_11_012907 Figure 5: Differential Output Voltages Table 14: DC Characteristics of User I/Os Using Differential Signal Standards V V V V OD OCM OH OL Typ IOSTANDARD Attribute Min (mV) (mV) Max (mV) Min (V) Typ (V) Max (V) Min (V) Max (V) LVDS_25 247 350 454 1.125 – 1.375 – – LVDS_33 247 350 454 1.125 – 1.375 – – BLVDS_25 240 350 460 – 1.30 – – – MINI_LVDS_25 300 – 600 1.0 – 1.4 – – MINI_LVDS_33 300 – 600 1.0 – 1.4 – – RSDS_25 100 – 400 1.0 – 1.4 – – RSDS_33 100 – 400 1.0 – 1.4 – – TMDS_33 400 – 800 V – 0.405 – V – 0.190 – – CCO CCO PPDS_25 100 – 400 0.5 0.8 1.4 – – PPDS_33 100 – 400 0.5 0.8 1.4 – – DIFF_HSTL_I_18 – – – – – – V – 0.4 0.4 CCO DIFF_HSTL_II_18 – – – – – – V – 0.4 0.4 CCO DIFF_HSTL_III_18 – – – – – – V – 0.4 0.4 CCO DIFF_HSTL_I – – – – – – V – 0.4 0.4 CCO DIFF_HSTL_III – – – – – – V – 0.4 0.4 CCO DIFF_SSTL18_I – – – – – – V + 0.475 V – 0.475 TT TT DIFF_SSTL18_II – – – – – – V + 0.603 V – 0.603 TT TT DIFF_SSTL2_I – – – – – – V + 0.61 V – 0.61 TT TT DIFF_SSTL2_II – – – – – – V + 0.81 V – 0.81 TT TT DIFF_SSTL3_I – – – – – – V + 0.6 V – 0.6 TT TT DIFF_SSTL3_II – – – – – – V + 0.8 V – 0.8 TT TT Notes: 1. The numbers in this table are based on the conditions set forth in Table 8 and Table 13. 2. See "External Termination Requirements for Differential I/O," page 20. 3. Output voltage measurements for all differential standards are made with a termination resistor (R ) of 100Ω across the N and P pins of the T differential signal pair. 4. At any given time, no more than two of the following differential output standards can be assigned to an I/O bank: LVDS_25, RSDS_25, MINI_LVDS_25, PPDS_25 when V =2.5V, or LVDS_33, RSDS_33, MINI_LVDS_33, TMDS_33, PPDS_33 when V = 3.3V CCO CCO DS529 (v2.1) December 18, 2018 www.xilinx.com 19

DC and Switching Characteristics External Termination Requirements for Differential I/O LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards Bank 0 and 2 Any Bank Bank 0 Bank 0 3 B 1 /4P tahr to Nf uBmoubrenrs Bank ank 1 NLVoD SV_C3C3,O L VRDeSs_t2r5ic,tions Bank 2 Z0 = 50Ω CAT16-PT4F4 Bank 2 MINI_LVDS_33, MINI_LVDS_25, VCCO = 3.3V VCCO = 2.5V RSDS_33, RSDS_25, PPDS_33, PPDS_25 MLVINDIS__L3V3D, S_33, MLVINDIS__L2V5D, S_25, Z0 = 50Ω 100Ω RSDS_33, RSDS_25, PPDS_33 PPDS_25 DIFF_TERM=No a) Input-only differential pairs or pairs not using DIFF_TERM=Yes constraint Z0 = 50Ω VCCO = 3.3V VCCO = 2.5V LVDS_33, LVDS_25, VCCO = 3.3V VCCO = 2.5V MRSINDI_SL_V3D3,S _33, MRSINDI_SL_V2D5,S _25, LVDS_33, LVDS_25, PPDS_33 PPDS_25 MINI_LVDS_33, MINI_LVDS_25, Z0 = 50Ω RDT RSDS_33, RSDS_25, PPDS_33 PPDS_25 DIFF_TERM=Yes b) Differential pairs using DIFF_TERM=Yes constraint DS529-3_09_020107 Figure 6: External Input Termination for LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards BLVDS_25 I/O Standard Any Bank Any Bank Bank 0 Bank 0 Bank 3 Bank 1 1C /4P A taThr1 to 6Nf- LuBVmo4ubFren1rs2 1 C/4P A taThr 1to 6Nf -uBPmoTu4brFenr4s Bank 3 Bank 1 Bank 2 Bank 2 VCCO = 2.5V 165Ω Z0 = 50Ω No VCCO Requirement BLVDS_25 140Ω Z0 = 50Ω 100Ω BLVDS_25 165Ω DS529-3_07_020107 Figure 7: External Output and Input Termination Resistors for BLVDS_25 I/O Standard TMDS_33 I/O Standard Bank 0 and 2 Any Bank Bank 0 Bank 0 3.3V Bank 3 Bank 1 Bank 2 50Ω 50Ω Bank 2 VCCO = 3.3V VCCAUX = 3.3V TMDS_33 TMDS_33 DVI/HDMI cable DS529-3_08_020107 Figure 8: External Input Resistors Required for TMDS_33 I/O Standard Device DNA Read Endurance Table 15: Device DNA Identifier Memory Characteristics Symbol Description Minimum Units Number of READ operations or JTAG ISC_DNA read operations. Unaffected by Read DNA_CYCLES 30,000,000 HOLD or SHIFT operations. cycles 20 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Switching Characteristics All Spartan-3A FPGAs ship in two speed grades: –4 and the To create a Xilinx user account and sign up for automatic higher performance –5. Switching characteristics in this E-mail notification whenever this data sheet is updated: document are designated as Advance, Preliminary, or • Sign Up for Alerts Production, as shown in Table 16. Each category is defined www.xilinx.com/support/answers/18683.htm as follows: Timing parameters and their representative values are Advance: These specifications are based on simulations selected for inclusion below either because they are only and are typically available soon after establishing important as general design requirements or they indicate FPGA specifications. Although speed grades with this fundamental device performance characteristics. The designation are considered relatively stable and Spartan-3A FPGA speed files (v1.41), part of the Xilinx conservative, some under-reporting might still occur. Development Software, are the original source for many but Preliminary: These specifications are based on complete not all of the values. The speed grade designations for these early silicon characterization. Devices and speed grades files are shown in Table 16. For more complete, more with this designation are intended to give a better indication precise, and worst-case data, use the values reported by the of the expected performance of production silicon. The Xilinx static timing analyzer (TRACE in the Xilinx probability of under-reporting preliminary delays is greatly development software) and back-annotated to the reduced compared to Advance data. simulation netlist. Production: These specifications are approved once Table 16: Spartan-3A v1.41 Speed Grade Designation enough production silicon of a particular device has been Device Advance Preliminary Production characterized to provide full correlation between speed files and devices over numerous production lots. There is no XC3S50A -4, -5 under-reporting of delays, and customers receive formal XC3S200A -4, -5 notification of any subsequent changes. Typically, the XC3S400A -4, -5 slowest speed grades transition to Production before faster speed grades. XC3S700A -4, -5 XC3S1400A -4, -5 Software Version Requirements Table 17 provides the recent history of the Spartan-3A Production-quality systems must use FPGA designs FPGA speed files. compiled using a speed file designated as PRODUCTION status. FPGA designs using a less mature speed file Table 17: Spartan-3A Speed File Version History designation should only be used during system prototyping ISE or pre-production qualification. FPGA designs with speed Version Release Description files designated as Advance or Preliminary should not be 1.41 ISE 10.1.03 Updated Automotive output delays used in a production-quality system. 1.40 ISE 10.1.02 Updated Automotive input delays. Whenever a speed file designation changes, as a device 1.39 ISE 10.1.01 Added Automotive parts. matures toward Production status, rerun the latest Xilinx® ISE® software on the FPGA design to ensure that the FPGA 1.38 ISE 9.2.03i Added Absolute Minimum values. design incorporates the latest timing information and Updated pin-to-pin setup and hold software updates. times (Table 19), TMDS output 1.37 ISE 9.2.01i adjustment (Table 26) multiplier All parameter limits are representative of worst-case supply setup/hold times (Table 34), and block voltage and junction temperature conditions. Unless RAM clock width (Table 35). otherwise noted, the published parameter values apply ISE 9.2i; XC3S400A, all speed grades and all to all Spartan-3A devices. AC and DC characteristics previously temperature grades, upgraded to available via Production are specified using the same numbers for both 1.36 Answer commercial and industrial grades. Record AR24992 XC3S50A, XC3S200A, XC3S700A, Answer XC3S1400A, all speed grades and all 1.35 Record temperature grades, upgraded to AR24992 Production. XC3S700A and XC3S1400A -4 speed 1.34 ISE 9.1.03i grade upgraded to Production. Updated pin-to-pin timing numbers. DS529 (v2.1) December 18, 2018 www.xilinx.com 21

DC and Switching Characteristics I/O Timing Pin-to-Pin Clock-to-Output Times Table 18: Pin-to-Pin Clock-to-Output Times for the IOB Output Path Speed Grade -5 -4 Symbol Description Conditions Device Max Max Units Clock-to-Output Times T When reading from the Output LVCMOS25(2), 12mA XC3S50A 3.18 3.42 ns ICKOFDCM Flip-Flop (OFF), the time from the output drive, Fast slew active transition on the Global rate, with DCM(3) XC3S200A 3.21 3.27 ns Clock pin to data appearing at the XC3S400A 2.97 3.33 ns Output pin. The DCM is in use. XC3S700A 3.39 3.50 ns XC3S1400A 3.51 3.99 ns T When reading from OFF, the time LVCMOS25(2), 12mA XC3S50A 4.59 5.02 ns ICKOF from the active transition on the output drive, Fast slew Global Clock pin to data appearing rate, without DCM XC3S200A 4.88 5.24 ns at the Output pin. The DCM is not XC3S400A 4.68 5.12 ns in use. XC3S700A 4.97 5.34 ns XC3S1400A 5.06 5.69 ns Notes: 1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11. 2. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, add the appropriate Input adjustment from Table 23. If the latter is true, add the appropriate Output adjustment from Table 26. 3. DCM output jitter is included in all measurements. 22 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Pin-to-Pin Setup and Hold Times Table 19: Pin-to-Pin Setup and Hold Times for the IOB Input Path (System Synchronous) Speed Grade -5 -4 Symbol Description Conditions Device Min Min Units Setup Times T When writing to the Input LVCMOS25(2), XC3S50A 2.45 2.68 ns PSDCM Flip-Flop (IFF), the time from the IFD_DELAY_VALUE = 0, setup of data at the Input pin to with DCM(4) XC3S200A 2.59 2.84 ns the active transition at a Global XC3S400A 2.38 2.68 ns Clock pin. The DCM is in use. No Input Delay is programmed. XC3S700A 2.38 2.57 ns XC3S1400A 1.91 2.17 ns T When writing to IFF, the time from LVCMOS25(2), XC3S50A 2.55 2.76 ns PSFD the setup of data at the Input pin IFD_DELAY_VALUE = 5, to an active transition at the without DCM XC3S200A 2.32 2.76 ns Global Clock pin. The DCM is not XC3S400A 2.21 2.60 ns in use. The Input Delay is programmed. XC3S700A 2.28 2.63 ns XC3S1400A 2.33 2.41 ns Hold Times T When writing to IFF, the time from LVCMOS25(3), XC3S50A -0.36 -0.36 ns PHDCM the active transition at the Global IFD_DELAY_VALUE = 0, Clock pin to the point when data with DCM(4) XC3S200A -0.52 -0.52 ns must be held at the Input pin. The XC3S400A -0.33 -0.29 ns DCM is in use. No Input Delay is programmed. XC3S700A -0.17 -0.12 ns XC3S1400A -0.07 0.00 ns T When writing to IFF, the time from LVCMOS25(3), XC3S50A -0.63 -0.58 ns PHFD the active transition at the Global IFD_DELAY_VALUE = 5, Clock pin to the point when data without DCM XC3S200A -0.56 -0.56 ns must be held at the Input pin. The XC3S400A -0.42 -0.42 ns DCM is not in use. The Input Delay is programmed. XC3S700A -0.80 -0.75 ns XC3S1400A -0.69 -0.69 ns Notes: 1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11. 2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 23. If this is true of the data Input, add the appropriate Input adjustment from the same table. 3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 23. If this is true of the data Input, subtract the appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock’s active edge. 4. DCM output jitter is included in all measurements. DS529 (v2.1) December 18, 2018 www.xilinx.com 23

DC and Switching Characteristics Input Setup and Hold Times Table 20: Setup and Hold Times for the IOB Input Path Speed Grade IFD_ -5 -4 DELAY_ Symbol Description Conditions VALUE Device Min Min Units Setup Times T Time from the setup of data at the LVCMOS25(2) 0 XC3S50A 1.56 1.58 ns IOPICK Input pin to the active transition at the ICLK input of the Input Flip-Flop (IFF). XC3S200A 1.71 1.81 ns No Input Delay is programmed. XC3S400A 1.30 1.51 ns XC3S700A 1.34 1.51 ns XC3S1400A 1.36 1.74 ns T Time from the setup of data at the LVCMOS25(2) 1 XC3S50A 2.16 2.18 ns IOPICKD Input pin to the active transition at the ICLK input of the Input Flip-Flop (IFF). 2 3.10 3.12 ns The Input Delay is programmed. 3 3.51 3.76 ns 4 4.04 4.32 ns 5 3.88 4.24 ns 6 4.72 5.09 ns 7 5.47 5.94 ns 8 5.97 6.52 ns 1 XC3S200A 2.05 2.20 ns 2 2.72 2.93 ns 3 3.38 3.78 ns 4 3.88 4.37 ns 5 3.69 4.20 ns 6 4.56 5.23 ns 7 5.34 6.11 ns 8 5.85 6.71 ns 1 XC3S400A 1.79 2.02 ns 2 2.43 2.67 ns 3 3.02 3.43 ns 4 3.49 3.96 ns 5 3.41 3.95 ns 6 4.20 4.81 ns 7 4.96 5.66 ns 8 5.44 6.19 ns 24 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Table 20: Setup and Hold Times for the IOB Input Path(Continued) Speed Grade IFD_ -5 -4 DELAY_ Symbol Description Conditions VALUE Device Min Min Units T Time from the setup of data at the LVCMOS25(2) 1 XC3S700A 1.82 1.95 ns IOPICKD Input pin to the active transition at the ICLK input of the Input Flip-Flop (IFF). 2 2.62 2.83 ns The Input Delay is programmed. 3 3.32 3.72 ns 4 3.83 4.31 ns 5 3.69 4.14 ns 6 4.60 5.19 ns 7 5.39 6.10 ns 8 5.92 6.73 ns 1 XC3S1400A 1.79 2.17 ns 2 2.55 2.92 ns 3 3.38 3.76 ns 4 3.75 4.32 ns 5 3.81 4.19 ns 6 4.39 5.09 ns 7 5.16 5.98 ns 8 5.69 6.57 ns Hold Times T Time from the active transition at the LVCMOS25(3) 0 XC3S50A –0.66 –0.64 ns IOICKP ICLK input of the Input Flip-Flop (IFF) to the point where data must be held XC3S200A –0.85 –0.65 ns at the Input pin. No Input Delay is XC3S400A –0.42 –0.42 ns programmed. XC3S700A –0.81 –0.67 ns XC3S1400A –0.71 –0.71 ns T Time from the active transition at the LVCMOS25(3) 1 XC3S50A –0.88 –0.88 ns IOICKPD ICLK input of the Input Flip-Flop (IFF) to the point where data must be held 2 –1.33 –1.33 ns at the Input pin. The Input Delay is 3 –2.05 –2.05 ns programmed. 4 –2.43 –2.43 ns 5 –2.34 –2.34 ns 6 –2.81 –2.81 ns 7 –3.03 –3.03 ns 8 –3.83 –3.57 ns 1 XC3S200A –1.51 –1.51 ns 2 –2.09 –2.09 ns 3 –2.40 –2.40 ns 4 –2.68 –2.68 ns 5 –2.56 –2.56 ns 6 –2.99 –2.99 ns 7 –3.29 –3.29 ns 8 –3.61 –3.61 ns DS529 (v2.1) December 18, 2018 www.xilinx.com 25

DC and Switching Characteristics Table 20: Setup and Hold Times for the IOB Input Path(Continued) Speed Grade IFD_ -5 -4 DELAY_ Symbol Description Conditions VALUE Device Min Min Units T Time from the active transition at the LVCMOS25(3) 1 XC3S400A –1.12 –1.12 ns IOICKPD ICLK input of the Input Flip-Flop (IFF) to the point where data must be held 2 –1.70 –1.70 ns at the Input pin. The Input Delay is 3 –2.08 –2.08 ns programmed. 4 –2.38 –2.38 ns 5 –2.23 –2.23 ns 6 –2.69 –2.69 ns 7 –3.08 –3.08 ns 8 –3.35 –3.35 ns 1 XC3S700A –1.67 –1.67 ns 2 –2.27 –2.27 ns 3 –2.59 –2.59 ns 4 –2.92 –2.92 ns 5 –2.89 –2.89 ns 6 –3.22 –3.22 ns 7 –3.52 –3.52 ns 8 –3.81 –3.81 ns 1 XC3S1400A –1.60 –1.60 ns 2 –2.06 –2.06 ns 3 –2.46 –2.46 ns 4 –2.86 –2.86 ns 5 –2.88 –2.88 ns 6 –3.24 –3.24 ns 7 –3.55 –3.55 ns 8 –3.89 –3.89 ns Set/Reset Pulse Width Minimum pulse width to SR control - - All 1.33 1.61 ns T RPW_IOB input on IOB Notes: 1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11. 2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the appropriate Input adjustment from Table 23. 3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract the appropriate Input adjustment from Table 23. When the hold time is negative, it is possible to change the data before the clock’s active edge. Table 21: Sample Window (Source Synchronous) Symbol Description Max Units T Setup and hold The input capture sample window value is highly specific to a particular application, device, ps SAMP capture window of package, I/O standard, I/O placement, DCM usage, and clock buffer. Please consult the an IOB flip-flop. appropriate Xilinx Answer Record for application-specific values. • Answer Record 30879 26 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Input Propagation Times Table 22: Propagation Times for the IOB Input Path Speed Grade -5 -4 Symbol Description Conditions DELAY_VALUE Device Max Max Units Propagation Times T The time it takes for data to travel LVCMOS25(2) IBUF_DELAY_VALUE=0 XC3S50A 1.04 1.12 ns IOPI from the Input pin to the I output with no input delay programmed XC3S200A 0.87 0.87 ns XC3S400A 0.65 0.72 ns XC3S700A 0.92 0.92 ns XC3S1400A 0.96 1.21 ns T The time it takes for data to travel LVCMOS25(2) 1 XC3S50A 1.79 2.07 ns IOPID from the Input pin to the I output with the input delay programmed 2 2.13 2.46 ns 3 2.36 2.71 ns 4 2.88 3.21 ns 5 3.11 3.46 ns 6 3.45 3.84 ns 7 3.75 4.19 ns 8 4.00 4.47 ns 9 3.61 4.11 ns 10 3.95 4.50 ns 11 4.18 4.67 ns 12 4.75 5.20 ns 13 4.98 5.44 ns 14 5.31 5.95 ns 15 5.62 6.28 ns 16 5.86 6.57 ns 1 XC3S200A 1.57 1.65 ns 2 1.87 1.97 ns 3 2.16 2.33 ns 4 2.68 2.96 ns 5 2.87 3.19 ns 6 3.20 3.60 ns 7 3.57 4.02 ns 8 3.79 4.26 ns 9 3.42 3.86 ns 10 3.79 4.25 ns 11 4.02 4.55 ns 12 4.62 5.24 ns 13 4.86 5.53 ns 14 5.18 5.94 ns DS529 (v2.1) December 18, 2018 www.xilinx.com 27

DC and Switching Characteristics Table 22: Propagation Times for the IOB Input Path(Continued) Speed Grade -5 -4 Symbol Description Conditions DELAY_VALUE Device Max Max Units T The time it takes for data to travel LVCMOS25(2) 15 XC3S200A 5.43 6.24 ns IOPID from the Input pin to the I output with the input delay programmed 16 5.75 6.59 ns 1 XC3S400A 1.32 1.43 ns 2 1.67 1.83 ns 3 1.90 2.07 ns 4 2.33 2.52 ns 5 2.60 2.91 ns 6 2.94 3.20 ns 7 3.23 3.51 ns 8 3.50 3.85 ns 9 3.18 3.55 ns 10 3.53 3.95 ns 11 3.76 4.20 ns 12 4.26 4.67 ns 13 4.51 4.97 ns 14 4.85 5.32 ns 15 5.14 5.64 ns 16 5.40 5.95 ns 1 XC3S700A 1.84 1.87 ns 2 2.20 2.27 ns 3 2.46 2.60 ns 4 2.93 3.15 ns 5 3.21 3.45 ns 6 3.54 3.80 ns 7 3.86 4.16 ns 8 4.13 4.48 ns 9 3.82 4.19 ns 10 4.17 4.58 ns 11 4.43 4.89 ns 12 4.95 5.49 ns 13 5.22 5.83 ns 14 5.57 6.21 ns 15 5.89 6.55 ns 16 6.16 6.89 ns 1 XC3S1400A 1.95 2.18 ns 2 2.29 2.59 ns 3 2.54 2.84 ns 4 2.96 3.30 ns 28 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Table 22: Propagation Times for the IOB Input Path(Continued) Speed Grade -5 -4 Symbol Description Conditions DELAY_VALUE Device Max Max Units T The time it takes for data to travel LVCMOS25(2) 5 XC3S1400A 3.17 3.52 ns IOPID from the Input pin to the I output with the input delay programmed 6 3.52 3.92 ns 7 3.82 4.18 ns 8 4.10 4.57 ns 9 3.84 4.31 ns 10 4.20 4.79 ns 11 4.46 5.06 ns 12 4.87 5.51 ns 13 5.07 5.73 ns 14 5.43 6.08 ns 15 5.73 6.33 ns 16 6.01 6.77 ns T The time it takes for data to travel LVCMOS25(2) IFD_DELAY_VALUE=0 XC3S50A 1.70 1.81 ns IOPLI from the Input pin through the IFF latch to the I output with no input XC3S200A 1.85 2.04 ns delay programmed XC3S400A 1.44 1.74 ns XC3S700A 1.48 1.74 ns XC3S1400A 1.50 1.97 ns T The time it takes for data to travel LVCMOS25(2) 1 XC3S50A 2.30 2.41 ns IOPLID from the Input pin through the IFF latch to the I output with the input 2 3.24 3.35 ns delay programmed 3 3.65 3.98 ns 4 4.18 4.55 ns 5 4.02 4.47 ns 6 4.86 5.32 ns 7 5.61 6.17 ns 8 6.11 6.75 ns 1 XC3S200A 2.19 2.43 ns 2 2.86 3.16 ns 3 3.52 4.01 ns 4 4.02 4.60 ns 5 3.83 4.43 ns 6 4.70 5.46 ns 7 5.48 6.33 ns 8 5.99 6.94 ns 1 XC3S400A 1.93 2.25 ns 2 2.57 2.90 ns 3 3.16 3.66 ns 4 3.63 4.19 ns DS529 (v2.1) December 18, 2018 www.xilinx.com 29

DC and Switching Characteristics Table 22: Propagation Times for the IOB Input Path(Continued) Speed Grade -5 -4 Symbol Description Conditions DELAY_VALUE Device Max Max Units T The time it takes for data to travel LVCMOS25(2) 5 XC3S400A 3.55 4.18 ns IOPLID from the Input pin through the IFF latch to the I output with the input 6 4.34 5.03 ns delay programmed 7 5.09 5.88 ns 8 5.58 6.42 ns 1 XC3S700A 1.96 2.18 ns 2 2.76 3.06 ns 3 3.45 3.95 ns 4 3.97 4.54 ns 5 3.83 4.37 ns 6 4.74 5.42 ns 7 5.53 6.33 ns 8 6.06 6.96 ns 1 XC3S1400A 1.93 2.40 ns 2 2.69 3.15 ns 3 3.52 3.99 ns 4 3.89 4.55 ns 5 3.95 4.42 ns 6 4.53 5.32 ns 7 5.30 6.21 ns 8 5.83 6.80 ns Notes: 1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11. 2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is true, add the appropriate Input adjustment from Table 23. 30 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Input Timing Adjustments Table 23: Input Timing Adjustments by IOSTANDARD Table 23: Input Timing Adjustments by IOSTANDARD(Continued) Add the Add the Convert Input Time from Adjustment Below Convert Input Time from Adjustment Below LVCMOS25 to the Following Speed Grade LVCMOS25 to the Following Speed Grade Signal Standard Signal Standard (IOSTANDARD) -5 -4 Units (IOSTANDARD) -5 -4 Units Single-Ended Standards Differential Standards LVTTL 0.62 0.62 ns LVDS_25 0.76 0.76 ns LVCMOS33 0.54 0.54 ns LVDS_33 0.79 0.79 ns LVCMOS25 0 0 ns BLVDS_25 0.79 0.79 ns LVCMOS18 0.83 0.83 ns MINI_LVDS_25 0.78 0.78 ns LVCMOS15 0.60 0.60 ns MINI_LVDS_33 0.79 0.79 ns LVCMOS12 0.31 0.31 ns LVPECL_25 0.78 0.78 ns PCI33_3 0.41 0.41 ns LVPECL_33 0.79 0.79 ns PCI66_3 0.41 0.41 ns RSDS_25 0.79 0.79 ns HSTL_I 0.72 0.72 ns RSDS_33 0.77 0.77 ns HSTL_III 0.77 0.77 ns TMDS_33 0.79 0.79 ns HSTL_I_18 0.69 0.69 ns PPDS_25 0.79 0.79 ns HSTL_II_18 0.69 0.69 ns PPDS_33 0.79 0.79 ns HSTL_III_18 0.79 0.79 ns DIFF_HSTL_I_18 0.74 0.74 ns SSTL18_I 0.71 0.71 ns DIFF_HSTL_II_18 0.72 0.72 ns SSTL18_II 0.71 0.71 ns DIFF_HSTL_III_18 1.05 1.05 ns SSTL2_I 0.68 0.68 ns DIFF_HSTL_I 0.72 0.72 ns SSTL2_II 0.68 0.68 ns DIFF_HSTL_III 1.05 1.05 ns SSTL3_I 0.78 0.78 ns DIFF_SSTL18_I 0.71 0.71 ns SSTL3_II 0.78 0.78 ns DIFF_SSTL18_II 0.71 0.71 ns DIFF_SSTL2_I 0.74 0.74 ns DIFF_SSTL2_II 0.75 0.75 ns DIFF_SSTL3_I 1.06 1.06 ns DIFF_SSTL3_II 1.06 1.06 ns Notes: 1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8, Table 11, and Table 13. 2. These adjustments are used to convert input path times originally specified for the LVCMOS25 standard to times that correspond to other signal standards. DS529 (v2.1) December 18, 2018 www.xilinx.com 31

DC and Switching Characteristics Output Propagation Times Table 24: Timing for the IOB Output Path Speed Grade -5 -4 Symbol Description Conditions Device Max Max Units Clock-to-Output Times T When reading from the Output Flip-Flop (OFF), LVCMOS25(2), 12 mA output All 2.87 3.13 ns IOCKP the time from the active transition at the OCLK drive, Fast slew rate input to data appearing at the Output pin Propagation Times T The time it takes for data to travel from the IOB’s LVCMOS25(2), 12 mA output All 2.78 2.91 ns IOOP O input to the Output pin drive, Fast slew rate Set/Reset Times T Time from asserting the OFF’s SR input to LVCMOS25(2), 12 mA output All 3.63 3.89 ns IOSRP setting/resetting data at the Output pin drive, Fast slew rate T Time from asserting the Global Set Reset (GSR) 8.62 9.65 ns IOGSRQ input on the STARTUP_SPARTAN3A primitive to setting/resetting data at the Output pin Notes: 1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11. 2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, add the appropriate Output adjustment from Table 26. Three-State Output Propagation Times Table 25: Timing for the IOB Three-State Path Speed Grade -5 -4 Symbol Description Conditions Device Max Max Units Synchronous Output Enable/Disable Times T Time from the active transition at the OTCLK input of LVCMOS25, 12 mA All 0.63 0.76 ns IOCKHZ the Three-state Flip-Flop (TFF) to when the Output output drive, Fast slew pin enters the high-impedance state rate T (2) Time from the active transition at TFF’s OTCLK input All 2.80 3.06 ns IOCKON to when the Output pin drives valid data Asynchronous Output Enable/Disable Times T Time from asserting the Global Three State (GTS) LVCMOS25, 12 mA All 9.47 10.36 ns GTS input on the STARTUP_SPARTAN3A primitive to output drive, Fast slew when the Output pin enters the high-impedance rate state Set/Reset Times T Time from asserting TFF’s SR input to when the LVCMOS25, 12 mA All 1.61 1.86 ns IOSRHZ Output pin enters a high-impedance state output drive, Fast slew rate T (2) Time from asserting TFF’s SR input at TFF to when All 3.57 3.82 ns IOSRON the Output pin drives valid data Notes: 1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11. 2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, add the appropriate Output adjustment from Table 26. 32 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Output Timing Adjustments Table 26: Output Timing Adjustments for IOB Table 26: Output Timing Adjustments for IOB(Continued) Add the Add the Adjustment Adjustment Convert Output Time from Below Convert Output Time from Below LVCMOS25 with 12mA Drive and Speed Grade LVCMOS25 with 12mA Drive and Speed Grade Fast Slew Rate to the Following Fast Slew Rate to the Following Signal Standard (IOSTANDARD) -5 -4 Units Signal Standard (IOSTANDARD) -5 -4 Units Single-Ended Standards LVCMOS33 Slow 2 mA 5.58 5.58 ns LVTTL Slow 2 mA 5.58 5.58 ns 4 mA 3.17 3.17 ns 4 mA 3.16 3.16 ns 6 mA 3.17 3.17 ns 6 mA 3.17 3.17 ns 8 mA 2.09 2.09 ns 8 mA 2.09 2.09 ns 12 mA 1.24 1.24 ns 12 mA 1.62 1.62 ns 16 mA 1.15 1.15 ns 16 mA 1.24 1.24 ns 24 mA 2.55(3) 2.55(3) ns 24 mA 2.74(3) 2.74(3) ns Fast 2 mA 3.02 3.02 ns Fast 2 mA 3.03 3.03 ns 4 mA 1.71 1.71 ns 4 mA 1.71 1.71 ns 6 mA 1.72 1.72 ns 6 mA 1.71 1.71 ns 8 mA 0.53 0.53 ns 8 mA 0.53 0.53 ns 12 mA 0.59 0.59 ns 12 mA 0.53 0.53 ns 16 mA 0.59 0.59 ns 16 mA 0.59 0.59 ns 24 mA 0.51 0.51 ns 24 mA 0.60 0.60 ns QuietIO 2 mA 27.67 27.67 ns QuietIO 2 mA 27.67 27.67 ns 4 mA 27.67 27.67 ns 4 mA 27.67 27.67 ns 6 mA 27.67 27.67 ns 6 mA 27.67 27.67 ns 8 mA 16.71 16.71 ns 8 mA 16.71 16.71 ns 12 mA 16.29 16.29 ns 12 mA 16.67 16.67 ns 16 mA 16.18 16.18 ns 16 mA 16.22 16.22 ns 24 mA 12.11 12.11 ns 24 mA 12.11 12.11 ns DS529 (v2.1) December 18, 2018 www.xilinx.com 33

DC and Switching Characteristics Table 26: Output Timing Adjustments for IOB(Continued) Table 26: Output Timing Adjustments for IOB(Continued) Add the Add the Adjustment Adjustment Convert Output Time from Below Convert Output Time from Below LVCMOS25 with 12mA Drive and LVCMOS25 with 12mA Drive and Speed Grade Speed Grade Fast Slew Rate to the Following Fast Slew Rate to the Following Signal Standard (IOSTANDARD) -5 -4 Units Signal Standard (IOSTANDARD) -5 -4 Units LVCMOS25 Slow 2 mA 5.33 5.33 ns LVCMOS15 Slow 2 mA 5.82 5.82 ns 4 mA 2.81 2.81 ns 4 mA 3.97 3.97 ns 6 mA 2.82 2.82 ns 6 mA 3.21 3.21 ns 8 mA 1.14 1.14 ns 8 mA 2.53 2.53 ns 12 mA 1.10 1.10 ns 12 mA 2.06 2.06 ns 16 mA 0.83 0.83 ns Fast 2 mA 5.23 5.23 ns 24 mA 2.26(3) 2.26(3) ns 4 mA 3.05 3.05 ns Fast 2 mA 4.36 4.36 ns 6 mA 1.95 1.95 ns 4 mA 1.76 1.76 ns 8 mA 1.60 1.60 ns 6 mA 1.25 1.25 ns 12 mA 1.30 1.30 ns 8 mA 0.38 0.38 ns QuietIO 2 mA 34.11 34.11 ns 12 mA 0 0 ns 4 mA 25.66 25.66 ns 16 mA 0.01 0.01 ns 6 mA 24.64 24.64 ns 24 mA 0.01 0.01 ns 8 mA 22.06 22.06 ns QuietIO 2 mA 25.92 25.92 ns 12 mA 20.64 20.64 ns 4 mA 25.92 25.92 ns LVCMOS12 Slow 2 mA 7.14 7.14 ns 6 mA 25.92 25.92 ns 4 mA 4.87 4.87 ns 8 mA 15.57 15.57 ns 6 mA 5.67 5.67 ns 12 mA 15.59 15.59 ns Fast 2 mA 6.77 6.77 ns 16 mA 14.27 14.27 ns 4 mA 5.02 5.02 ns 24 mA 11.37 11.37 ns 6 mA 4.09 4.09 ns LVCMOS18 Slow 2 mA 4.48 4.48 ns QuietIO 2 mA 50.76 50.76 ns 4 mA 3.69 3.69 ns 4 mA 43.17 43.17 ns 6 mA 2.91 2.91 ns 6 mA 37.31 37.31 ns 8 mA 1.99 1.99 ns PCI33_3 0.34 0.34 ns 12 mA 1.57 1.57 ns PCI66_3 0.34 0.34 ns 16 mA 1.19 1.19 ns HSTL_I 0.78 0.78 ns Fast 2 mA 3.96 3.96 ns HSTL_III 1.16 1.16 ns 4 mA 2.57 2.57 ns HSTL_I_18 0.35 0.35 ns 6 mA 1.90 1.90 ns HSTL_II_18 0.30 0.30 ns 8 mA 1.06 1.06 ns HSTL_III_18 0.47 0.47 ns 12 mA 0.83 0.83 ns SSTL18_I 0.40 0.40 ns 16 mA 0.63 0.63 ns SSTL18_II 0.30 0.30 ns QuietIO 2 mA 24.97 24.97 ns SSTL2_I 0 0 ns 4 mA 24.97 24.97 ns SSTL2_II –0.05 –0.05 ns 6 mA 24.08 24.08 ns SSTL3_I 0 0 ns 8 mA 16.43 16.43 ns SSTL3_II 0.17 0.17 ns 12 mA 14.52 14.52 ns 16 mA 13.41 13.41 ns 34 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Table 26: Output Timing Adjustments for IOB(Continued) Add the Adjustment Convert Output Time from Below LVCMOS25 with 12mA Drive and Speed Grade Fast Slew Rate to the Following Signal Standard (IOSTANDARD) -5 -4 Units Differential Standards LVDS_25 1.16 1.16 ns LVDS_33 0.46 0.46 ns BLVDS_25 0.11 0.11 ns MINI_LVDS_25 0.75 0.75 ns MINI_LVDS_33 0.40 0.40 ns LVPECL_25 Input Only LVPECL_33 RSDS_25 1.42 1.42 ns RSDS_33 0.58 0.58 ns TMDS_33 0.46 0.46 ns PPDS_25 1.07 1.07 ns PPDS_33 0.63 0.63 ns DIFF_HSTL_I_18 0.43 0.43 ns DIFF_HSTL_II_18 0.41 0.41 ns DIFF_HSTL_III_18 0.36 0.36 ns DIFF_HSTL_I 1.01 1.01 ns DIFF_HSTL_III 0.54 0.54 ns DIFF_SSTL18_I 0.49 0.49 ns DIFF_SSTL18_II 0.41 0.41 ns DIFF_SSTL2_I 0.82 0.82 ns DIFF_SSTL2_II 0.09 0.09 ns DIFF_SSTL3_I 1.16 1.16 ns DIFF_SSTL3_II 0.28 0.28 ns Notes: 1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8, Table 11, and Table 13. 2. These adjustments are used to convert output- and three-state-path times originally specified for the LVCMOS25 standard with 12 mA drive and Fast slew rate to times that correspond to other signal standards. Do not adjust times that measure when outputs go into a high-impedance state. 3. Note that 16 mA drive is faster than 24 mA drive for the Slow slew rate. DS529 (v2.1) December 18, 2018 www.xilinx.com 35

DC and Switching Characteristics Timing Measurement Methodology When measuring timing parameters at the programmable LVCMOS, LVTTL), then R is set to 1MΩ to indicate an open T I/Os, different signal standards call for different test connection, and V is set to zero. The same measurement T conditions. Table 27 lists the conditions to use for each point (V ) that was used at the Input is also used at the M standard. Output. The method for measuring Input timing is as follows: A signal that swings between a Low logic level of VL and a VT (VREF) High logic level of V is applied to the Input under test. H Some standards also require the application of a bias FPGA Output R (R ) T REF voltage to the V pins of a given bank to properly set the REF input-switching threshold. The measurement point of the V (V ) M MEAS Input signal (V ) is commonly located halfway between V M L and V . H C (C ) L REF The Output test setup is shown in Figure 9. A termination voltage V is applied to the termination resistor R , the other DS312-3_04_102406 T T end of which is connected to the Output. For each standard, Notes: R and V generally take on the standard values 1. The names shown in parentheses are T T used in the IBIS file. recommended for minimizing signal reflections. If the standard does not ordinarily use terminations (for example, Figure 9: Output Test Setup Table 27: Test Methods for Timing Measurement at I/Os Inputs and Inputs Outputs Outputs Signal Standard (IOSTANDARD) V (V) V (V) V (V) R (Ω) V (V) V (V) REF L H T T M Single-Ended LVTTL - 0 3.3 1M 0 1.4 LVCMOS33 - 0 3.3 1M 0 1.65 LVCMOS25 - 0 2.5 1M 0 1.25 LVCMOS18 - 0 1.8 1M 0 0.9 LVCMOS15 - 0 1.5 1M 0 0.75 LVCMOS12 - 0 1.2 1M 0 0.6 PCI33_3 Rising - Note 3 Note 3 25 0 0.94 Falling 25 3.3 2.03 PCI66_3 Rising - Note 3 Note 3 25 0 0.94 Falling 25 3.3 2.03 HSTL_I 0.75 V – 0.5 V + 0.5 50 0.75 V REF REF REF HSTL_III 0.9 V – 0.5 V + 0.5 50 1.5 V REF REF REF HSTL_I_18 0.9 V – 0.5 V + 0.5 50 0.9 V REF REF REF HSTL_II_18 0.9 V – 0.5 V + 0.5 25 0.9 V REF REF REF HSTL_III_18 1.1 V – 0.5 V + 0.5 50 1.8 V REF REF REF SSTL18_I 0.9 V – 0.5 V + 0.5 50 0.9 V REF REF REF SSTL18_II 0.9 V – 0.5 V + 0.5 25 0.9 V REF REF REF SSTL2_I 1.25 V – 0.75 V + 0.75 50 1.25 V REF REF REF SSTL2_II 1.25 V – 0.75 V + 0.75 25 1.25 V REF REF REF SSTL3_I 1.5 V – 0.75 V + 0.75 50 1.5 V REF REF REF SSTL3_II 1.5 V – 0.75 V + 0.75 25 1.5 V REF REF REF 36 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Table 27: Test Methods for Timing Measurement at I/Os(Continued) Inputs and Inputs Outputs Outputs Signal Standard (IOSTANDARD) V (V) V (V) V (V) R (Ω) V (V) V (V) REF L H T T M Differential LVDS_25 - V – 0.125 V + 0.125 50 1.2 V ICM ICM ICM LVDS_33 - V – 0.125 V + 0.125 50 1.2 V ICM ICM ICM BLVDS_25 - V – 0.125 V + 0.125 1M 0 V ICM ICM ICM MINI_LVDS_25 - V – 0.125 V + 0.125 50 1.2 V ICM ICM ICM MINI_LVDS_33 - V – 0.125 V + 0.125 50 1.2 V ICM ICM ICM LVPECL_25 - V – 0.3 V + 0.3 N/A N/A V ICM ICM ICM LVPECL_33 - V – 0.3 V + 0.3 N/A N/A V ICM ICM ICM RSDS_25 - V – 0.1 V + 0.1 50 1.2 V ICM ICM ICM RSDS_33 - V – 0.1 V + 0.1 50 1.2 V ICM ICM ICM TMDS_33 - V – 0.1 V + 0.1 50 3.3 V ICM ICM ICM PPDS_25 - V – 0.1 V + 0.1 50 0.8 V ICM ICM ICM PPDS_33 - V – 0.1 V + 0.1 50 0.8 V ICM ICM ICM DIFF_HSTL_I - V – 0.5 V + 0.5 50 0.75 V ICM ICM ICM DIFF_HSTL_III - V – 0.5 V + 0.5 50 1.5 V ICM ICM ICM DIFF_HSTL_I_18 - V – 0.5 V + 0.5 50 0.9 V ICM ICM ICM DIFF_HSTL_II_18 - V – 0.5 V + 0.5 50 0.9 V ICM ICM ICM DIFF_HSTL_III_18 - V – 0.5 V + 0.5 50 1.8 V ICM ICM ICM DIFF_SSTL18_I - V – 0.5 V + 0.5 50 0.9 V ICM ICM ICM DIFF_SSTL18_II - V – 0.5 V + 0.5 50 0.9 V ICM ICM ICM DIFF_SSTL2_I - V – 0.5 V + 0.5 50 1.25 V ICM ICM ICM DIFF_SSTL2_II - V – 0.5 V + 0.5 50 1.25 V ICM ICM ICM DIFF_SSTL3_I - V – 0.5 V + 0.5 50 1.5 V ICM ICM ICM DIFF_SSTL3_II - V – 0.5 V + 0.5 50 1.5 V ICM ICM ICM Notes: 1. Descriptions of the relevant symbols are as follows: V – The reference voltage for setting the input switching threshold REF V – The common mode input voltage ICM V – Voltage of measurement point on signal transition M V – Low-level test voltage at Input pin L V – High-level test voltage at Input pin H R – Effective termination resistance, which takes on a value of 1 MΩ when no parallel termination is required T V – Termination voltage T 2. The load capacitance (C ) at the Output pin is 0 pF for all signal standards. L 3. According to the PCI specification. The capacitive load (C ) is connected between the output and GND. The Output timing for all standards, as published in the L speed files and the data sheet, is always based on a C value of zero. High-impedance probes (less than 1 pF) are used for L all measurements. Any delay that the test fixture might contribute to test measurements is subtracted from those measurements to produce the final timing numbers as published in the speed files and data sheet. DS529 (v2.1) December 18, 2018 www.xilinx.com 37

DC and Switching Characteristics Using IBIS Models to Simulate Load Conditions in Application IBIS models permit the most accurate prediction of timing 1. Simulate the desired signal standard with the output delays for a given application. The parameters found in the driver connected to the test setup shown in Figure 9. IBIS model (V , R , and V ) correspond directly Use parameter values V , R , and V from Table 27. REF REF MEAS T T M with the parameters used in Table 27 (V , R , and V ). Do C is zero. T T M REF not confuse V (the termination voltage) from the IBIS REF 2. Record the time to V . M model with V (the input-switching threshold) from the REF 3. Simulate the same signal standard with the output driver table. A fourth parameter, C , is always zero. The four REF connected to the PCB trace with load. Use the parameters describe all relevant output test conditions. IBIS appropriate IBIS model (including V , R , C , models are found in the Xilinx development software as well REF REF REF and V values) or capacitive value to represent the as at the following link: MEAS load. www.xilinx.com/support/download/index.htm 4. Record the time to V . MEAS Delays for a given application are simulated according to its 5. Compare the results of steps 2 and 4. Add (or subtract) specific load conditions as follows: the increase (or decrease) in delay to (or from) the appropriate Output standard adjustment (Table 26) to yield the worst-case delay of the PCB trace. Simultaneously Switching Output Guidelines This section provides guidelines for the recommended Table 28 and Table 29 provide the essential SSO guidelines. maximum allowable number of Simultaneous Switching For each device/package combination, Table 28 provides Outputs (SSOs). These guidelines describe the maximum the number of equivalent V /GND pairs. The equivalent CCO number of user I/O pins of a given output signal standard number of pairs is based on characterization and may not that should simultaneously switch in the same direction, match the physical number of pairs. For each output signal while maintaining a safe level of switching noise. Meeting standard and drive strength, Table 29 recommends the these guidelines for the stated test conditions ensures that maximum number of SSOs, switching in the same direction, the FPGA operates free from the adverse effects of ground allowed per V /GND pair within an I/O bank. The CCO and power bounce. guidelines in Table 29 are categorized by package style, slew rate, and output drive current. Furthermore, the Ground or power bounce occurs when a large number of number of SSOs is specified by I/O bank. Generally, the left outputs simultaneously switch in the same direction. The and right I/O banks (Banks 1 and 3) support higher output output drive transistors all conduct current to a common drive current. voltage rail. Low-to-High transitions conduct to the V CCO rail; High-to-Low transitions conduct to the GND rail. The Multiply the appropriate numbers from Table 28 and resulting cumulative current transient induces a voltage Table 29 to calculate the maximum number of SSOs allowed difference across the inductance that exists between the die within an I/O bank. Exceeding these SSO guidelines might pad and the power supply or ground return. The inductance result in increased power or ground bounce, degraded is associated with bonding wires, the package lead frame, signal integrity, or increased system jitter. and any other signal routing inside the package. Other SSO /IO Bank = Table 28 x Table 29 variables contribute to SSO noise levels, including stray MAX inductance on the PCB as well as capacitive loading at The recommended maximum SSO values assume that the receivers. Any SSO-induced voltage consequently affects FPGA is soldered on the printed circuit board and that the internal switching noise margins and ultimately signal board uses sound design practices. The SSO values do not quality. apply for FPGAs mounted in sockets, due to the lead inductance introduced by the socket. The SSO values assume that the V is powered at CCAUX 3.3V. Setting V to 2.5V provides better SSO CCAUX characteristics. The number of SSOs allowed for quad-flat packages (VQ/TQ) is lower than for ball grid array packages (FG) due to the larger lead inductance of the quad-flat packages. Ball grid array packages are recommended for applications with a large number of simultaneously switching outputs. 38 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Table 28: Equivalent V /GND Pairs per Bank CCO Package Style (including Pb-free) Device VQ100 TQ144 FT256 FG320 FG400 FG484 FG676 XC3S50A 1 2 3 – – – – XC3S200A 1 – 4 4 – – – XC3S400A – – 4 4 5 – – XC3S700A – – 4 – 5 5 – XC3S1400A – – 4 – – 6 9 Table 29: Recommended Number of Simultaneously Switching Table 29: Recommended Number of Simultaneously Switching Outputs per VCCO-GND Pair (VCCAUX=3.3V) Outputs per VCCO-GND Pair (VCCAUX=3.3V)(Continued) Package Type Package Type FT256, FG320, FT256, FG320, FG400, FG484, FG400, FG484, VQ100, TQ144 FG676 VQ100, TQ144 FG676 Top, Left, Top, Left, Top, Left, Top, Left, Bottom Right Bottom Right Bottom Right Bottom Right Signal Standard (Banks (Banks (Banks (Banks Signal Standard (Banks (Banks (Banks (Banks (IOSTANDARD) 0,2) 1,3) 0,2) 1,3) (IOSTANDARD) 0,2) 1,3) 0,2) 1,3) Single-Ended Standards LVCMOS33 Slow 2 24 24 76 76 LVTTL Slow 2 20 20 60 60 4 14 14 46 46 4 10 10 41 41 6 11 11 27 27 6 10 10 29 29 8 10 10 20 20 8 6 6 22 22 12 9 9 13 13 12 6 6 13 13 16 8 8 10 10 16 5 5 11 11 24 – 8 – 9 24 4 4 9 9 Fast 2 10 10 10 10 Fast 2 10 10 10 10 4 8 8 8 8 4 6 6 6 6 6 5 5 5 5 6 5 5 5 5 8 4 4 4 4 8 3 3 3 3 12 4 4 4 4 12 3 3 3 3 16 2 2 2 2 16 3 3 3 3 24 – 2 – 2 24 2 2 2 2 QuietIO 2 36 36 76 76 QuietIO 2 40 40 80 80 4 32 32 46 46 4 24 24 48 48 6 24 24 32 32 6 20 20 36 36 8 16 16 26 26 8 16 16 27 27 12 16 16 18 18 12 12 12 16 16 16 12 12 14 14 16 9 9 13 13 24 – 10 – 10 24 9 9 12 12 DS529 (v2.1) December 18, 2018 www.xilinx.com 39

DC and Switching Characteristics Table 29: Recommended Number of Simultaneously Switching Table 29: Recommended Number of Simultaneously Switching Outputs per VCCO-GND Pair (V =3.3V)(Continued) Outputs per VCCO-GND Pair (V =3.3V)(Continued) CCAUX CCAUX Package Type Package Type FT256, FG320, FT256, FG320, FG400, FG484, FG400, FG484, VQ100, TQ144 FG676 VQ100, TQ144 FG676 Top, Left, Top, Left, Top, Left, Top, Left, Bottom Right Bottom Right Bottom Right Bottom Right Signal Standard (Banks (Banks (Banks (Banks Signal Standard (Banks (Banks (Banks (Banks (IOSTANDARD) 0,2) 1,3) 0,2) 1,3) (IOSTANDARD) 0,2) 1,3) 0,2) 1,3) LVCMOS25 Slow 2 16 16 76 76 LVCMOS15 Slow 2 12 12 55 55 4 10 10 46 46 4 7 7 31 31 6 8 8 33 33 6 7 7 18 18 8 7 7 24 24 8 – 6 – 15 12 6 6 18 18 12 – 5 – 10 16 – 6 – 11 Fast 2 10 10 25 25 24 – 5 – 7 4 7 7 10 10 Fast 2 12 12 18 18 6 6 6 6 6 4 10 10 14 14 8 – 4 – 4 6 8 8 6 6 12 – 3 – 3 8 6 6 6 6 QuietIO 2 30 30 70 70 12 3 3 3 3 4 21 21 40 40 16 – 3 – 3 6 18 18 31 31 24 – 2 – 2 8 – 12 – 31 QuietIO 2 36 36 76 76 12 – 12 – 20 4 30 30 60 60 LVCMOS12 Slow 2 17 17 40 40 6 24 24 48 48 4 – 13 – 25 8 20 20 36 36 6 – 10 – 18 12 12 12 36 36 Fast 2 12 9 31 31 16 – 12 – 36 4 – 9 – 13 24 – 8 – 8 6 – 9 – 9 LVCMOS18 Slow 2 13 13 64 64 QuietIO 2 36 36 55 55 4 8 8 34 34 4 – 33 – 36 6 8 8 22 22 6 – 27 – 36 8 7 7 18 18 PCI33_3 9 9 16 16 12 – 5 – 13 PCI66_3 – 9 – 13 16 – 5 – 10 HSTL_I – 11 – 20 Fast 2 13 13 18 18 HSTL_III – 7 – 8 4 8 8 9 9 HSTL_I_18 13 13 17 17 6 7 7 7 7 HSTL_II_18 – 5 – 5 8 4 4 4 4 HSTL_III_18 8 8 10 8 12 – 4 – 4 SSTL18_I 7 13 7 15 16 – 3 – 3 SSTL18_II – 9 – 9 QuietIO 2 30 30 64 64 SSTL2_I 10 10 18 18 4 24 24 64 64 SSTL2_II – 6 – 9 6 20 20 48 48 SSTL3_I 7 8 8 10 8 16 16 36 36 SSTL3_II 5 6 6 7 12 – 12 – 36 16 – 12 – 24 40 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Table 29: Recommended Number of Simultaneously Switching Outputs per VCCO-GND Pair (V =3.3V)(Continued) CCAUX Package Type FT256, FG320, FG400, FG484, VQ100, TQ144 FG676 Top, Left, Top, Left, Bottom Right Bottom Right Signal Standard (Banks (Banks (Banks (Banks (IOSTANDARD) 0,2) 1,3) 0,2) 1,3) Differential Standards (Number of I/O Pairs or Channels) LVDS_25 8 – 22 – LVDS_33 8 – 27 – BLVDS_25 1 1 4 4 MINI_LVDS_25 8 – 22 – MINI_LVDS_33 8 – 27 – LVPECL_25 Input Only LVPECL_33 Input Only RSDS_25 8 – 22 – RSDS_33 8 – 27 – TMDS_33 8 – 27 – PPDS_25 8 – 22 – PPDS_33 8 – 27 – DIFF_HSTL_I – 5 – 10 DIFF_HSTL_III – 3 – 4 DIFF_HSTL_I_18 6 6 8 8 DIFF_HSTL_II_18 – 2 – 2 DIFF_HSTL_III_18 4 4 5 4 DIFF_SSTL18_I 3 6 3 7 DIFF_SSTL18_II – 4 – 4 DIFF_SSTL2_I 5 5 9 9 DIFF_SSTL2_II – 3 – 4 DIFF_SSTL3_I 3 4 4 5 DIFF_SSTL3_II 2 3 3 3 Notes: 1. Not all I/O standards are supported on all I/O banks. The left and right banks (I/O banks 1 and 3) support higher output drive current than the top and bottom banks (I/O banks 0 and 2). Similarly, true differential output standards, such as LVDS, RSDS, PPDS, miniLVDS, and TMDS, are only supported in top or bottom banks (I/O banks 0 and 2). Refer to UG331: Spartan-3 Generation FPGA User Guide for additional information. 2. The numbers in this table are recommendations that assume sound board lay out practice. Test limits are the V /V voltage IL IH limits for the respective I/O standard. 3. If more than one signal standard is assigned to the I/Os of a given bank, refer to XAPP689: Managing Ground Bounce in Large FPGAs for information on how to perform weighted average SSO calculations. DS529 (v2.1) December 18, 2018 www.xilinx.com 41

DC and Switching Characteristics Configurable Logic Block (CLB) Timing Table 30: CLB (SLICEM) Timing Speed Grade -5 -4 Symbol Description Min Max Min Max Units Clock-to-Output Times T When reading from the FFX (FFY) Flip-Flop, the time CKO from the active transition at the CLK input to data – 0.60 – 0.68 ns appearing at the XQ (YQ) output Setup Times T Time from the setup of data at the F or G input to the AS 0.18 – 0.36 – ns active transition at the CLK input of the CLB T Time from the setup of data at the BX or BY input to DICK 1.58 – 1.88 – ns the active transition at the CLK input of the CLB Hold Times T Time from the active transition at the CLK input to the AH 0 – 0 – ns point where data is last held at the F or G input T Time from the active transition at the CLK input to the CKDI 0 – 0 – ns point where data is last held at the BX or BY input Clock Timing T The High pulse width of the CLB’s CLK signal 0.63 – 0.75 – ns CH T The Low pulse width of the CLK signal 0.63 – 0.75 – ns CL F Toggle frequency (for export control) 0 770 0 667 MHz TOG Propagation Times T The time it takes for data to travel from the CLB’s F ILO – 0.62 – 0.71 ns (G) input to the X (Y) output Set/Reset Pulse Width T The minimum allowable pulse width, High or Low, to RPW_CLB 1.33 – 1.61 – ns the CLB’s SR input Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 8. 42 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Table 31: CLB Distributed RAM Switching Characteristics -5 -4 Symbol Description Min Max Min Max Units Clock-to-Output Times T Time from the active edge at the CLK input to data appearing on SHCKO – 1.69 – 2.01 ns the distributed RAM output Setup Times T Setup time of data at the BX or BY input before the active DS –0.07 – –0.02 – ns transition at the CLK input of the distributed RAM T Setup time of the F/G address inputs before the active transition AS 0.18 – 0.36 – ns at the CLK input of the distributed RAM T Setup time of the write enable input before the active transition at WS 0.30 – 0.59 – ns the CLK input of the distributed RAM Hold Times T Hold time of the BX and BY data inputs after the active transition DH 0.13 – 0.13 – ns at the CLK input of the distributed RAM T T Hold time of the F/G address inputs or the write enable input after AH, WH 0.01 – 0.01 – ns the active transition at the CLK input of the distributed RAM Clock Pulse Width T , T Minimum High or Low pulse width at CLK input 0.88 – 1.01 – ns WPH WPL Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 8. Table 32: CLB Shift Register Switching Characteristics -5 -4 Symbol Description Min Max Min Max Units Clock-to-Output Times T Time from the active edge at the CLK input to data appearing on REG – 4.11 – 4.82 ns the shift register output Setup Times T Setup time of data at the BX or BY input before the active SRLDS 0.13 – 0.18 – ns transition at the CLK input of the shift register Hold Times T Hold time of the BX or BY data input after the active transition at SRLDH 0.16 – 0.16 – ns the CLK input of the shift register Clock Pulse Width T , T Minimum High or Low pulse width at CLK input 0.90 – 1.01 – ns WPH WPL Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 8. DS529 (v2.1) December 18, 2018 www.xilinx.com 43

DC and Switching Characteristics Clock Buffer/Multiplexer Switching Characteristics Table 33: Clock Distribution Switching Characteristics Maximum Speed Grade Description Symbol Minimum -5 -4 Units Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to T – 0.22 0.23 ns O-output delay GIO Global clock multiplexer (BUFGMUX) select S-input setup to I0 and T – 0.56 0.63 ns I1 inputs. Same as BUFGCE enable CE-input GSI Frequency of signals distributed on global buffers (all sides) F 0 350 334 MHz BUFG Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 8. 44 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics 18 x 18 Embedded Multiplier Timing Table 34: 18 x 18 Embedded Multiplier Timing Speed Grade -5 -4 Symbol Description Min Max Min Max Units Combinatorial Delay T Combinational multiplier propagation delay from the A and B inputs MULT to the P outputs, assuming 18-bit inputs and a 36-bit product – 4.36 – 4.88 ns (AREG, BREG, and PREG registers unused) Clock-to-Output Times T Clock-to-output delay from the active transition of the CLK input to MSCKP_P valid data appearing on the P outputs when using the PREG – 0.84 – 1.30 ns register(2,3) T Clock-to-output delay from the active transition of the CLK input to MSCKP_A T valid data appearing on the P outputs when using either the AREG – 4.44 – 4.97 ns MSCKP_B or BREG register(2,4) Setup Times T Data setup time at the A or B input before the active transition at the MSDCK_P CLK when using only the PREG output register (AREG, BREG 3.56 – 3.98 – ns registers unused)(3) T Data setup time at the A input before the active transition at the CLK MSDCK_A 0.00 – 0.00 – ns when using the AREG input register(4) T Data setup time at the B input before the active transition at the CLK MSDCK_B 0.00 – 0.00 – ns when using the BREG input register(4) Hold Times T Data hold time at the A or B input after the active transition at the MSCKD_P CLK when using only the PREG output register (AREG, BREG 0.00 – 0.00 – ns registers unused)(3) T Data hold time at the A input after the active transition at the CLK MSCKD_A 0.35 – 0.45 – ns when using the AREG input register(4) T Data hold time at the B input after the active transition at the CLK MSCKD_B 0.35 – 0.45 – ns when using the BREG input register(4) Clock Frequency F Internal operating frequency for a two-stage 18x18 multiplier using MULT the AREG and BREG input registers and the PREG output 0 280 0 250 MHz register(1) Notes: 1. Combinational delay is less and pipelined performance is higher when multiplying input data with less than 18 bits. 2. The PREG register is typically used in both single-stage and two-stage pipelined multiplier implementations. 3. The PREG register is typically used when inferring a single-stage multiplier. 4. Input registers AREG or BREG are typically used when inferring a two-stage multiplier. 5. The numbers in this table are based on the operating conditions set forth in Table 8. DS529 (v2.1) December 18, 2018 www.xilinx.com 45

DC and Switching Characteristics Block RAM Timing Table 35: Block RAM Timing Speed Grade -5 -4 Symbol Description Min Max Min Max Units Clock-to-Output Times T When reading from block RAM, the delay from the active RCKO transition at the CLK input to data appearing at the DOUT – 2.06 – 2.49 ns output Setup Times T Setup time for the ADDR inputs before the active transition at RCCK_ADDR 0.32 – 0.36 – ns the CLK input of the block RAM T Setup time for data at the DIN inputs before the active RDCK_DIB 0.28 – 0.31 – ns transition at the CLK input of the block RAM T Setup time for the EN input before the active transition at the RCCK_ENB 0.69 – 0.77 – ns CLK input of the block RAM T Setup time for the WE input before the active transition at the RCCK_WEB 1.12 – 1.26 – ns CLK input of the block RAM Hold Times T Hold time on the ADDR inputs after the active transition at the RCKC_ADDR 0 – 0 – ns CLK input T Hold time on the DIN inputs after the active transition at the RCKD_DIB 0 – 0 – ns CLK input T Hold time on the EN input after the active transition at the CLK RCKC_ENB 0 – 0 – ns input T Hold time on the WE input after the active transition at the CLK RCKC_WEB 0 – 0 – ns input Clock Timing T High pulse width of the CLK signal 1.56 – 1.79 – ns BPWH T Low pulse width of the CLK signal 1.56 – 1.79 – ns BPWL Clock Frequency F Block RAM clock frequency 0 320 0 280 MHz BRAM Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 8. 46 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Digital Clock Manager (DCM) Timing For specification purposes, the DCM consists of three key Period jitter is the worst-case deviation from the ideal clock components: the Delay-Locked Loop (DLL), the Digital period over a collection of millions of samples. In a Frequency Synthesizer (DFS), and the Phase Shifter (PS). histogram of period jitter, the mean value is the clock period. Aspects of DLL operation play a role in all DCM applications. Cycle-cycle jitter is the worst-case difference in clock period All such applications inevitably use the CLKIN and the between adjacent clock cycles in the collection of clock CLKFB inputs connected to either the CLK0 or the CLK2X periods sampled. In a histogram of cycle-cycle jitter, the feedback, respectively. Thus, specifications in the DLL mean value is zero. tables (Table 36 and Table 37) apply to any application that Spread Spectrum only employs the DLL component. When the DFS and/or the PS components are used together with the DLL, then the DCMs accept typical spread spectrum clocks as long as specifications listed in the DFS and PS tables (Table 38 they meet the input requirements. The DLL will track the through Table 41) supersede any corresponding ones in the frequency changes created by the spread spectrum clock to DLL tables. DLL specifications that do not change with the drive the global clocks to the FPGA logic. See XAPP469, addition of DFS or PS functions are presented in Table 36 Spread-Spectrum Clocking Reception for Displays for and Table 37. details. Period jitter and cycle-cycle jitter are two of many different ways of specifying clock jitter. Both specifications describe statistical variation from a mean value. Delay-Locked Loop (DLL) Table 36: Recommended Operating Conditions for the DLL Speed Grade -5 -4 Symbol Description Min Max Min Max Units Input Frequency Ranges F CLKIN_FREQ_DLL Frequency of the CLKIN clock input 5(2) 280(3) 5(2) 250(3) MHz CLKIN Input Pulse Requirements CLKIN_PULSE CLKIN pulse width as a F < 150 MHz 40% 60% 40% 60% – CLKIN percentage of the CLKIN period FCLKIN > 150 MHz 45% 55% 45% 55% – Input Clock Jitter Tolerance and Delay Path Variation(4) CLKIN_CYC_JITT_DLL_LF Cycle-to-cycle jitter at the F < 150 MHz – ±300 – ±300 ps CLKIN CLKIN input CLKIN_CYC_JITT_DLL_HF F > 150 MHz – ±150 – ±150 ps CLKIN CLKIN_PER_JITT_DLL Period jitter at the CLKIN input – ±1 – ±1 ns CLKFB_DELAY_VAR_EXT Allowable variation of off-chip feedback delay ±1 ±1 ns – – from the DCM output to the CLKFB input Notes: 1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use. 2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 38. 3. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input. 4. CLKIN input jitter beyond these limits might cause the DCM to lose lock. 5. The DCM specifications are guaranteed when both adjacent DCMs are locked. DS529 (v2.1) December 18, 2018 www.xilinx.com 47

DC and Switching Characteristics Table 37: Switching Characteristics for the DLL Speed Grade -5 -4 Symbol Description Device Min Max Min Max Units Output Frequency Ranges CLKOUT_FREQ_CLK0 Frequency for the CLK0 and CLK180 outputs All 5 280 5 250 MHz CLKOUT_FREQ_CLK90 Frequency for the CLK90 and CLK270 outputs 5 200 5 200 MHz CLKOUT_FREQ_2X Frequency for the CLK2X and CLK2X180 outputs 10 334 10 334 MHz CLKOUT_FREQ_DV Frequency for the CLKDV output 0.3125 186 0.3125 166 MHz Output Clock Jitter(2,3,4) CLKOUT_PER_JITT_0 Period jitter at the CLK0 output All – ±100 – ±100 ps CLKOUT_PER_JITT_90 Period jitter at the CLK90 output – ±150 – ±150 ps CLKOUT_PER_JITT_180 Period jitter at the CLK180 output – ±150 – ±150 ps CLKOUT_PER_JITT_270 Period jitter at the CLK270 output – ±150 – ±150 ps CLKOUT_PER_JITT_2X Period jitter at the CLK2X and CLK2X180 outputs ±[0.5% ±[0.5% ps of CLKIN of CLKIN – – period period + 100] + 100] CLKOUT_PER_JITT_DV1 Period jitter at the CLKDV output when performing integer – ±150 – ±150 ps division CLKOUT_PER_JITT_DV2 Period jitter at the CLKDV output when performing non-integer ±[0.5% ±[0.5% ps division of CLKIN of CLKIN – – period period + 100] + 100] Duty Cycle(4) CLKOUT_DUTY_CYCLE_DLL Duty cycle variation for the CLK0, CLK90, CLK180, CLK270, All ±[1% of ±[1% of ps CLK2X, CLK2X180, and CLKDV outputs, including the CLKIN CLKIN – – BUFGMUX and clock tree duty-cycle distortion period period + 350] + 350] Phase Alignment(4) CLKIN_CLKFB_PHASE Phase offset between the CLKIN and CLKFB inputs All – ±150 – ±150 ps CLKOUT_PHASE_DLL Phase offset between DLL outputs CLK0 to CLK2X ±[1% of ±[1% of ps (not CLK2X180) – CLKIN – CLKIN period period + 100] + 100] All others ±[1% of ±[1% of ps CLKIN CLKIN – – period period + 150] + 150] Lock Time LOCK_DLL(3) When using the DLL alone: The 5 MHz < F < 15 MHz All – 5 – 5 ms CLKIN time from deassertion at the DCM’s Reset input to the rising transition FCLKIN > 15 MHz – 600 – 600 µs at its LOCKED output. When the DCM is locked, the CLKIN and CLKFB signals are in phase Delay Lines DCM_DELAY_STEP(5) Finest delay resolution, averaged over all steps All 15 35 15 35 ps Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 36. 2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input. 3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute. 4. Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. For example, the data sheet specifies a maximum jitter of “±[1% of CLKIN period + 150]”. Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 150 ps] = ±250ps. 5. The typical delay step size is 23 ps. 48 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Digital Frequency Synthesizer (DFS) Table 38: Recommended Operating Conditions for the DFS Speed Grade -5 -4 Symbol Description Min Max Min Max Units Input Frequency Ranges(2) F CLKIN_FREQ_FX Frequency for the CLKIN input 0.200 333(4) 0.200 333(4) MHz CLKIN Input Clock Jitter Tolerance(3) CLKIN_CYC_JITT_FX_LF Cycle-to-cycle jitter at the CLKIN F < 150 MHz – ±300 – ±300 ps CLKFX input, based on CLKFX output CLKIN_CYC_JITT_FX_HF frequency FCLKFX > 150 MHz – ±150 – ±150 ps CLKIN_PER_JITT_FX Period jitter at the CLKIN input – ±1 – ±1 ns Notes: 1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used. 2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 36. 3. CLKIN input jitter beyond these limits may cause the DCM to lose lock. 4. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM. Table 39: Switching Characteristics for the DFS Speed Grade -5 -4 Symbol Description Device Min Max Min Max Units Output Frequency Ranges CLKOUT_FREQ_FX(2) Frequency for the CLKFX and CLKFX180 outputs All 5 350 5 320 MHz Output Clock Jitter(3,4) CLKOUT_PER_JITT_FX Period jitter at the CLKFX and CLKFX180 All Typ Max Typ Max outputs. CLKIN Use the Spartan-3A Jitter Calculator: ps ≤ 20 MHz www.xilinx.com/support/documentatio n/data_sheets/s3a_jitter_calc.zip CLKIN ±[1% of ±[1% of ±[1% of ±[1% of ps > 20 MHz CLKFX CLKFX CLKFX CLKFX period period period period + 100] + 200] + 100] + 200] Duty Cycle(5,6) CLKOUT_DUTY_CYCLE_FX Duty cycle precision for the CLKFX and CLKFX180 outputs, All ±[1% of ±[1% of ps including the BUFGMUX and clock tree duty-cycle distortion CLKFX CLKFX – – period period + 350] + 350] Phase Alignment(6) CLKOUT_PHASE_FX Phase offset between the DFS CLKFX output and the DLL All ±200 ±200 ps – – CLK0 output when both the DFS and DLL are used CLKOUT_PHASE_FX180 Phase offset between the DFS CLKFX180 output and the DLL All ±[1% of ±[1% of ps CLK0 output when both the DFS and DLL are used CLKFX CLKFX – – period period + 200] + 200] DS529 (v2.1) December 18, 2018 www.xilinx.com 49

DC and Switching Characteristics Table 39: Switching Characteristics for the DFS(Continued) Speed Grade -5 -4 Symbol Description Device Min Max Min Max Units Lock Time LOCK_FX(2, 3) The time from deassertion at the DCM’s 5 MHz < F All 5 5 ms CLKIN – – Reset input to the rising transition at its < 15 MHz LOCKED output. The DFS asserts LOCKED when the CLKFX and CLKFX180 FCLKIN > 450 450 µs signals are valid. If using both the DLL and 15 MHz – – the DFS, use the longer locking time. Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 38. 2. DFS performance requires the additional logic automatically added by ISE 9.1i and later software revisions. 3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute. 4. Maximum output jitter is characterized within a reasonable noise environment (150 ps input period jitter, 40 SSOs and 25% CLB switching) on an XC3S1400A FPGA. Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching activities, switching frequency, power supply and PCB design. The actual maximum output jitter depends on the system application. 5. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle. 6. Some duty-cycle and alignment specifications include a percentage of the CLKFX output period. For example, the data sheet specifies a maximum CLKFX jitter of “±[1% of CLKFX period + 200]”. Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 200 ps] = ±300 ps. 50 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Phase Shifter (PS) Table 40: Recommended Operating Conditions for the PS in Variable Phase Mode Speed Grade -5 -4 Symbol Description Min Max Min Max Units Operating Frequency Ranges PSCLK_FREQ Frequency for the PSCLK input 1 167 1 167 MHz (F ) PSCLK Input Pulse Requirements PSCLK_PULSE PSCLK pulse width as a percentage of the PSCLK period 40% 60% 40% 60% - Table 41: Switching Characteristics for the PS in Variable Phase Mode Symbol Description Phase Shift Amount Units Phase Shifting Range MAX_STEPS(2) Maximum allowed number of CLKIN < 60 ±[INTEGER(10 • (T – 3 ns))] steps CLKIN DCM_DELAY_STEP steps for a MHz given CLKIN clock period, where T = CLKIN clock period in ns. If using CLKIN ≥ 60 ±[INTEGER(15 • (T – 3 ns))] CLKIN CLKIN_DIVIDE_BY_2 = TRUE, MHz double the clock effective clock period. FINE_SHIFT_RANGE_MIN Minimum guaranteed delay for variable phase shifting ±[MAX_STEPS • ns DCM_DELAY_STEP_MIN] FINE_SHIFT_RANGE_MAX Maximum guaranteed delay for variable phase shifting ±[MAX_STEPS • ns DCM_DELAY_STEP_MAX] Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 40. 2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM is has no initial fixed phase shifting, that is, the PHASE_SHIFT attribute is set to 0. 3. The DCM_DELAY_STEP values are provided at the bottom of Table 37. DS529 (v2.1) December 18, 2018 www.xilinx.com 51

DC and Switching Characteristics Miscellaneous DCM Timing Table 42: Miscellaneous DCM Timing Symbol Description Min Max Units DCM_RST_PW_MIN Minimum duration of a RST pulse width 3 CLKIN – cycles DCM_RST_PW_MAX(2) Maximum duration of a RST pulse width N/A N/A seconds N/A N/A seconds DCM_CONFIG_LAG_TIME(3) Maximum duration from V applied to FPGA configuration N/A N/A minutes CCINT successfully completed (DONE pin goes High) and clocks applied to DCM DLL N/A N/A minutes Notes: 1. This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV). The DCM DFS outputs (CLKFX, CLKFX180) are unaffected. 2. This specification is equivalent to the Virtex®-4 DCM_RESET specification. This specification does not apply for Spartan-3A FPGAs. 3. This specification is equivalent to the Virtex-4 TCONFIG specification. This specification does not apply for Spartan-3A FPGAs. DNA Port Timing Table 43: DNA_PORT Interface Timing Symbol Description Min Max Units T Setup time on SHIFT before the rising edge of CLK 1.0 – ns DNASSU T Hold time on SHIFT after the rising edge of CLK 0.5 – ns DNASH T Setup time on DIN before the rising edge of CLK 1.0 – ns DNADSU T Hold time on DIN after the rising edge of CLK 0.5 – ns DNADH T Setup time on READ before the rising edge of CLK 5.0 10,000 ns DNARSU T Hold time on READ after the rising edge of CLK 0 – ns DNARH T Clock-to-output delay on DOUT after rising edge of CLK 0.5 1.5 ns DNADCKO T CLK frequency 0 100 MHz DNACLKF T CLK High time 1.0 ∞ ns DNACLKH T CLK Low time 1.0 ∞ ns DNACLKL Notes: 1. The minimum READ pulse width is 5 ns, the maximum READ pulse width is 10 µs. 2. The numbers in this table are based on the operating conditions set forth in Table 8. 52 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Suspend Mode Timing Entering Suspend Mode Exiting Suspend Mode sw_gwe_cycle sw_gts_cycle SUSPEND Input t t SUSPENDHIGH_AWAKE SUSPENDLOW_AWAKE AWAKE Output t t SUSPEND_GWE AWAKE_GWE Flip-Flops, Block RAM, Write Protected Distributed RAM t t SUSPEND_GTS AWAKE_GTS FPGA Outputs Defined by SUSPEND constraint t t SUSPEND_DISABLE SUSPEND_ENABLE FPGA Inputs, Blocked Interconnect DS610-3_08_061207 Figure 10: Suspend Mode Timing Table 44: Suspend Mode Timing Parameters Symbol Description Min Typ Max Units Entering Suspend Mode T Rising edge of SUSPEND pin to falling edge of AWAKE pin without glitch filter – 7 – ns SUSPENDHIGH_AWAKE (suspend_filter:No) T Adjustment to SUSPEND pin rising edge parameters when glitch filter +160 +300 +600 ns SUSPENDFILTER enabled (suspend_filter:Yes) T Rising edge of SUSPEND pin until FPGA output pins drive their defined – 10 – ns SUSPEND_GTS SUSPEND constraint behavior T Rising edge of SUSPEND pin to write-protect lock on all writable clocked – <5 – ns SUSPEND_GWE elements T Rising edge of the SUSPEND pin to FPGA input pins and interconnect – 340 – ns SUSPEND_DISABLE disabled Exiting Suspend Mode T Falling edge of the SUSPEND pin to rising edge of the AWAKE pin. Does not – 4 to 108 – µs SUSPENDLOW_AWAKE include DCM lock time. T Falling edge of the SUSPEND pin to FPGA input pins and interconnect – 3.7 to 109 – µs SUSPEND_ENABLE re-enabled T Rising edge of the AWAKE pin until write-protect lock released on all writable – 67 – ns AWAKE_GWE1 clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:1. T Rising edge of the AWAKE pin until write-protect lock released on all writable – 14 – µs AWAKE_GWE512 clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:512. T Rising edge of the AWAKE pin until outputs return to the behavior described – 57 – ns AWAKE_GTS1 in the FPGA application, using sw_clk:InternalClock and sw_gts_cycle:1. T Rising edge of the AWAKE pin until outputs return to the behavior described – 14 – µs AWAKE_GTS512 in the FPGA application, using sw_clk:InternalClock and sw_gts_cycle:512. Notes: 1. These parameters based on characterization. 2. For information on using the Spartan-3A Suspend feature, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs. DS529 (v2.1) December 18, 2018 www.xilinx.com 53

DC and Switching Characteristics Configuration and JTAG Timing General Configuration Power-On/Reconfigure Timing VCCINT 1.2V (Supply) 1.0V VCCAUX 2.5V (Supply) 2.0V 3o.3rV VCCO Bank 2 2.5V (Supply) 2.0V or 3.3V T POR PROG_B (Input) T T PROG PL INIT_B (Open-Drain) T ICCK CCLK (Output) DS529-3_01_052708 Notes: 1. The V , V , and V supplies can be applied in any order. CCINT CCAUX CCO 2. The Low-going pulse on PROG_B is optional after power-on but necessary for reconfiguration without a power cycle. 3. The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 - M2). Figure 11: Waveforms for Power-On and the Beginning of Configuration Table 45: Power-On Timing and the Beginning of Configuration All Speed Grades Symbol Description Device Min Max Units T (2) The time from the application of V , V , and V All – 18 ms POR CCINT CCAUX CCO Bank 2 supply voltage ramps (whichever occurs last) to the rising transition of the INIT_B pin T The width of the low-going pulse on the PROG_B pin All 0.5 - µs PROG T (2) The time from the rising edge of the PROG_B pin to the XC3S50A – 0.5 ms PL rising transition on the INIT_B pin XC3S200A – 0.5 ms XC3S400A – 1 ms XC3S700A – 2 ms XC3S1400A – 2 ms T Minimum Low pulse width on INIT_B output All 250 – ns INIT T (3) The time from the rising edge of the INIT_B pin to the All 0.5 4 µs ICCK generation of the configuration clock signal at the CCLK output pin Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 8. This means power must be applied to all V , V , CCINT CCO and V lines. CCAUX 2. Power-on reset and the clearing of configuration memory occurs during this period. 3. This specification applies only to the Master Serial, SPI, and BPI modes. 4. For details on configuration, see UG332 Spartan-3 Generation Configuration User Guide. 54 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Configuration Clock (CCLK) Characteristics Table 46: Master Mode CCLK Output Period by ConfigRate Opti0on Setting ConfigRate Temperature Symbol Description Setting Range Minimum Maximum Units CCLK clock period by Commercial 1,254 ns 1 TCCLK1 ConfigRate setting (power-on value) 2,500 Industrial 1,180 ns Commercial 413 ns T 3 833 CCLK3 Industrial 390 ns Commercial 207 ns T 6 (default) 417 CCLK6 Industrial 195 ns Commercial 178 ns T 7 357 CCLK7 Industrial 168 ns Commercial 156 ns T 8 313 CCLK8 Industrial 147 ns Commercial 123 ns T 10 250 CCLK10 Industrial 116 ns Commercial 103 ns T 12 208 CCLK12 Industrial 97 ns Commercial 93 ns T 13 192 CCLK13 Industrial 88 ns Commercial 72 ns T 17 147 CCLK17 Industrial 68 ns Commercial 54 ns T 22 114 CCLK22 Industrial 51 ns Commercial 47 ns T 25 100 CCLK25 Industrial 45 ns Commercial 44 ns T 27 93 CCLK27 Industrial 42 ns Commercial 36 ns T 33 76 CCLK33 Industrial 34 ns Commercial 26 ns T 44 57 CCLK44 Industrial 25 ns Commercial 22 ns T 50 50 CCLK50 Industrial 21 ns Commercial 11.2 ns T 100 25 CCLK100 Industrial 10.6 ns Notes: 1. Set the ConfigRate option value when generating a configuration bitstream. DS529 (v2.1) December 18, 2018 www.xilinx.com 55

DC and Switching Characteristics Table 47: Master Mode CCLK Output Frequency by ConfigRate Option Setting ConfigRate Temperature Symbol Description Setting Range Minimum Maximum Units Equivalent CCLK clock frequency 1 Commercial 0.797 MHz FCCLK1 by ConfigRate setting (power-on value) Industrial 0.400 0.847 MHz Commercial 2.42 MHz F 3 1.20 CCLK3 Industrial 2.57 MHz 6 Commercial 4.83 MHz F 2.40 CCLK6 (default) Industrial 5.13 MHz Commercial 5.61 MHz F 7 2.80 CCLK7 Industrial 5.96 MHz Commercial 6.41 MHz F 8 3.20 CCLK8 Industrial 6.81 MHz Commercial 8.12 MHz F 10 4.00 CCLK10 Industrial 8.63 MHz Commercial 9.70 MHz F 12 4.80 CCLK12 Industrial 10.31 MHz Commercial 10.69 MHz F 13 5.20 CCLK13 Industrial 11.37 MHz Commercial 13.74 MHz F 17 6.80 CCLK17 Industrial 14.61 MHz Commercial 18.44 MHz F 22 8.80 CCLK22 Industrial 19.61 MHz Commercial 20.90 MHz F 25 10.00 CCLK25 Industrial 22.23 MHz Commercial 22.39 MHz F 27 10.80 CCLK27 Industrial 23.81 MHz Commercial 27.48 MHz F 33 13.20 CCLK33 Industrial 29.23 MHz Commercial 37.60 MHz F 44 17.60 CCLK44 Industrial 40.00 MHz Commercial 44.80 MHz F 50 20.00 CCLK50 Industrial 47.66 MHz Commercial 88.68 MHz F 100 40.00 CCLK100 Industrial 94.34 MHz Table 48: Master Mode CCLK Output Minimum Low and High Time ConfigRate Setting Symbol Description 1 3 6 7 8 10 12 13 17 22 25 27 33 44 50 100 Units Master Mode Commercial 595 196 98.3 84.5 74.1 58.4 48.9 44.1 34.2 25.6 22.3 20.9 17.1 12.3 10.4 5.3 ns TMCCL, CCLK T Minimum Low MCCH Industrial 560 185 92.6 79.8 69.8 55.0 46.0 41.8 32.3 24.2 21.4 20.0 16.2 11.9 10.0 5.0 ns and High Time Table 49: Slave Mode CCLK Input Low and High Time Symbol Description Min Max Units TSCCL, CCLK Low and High time 5 ∞ ns T SCCH 56 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Master Serial and Slave Serial Mode Timing PROG_B (Input) INIT_B (Open-Drain) T T MCCL MCCH T T SCCL SCCH CCLK (Input/Output) T T 1/F DCC CCD CCSER DIN (Input) Bit 0 Bit 1 Bit n Bit n+1 T CCO DOUT Bit n-64 Bit n-63 (Output) DS312-3_05_103105 Figure 12: Waveforms for Master Serial and Slave Serial Configuration Table 50: Timing for the Master Serial and Slave Serial Configuration Modes All Speed Grades Slave/ Symbol Description Master Min Max Units Clock-to-Output Times T The time from the falling transition on the CCLK pin to data appearing at the Both 1.5 10 ns CCO DOUT pin Setup Times T The time from the setup of data at the DIN pin to the rising transition at the Both 7 – ns DCC CCLK pin Hold Times T The time from the rising transition at the CCLK pin to the point when data is Master 0 ns CCD last held at the DIN pin – Slave 1.0 Clock Timing T High pulse width at the CCLK input pin Master See Table 48 CCH Slave See Table 49 T Low pulse width at the CCLK input pin Master See Table 48 CCL Slave See Table 49 F Frequency of the clock signal at the No bitstream compression Slave 0 100 MHz CCSER CCLK input pin With bitstream compression 0 100 MHz Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 8. 2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz. DS529 (v2.1) December 18, 2018 www.xilinx.com 57

DC and Switching Characteristics Slave Parallel Mode Timing PROG_B (Input) INIT_B (Open-Drain) TSMCSCC TSMCCCS CSI_B (Input) T SMCCW T SMWCC RDWR_B (Input) T T MCCH MCCL T T SCCH SCCL CCLK (Input) T T 1/F SMDCC SMCCD CCPAR D0 - D7 Byte 0 Byte 1 Byte n Byte n+1 (Inputs) DS529-3_02_051607 Notes: 1. It is possible to abort configuration by pulling CSI_B Low in a given CCLK cycle, then switching RDWR_B Low or High in any subsequent cycle for which CSI_B remains Low. The RDWR_B pin asynchronously controls the driver impedance of the D0 - D7 bus. When RDWR_B switches High, be careful to avoid contention on the D0 - D7 bus. 2. To pause configuration, pause CCLK instead of de-asserting CSI_B. See UG332 Chapter 7 section “Non-Continuous SelectMAP Data Loading” for more details. Figure 13: Waveforms for Slave Parallel Configuration Table 51: Timing for the Slave Parallel Configuration Mode All Speed Grades Symbol Description Min Max Units Setup Times T (2) The time from the setup of data at the D0-D7 pins to the rising transition at the CCLK pin 7 – ns SMDCC T Setup time on the CSI_B pin before the rising transition at the CCLK pin 7 – ns SMCSCC T Setup time on the RDWR_B pin before the rising transition at the CCLK pin 15 – ns SMCCW Hold Times T The time from the rising transition at the CCLK pin to the point when data is last held at 1.0 – ns SMCCD the D0-D7 pins T The time from the rising transition at the CCLK pin to the point when a logic level is last 0 – ns SMCCCS held at the CSO_B pin T The time from the rising transition at the CCLK pin to the point when a logic level is last 0 – ns SMWCC held at the RDWR_B pin Clock Timing T The High pulse width at the CCLK input pin 5 – ns CCH T The Low pulse width at the CCLK input pin 5 – ns CCL F Frequency of the clock signal No bitstream compression 0 80 MHz CCPAR at the CCLK input pin With bitstream compression 0 80 MHz Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 8. 2. Some Xilinx documents refer to Parallel modes as “SelectMAP” modes. 58 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Serial Peripheral Interface (SPI) Configuration Timing PROG_B (Input) PUDC_B PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process. (Input) VS[2:0] <1:1:1> (Input) Mode input pins M[2:0] and variant select input pins VS[2:0] are sampled when INIT_B goes High. After this point, input values do not matter until DONE goes High, at which point these pins become user-I/O pins. M[2:0] <0:0:1> (Input) T T MINIT INITM INIT_B New ConfigRate active (Open-Drain) T T TCCLK1 TMCCL1 TMCCH1 TCMCCLKC1Ln TCCMLCKCnHn CCLK T V DIN Data Data Data Data (Input) T CSS T DCC T CSO_B CCD T CCO Command Command MOSI (msb) (msb-1) T T DSU DH Pin initially pulled High by internal pull-up resistor if PUDC_B input is Low. Pin initially high-impedance (Hi-Z) if PUDC_B input is High. External pull-up resistor required on CSO_B. Shaded values indicate specifications on attached SPI Flash PROM. DS529-3_06_102506 Figure 14: Waveforms for Serial Peripheral Interface (SPI) Configuration Table 52: Timing for Serial Peripheral Interface (SPI) Configuration Mode Symbol Description Minimum Maximum Units T Initial CCLK clock period See Table 46 CCLK1 T CCLK clock period after FPGA loads ConfigRate bitstream option setting See Table 46 CCLKn T Setup time on VS[2:0] variant-select pins and M[2:0] mode pins before the 50 – ns MINIT rising edge of INIT_B T Hold time on VS[2:0] variant-select pins and M[2:0] mode pins after the 0 – ns INITM rising edge of INIT_B T MOSI output valid delay after CCLK falling clock edge See Table 50 CCO T Setup time on the DIN data input before CCLK rising clock edge See Table 50 DCC T Hold time on the DIN data input after CCLK rising clock edge See Table 50 CCD DS529 (v2.1) December 18, 2018 www.xilinx.com 59

DC and Switching Characteristics Table 53: Configuration Timing Requirements for Attached SPI Serial Flash Symbol Description Requirement Units TCCS SPI serial Flash PROM chip-select time T ≤ T –T ns CCS MCCL1 CCO TDSU SPI serial Flash PROM data input setup time T ≤ T –T ns DSU MCCL1 CCO TDH SPI serial Flash PROM data input hold time T ≤ T ns DH MCCH1 TV SPI serial Flash PROM data clock-to-output time T ≤ T –T ns V MCCLn DCC fC or fR Mspaexcimificu mre aSdP cI osmermiaal nFdla ushse PdR)OM clock frequency (also depends on f ≥ ----------------1----------------- MHz C T CCLKn(min) Notes: 1. These requirements are for successful FPGA configuration in SPI mode, where the FPGA generates the CCLK signal. The post-configuration timing can be different to support the specific needs of the application loaded into the FPGA. 2. Subtract additional printed circuit board routing delay as required by the application. 60 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics Byte Peripheral Interface (BPI) Configuration Timing PROG_B (Input) PUDC_B PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process. (Input) Mode input pins M[2:0] are sampled when INIT_B goes High. After this point, M[2:0] <0:1:0> input values do not matter until DONE goes High, at which point the mode pins (Input) become user-I/O pins. T T MINIT INITM INIT_B Open-Drain) Pin initially pulled High by internal pull-up resistor if PUDC_B input is Low. Pin initially high-impedance (Hi-Z) if PUDC_B input is High. LDC[2:0] HDC CSO_B New ConfigRate active T T T INITADDR CCLK1 CCLKn T CCLK1 CCLK T CCO A[25:0] 000_0000 000_0001 Address Address Address TAVQV TDCC TCCD D[7:0] Byte 0 Byte 1 Data Data Data Data (Input) Shaded values indicate specifications on attached parallel NOR Flash PROM. DS529-3_05_021009 Figure 15: Waveforms for Byte-wide Peripheral Interface (BPI) Configuration T able 54: Timing for Byte-wide Peripheral Interface (BPI) Configuration Mode Symbol Description Minimum Maximum Units T Initial CCLK clock period See Table 46 CCLK1 T CCLK clock period after FPGA loads ConfigRate setting See Table 46 CCLKn T Setup time on M[2:0] mode pins before the rising edge of INIT_B 50 – ns MINIT T Hold time on M[2:0] mode pins after the rising edge of INIT_B 0 – ns INITM T Minimum period of initial A[25:0] address cycle; LDC[2:0] and HDC are asserted 5 5 T INITADDR CCLK1 and valid cycles T Address A[25:0] outputs valid after CCLK falling edge See Table 50 CCO T Setup time on D[7:0] data inputs before CCLK rising edge See T in Table 51 DCC SMDCC T Hold time on D[7:0] data inputs after CCLK rising edge 0 – ns CCD DS529 (v2.1) December 18, 2018 www.xilinx.com 61

DC and Switching Characteristics Table 55: Configuration Timing Requirements for Attached Parallel NOR BPI Flash Symbol Description Requirement Units T Parallel NOR Flash PROM chip-select time ns CE T ≤ T (t ) CE INITADDR ELQV T Parallel NOR Flash PROM output-enable time ns OE T ≤ T (t ) OE INITADDR GLQV T Parallel NOR Flash PROM read access time ns ACC T ≤ 50%T –T –T –PCB (t ) ACC CCLKn(min) CCO DCC AVQV T For x8/x16 PROMs only: BYTE# to output valid time(3) ns BYTE T ≤ T (t t ) BYTE INITADDR FLQV, FHQV Notes: 1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA generates the CCLK signal. The post-configuration timing can be different to support the specific needs of the application loaded into the FPGA. 2. Subtract additional printed circuit board routing delay as required by the application. 3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA’s LDC2 pin. The resistor value also depends on whether the FPGA’s PUDC_B pin is High or Low. 62 www.xilinx.com DS529 (v2.1) December 18, 2018

DC and Switching Characteristics IEEE 1149.1/1532 JTAG Test Access Port Timing TCCH TCCL TCK (Input) TTMSTCK TTCKTMS 1/FTCK TMS (Input) TTDITCK TTCKTDI TDI (Input) TTCKTDO TDO (Output) DS099_06_020709 Figure 16: JTAG Waveforms Table 56: Timing for the JTAG Test Access Port All Speed Grades Symbol Description Min Max Units Clock-to-Output Times T The time from the falling transition on the TCK pin to data appearing at the TDO pin 1.0 11.0 ns TCKTDO Setup Times T The time from the setup of data at the All devices and functions except those shown below 7.0 – ns TDITCK TDI pin to the rising transition at the TCK pin Boundary scan commands (INTEST, EXTEST, 11.0 SAMPLE) on XC3S700A and XC3S1400A FPGAs T The time from the setup of a logic level at the TMS pin to the rising transition at the TCK pin 7.0 – ns TMSTCK Hold Times T The time from the rising transition at All functions except those shown below 0 – ns TCKTDI the TCK pin to the point when data is last held at the TDI pin Configuration commands (CFG_IN, ISC_PROGRAM) 2.0 T The time from the rising transition at the TCK pin to the point when a logic level is last held at the 0 – ns TCKTMS TMS pin Clock Timing T The High pulse width at the TCK pin All functions except ISC_DNA command 5 – ns CCH T The Low pulse width at the TCK pin 5 – ns CCL T The High pulse width at the TCK pin During ISC_DNA command 10 10,000 ns CCHDNA T The Low pulse width at the TCK pin 10 10,000 ns CCLDNA F Frequency of the TCK signal All operations on XC3S50A, XC3S200A, and 0 33 MHz TCK XC3S400A FPGAs and for BYPASS or HIGHZ instructions on all FPGAs All operations on XC3S700A and XC3S1400A FPGAs, 20 except for BYPASS or HIGHZ instructions Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 8. 2. For details on JTAG see Chapter 9 “JTAG Configuration Mode and Boundary-Scan” in UG332 Spartan-3 Generation Configuration User Guide. DS529 (v2.1) December 18, 2018 www.xilinx.com 63

DC and Switching Characteristics Revision History The following table shows the revision history for this document. Date Version Revision 12/05/06 1.0 Initial release. 02/02/07 1.1 Promoted to Preliminary status. Moved Table 15 to under "DC Electrical Characteristics" section. Updated all timing specifications for the v1.32 speed files. Added recommended Simultaneous Switching Output (SSO) limits in Table 29. Set a 10 µs maximum pulse width for the DNA_PORT READ signal and the JTAG clock input during the ISC_DNA command, affecting both Table 43 and Table 56. Described "External Termination Requirements for Differential I/O." Added separate DIN hold time for Slave mode in Table 50. Corrected wording in Table 52 and Table 54; no specifications affected. 03/16/07 1.2 Updated all AC timing specifications to the v1.34 speeds file. Promoted the XC3S700A and XC3S1400A FPGAs offered in the -4 speed grade to Production status, as shown in Table 16. Added Note 2 to Table 39 regarding the extra logic (one LUT) automatically added by ISE 9.1i and later software revisions for any DCM application that leverages the Digital Frequency Synthesizer (DFS). Separated some JTAG specifications by array size or function, as shown in Table 56. Updated quiescent current limits in Table 10. 04/23/07 1.3 Updated all AC timing specifications to the v1.35 speeds file. Promoted all devices except the XC3S400A to Production status, as shown in Table 16. 05/08/07 1.4 Updated XC3S400A to Production and v1.36 speeds file. Added banking rules and other explanatory footnotes to Table 12 and Table 13. Corrected DIFF_SSTL3_II V Max in Table 14. Improved XC3S400A OL Pin-to-Pin Clock-to-Output times in Table 18. Updated XC3S400A Pin-to-Pin Setup Times in Table 19. Updated TIOICKPD for -5 in Table 20. Added SSO numbers to Table 28 and Table 29. Removed invalid Embedded Multiplier Hold Times in Table 34. Improved CLKOUT_FREQ_CLK90 in Table 37. Improved T and F performance for XC3S400A in Table 56. TDITCK TCK 07/10/07 1.5 Added DIFF_HSTL_I and DIFF_HSTL_III to Table 13, Table 14, Table 27, and Table 29. Updated TMDS DC characteristics in Table 14. Updated for speed file v1.37 in ISE 9.2.01i as shown in Table 17. Updated pin-to-pin setup and hold times in Table 19. Updated TMDS output adjustment in Table 26. Updated I/O Test Method values in Table 27. Added BLVDS SSO numbers inTable 29. For Multiplier block, updated setup times and added hold times to Table 34. Updated block RAM clock width in Table 35. Updated CLKOUT_PER_JITT_2X and CLKOUT_PER_JITT_DV2 in Table 37. Added CCLK specifications for Commercial in Table 46 through Table 48. 04/15/08 1.6 Added V to Recommended Operating Conditions in Table 8 and added reference to XAPP459, “Eliminating IN I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins.” Reduced typical I and I quiescent current values by 12%-58% in Table 10. Increased V max to 0.4V for CCINTQ CCAUXQ IL LVCMOS12/15/18 and improved V min to 0.7V for LVCMOS12 in Table 11. Changed V max to 0.4V and IH OL V min to V -0.4V for LVCMOS15/18 in Table 12. Noted latest speed file v1.39 in ISE 10.1 software in OH CCO Table 16. Added new packages to SSO limits in Table 28 and Table 29. Improved SSTL18_II SSO limit for FG packages in Table 29. Improved F for -4 to 334 MHz in Table 33. Added references to 375 MHz BUFG performance via SCD 4103 in Table 33,Table 38, Table 39, and Table 40. Restored Units column to Table 44. Updated CCLK output maximum period in Table 46 to match minimum frequency in Table 47. Corrected BPI active clock edge in Figure 15 and Table 54. 05/28/08 1.7 Improved V and V POR minimum in Table 5 and updated V POR levels in Figure 11. CCAUXT CCO2T CCO Clarified recommended V in Table 8. Added reference to V in "Simultaneously Switching Output IN CCAUX Guidelines". Added reference to Sample Window in Table 21. Removed DNA_RETENTION limit of 10 years in Table 15 since number of Read cycles is the only unique limit. Added references to UG332. 03/06/09 1.8 Changed typical quiescent current temperature from ambient to junction. Updated BPI configuration waveforms in Figure 15 and updated Table 55. Updated selected I/O standard DC characteristics. Added TIOPI and TIOPID in Table 22. Removed references to SCD 4103. 08/19/10 2.0 Added I to Table 4. Updated V in Table 8 and footnoted I in Table 9 to note potential leakage between IK IN L pins of a differential pair. Clarified LVPECL notes to Table 13. Corrected symbols for TSUSPEND_GTS and TSUSPEND_GWE in Table 44. 12/18/18 2.1 Updated for Lead-Frame Plating Composition Change For Legacy Eutectic Products (XCN18024). 64 www.xilinx.com DS529 (v2.1) December 18, 2018

132 Spartan-3A FPGA Family : Pinout Descriptions DS529 (v2.1) December 18, 2018 Product Specification 0 Introduction This section describes how the various pins on a Except for the thermal characteristics, all information for the Spartan®-3A FPGA connect within the supported standard package applies equally to the Pb-free package. component packages, and provides device-specific thermal characteristics. For general information on the pin functions Pin Types and the package characteristics, see the Packaging section of UG331: Spartan-3 Generation FPGA User Guide. Most pins on a Spartan-3A FPGA are general-purpose, • UG331: Spartan-3 Generation FPGA User Guide user-defined I/O pins. There are, however, up to 12 different www.xilinx.com/support/documentation functional types of pins on Spartan-3A FPGA packages, as /user_guides/ug331.pdf outlined in Table 57. In the package footprint drawings that follow, the individual pins are color-coded according to pin Spartan-3A FPGAs are available in both standard and type as in the table. Pb-free, RoHS versions of each package, with the Pb-free version adding a “G” to the middle of the package code. Table 57: Types of Pins on Spartan-3A FPGAs Type / Color Description Pin Name(s) in Type Code Unrestricted, general-purpose user-I/O pin. Most pins can be paired together to form IO_# I/O differential I/Os. IO_Lxxy_# Unrestricted, general-purpose input-only pin. This pin does not have an output structure, IP_# INPUT differential termination resistor, or PCI clamp diode. IP_Lxxy_# Dual-purpose pin used in some configuration modes during the configuration process and M[2:0] then usually available as a user I/O after configuration. If the pin is not used during PUDC_B configuration, this pin behaves as an I/O-type pin. See UG332: Spartan-3 Generation CCLK Configuration User Guide for additional information on these signals. MOSI/CSI_B D[7:1] D0/DIN DOUT DUAL CSO_B RDWR_B INIT_B A[25:0] VS[2:0] LDC[2:0] HDC Dual-purpose pin that is either a user-I/O pin or Input-only pin, or, along with all other IP/VREF_# VREF pins in the same bank, provides a reference voltage input for certain I/O standards. IP_Lxxy_#/VREF_# VREF If used for a reference voltage within a bank, all VREF pins within the bank must be IO/VREF_# connected. IO_Lxxy_#/VREF_# Either a user-I/O pin or an input to a specific clock buffer driver. Most packages have 16 IO_Lxxy_#/GCLK[15:0], global clock inputs that optionally clock the entire device. The exceptions are the TQ144 IO_Lxxy_#/LHCLK[7:0], and the XC3S50A in the FT256 package). The RHCLK inputs optionally clock the right half IO_Lxxy_#/RHCLK[7:0] CLK of the device. The LHCLK inputs optionally clock the left half of the device. See the Using Global Clock Resources chapter in UG331: Spartan-3 Generation FPGA User Guide for additional information on these signals. Dedicated configuration pin, two per device. Not available as a user-I/O pin. Every DONE, PROG_B package has two dedicated configuration pins. These pins are powered by VCCAUX. See CONFIG the UG332: Spartan-3 Generation Configuration User Guide for additional information on the DONE and PROG_B signals. © Copyright 2006–2018 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners. DS529 (v2.1) December 18, 2018 www.xilinx.com 65

Pinout Descriptions Table 57: Types of Pins on Spartan-3A FPGAs(Continued) Type / Color Description Pin Name(s) in Type Code Control and status pins for the power-saving Suspend mode. SUSPEND is a dedicated SUSPEND, AWAKE PWR pin and is powered by V . AWAKE is a dual-purpose pin. Unless Suspend mode is MGMT CCAUX enabled in the application, AWAKE is available as a user-I/O pin. Dedicated JTAG pin - 4 per device. Not available as a user-I/O pin. Every package has TDI, TMS, TCK, TDO JTAG four dedicated JTAG pins. These pins are powered by VCCAUX. Dedicated ground pin. The number of GND pins depends on the package used. All must GND GND be connected. Dedicated auxiliary power supply pin. The number of VCCAUX pins depends on the VCCAUX VCCAUX package used. All must be connected. V can be either 2.5V or 3.3V. Set on board CCAUX and using CONFIG VCCAUX constraint. Dedicated internal core logic power supply pin. The number of VCCINT pins depends on VCCINT VCCINT the package used. All must be connected to +1.2V. Along with all the other VCCO pins in the same bank, this pin supplies power to the output VCCO_# VCCO buffers within the I/O bank and sets the input threshold voltage for some I/O standards. All must be connected. This package pin is not connected in this specific device/package combination but may be N.C. N.C. connected in larger devices in the same package. Notes: 1. # = I/O bank number, an integer between 0 and 3. Package Pins by Type Each package has three separate voltage supply inputs— A majority of package pins are user-defined I/O or input VCCINT, VCCAUX, and VCCO—and a common ground pins. However, the numbers and characteristics of these I/O return, GND. The numbers of pins dedicated to these depend on the device type and the package in which it is functions vary by package, as shown in Table 58. available, as shown in Table 59. The table shows the maximum number of single-ended I/O pins available, Table 58: Power and Ground Supply Pins by Package assuming that all I/O-, INPUT-, DUAL-, VREF-, and Package VCCINT VCCAUX VCCO GND CLK-type pins are used as general-purpose I/O. AWAKE is counted here as a dual-purpose I/O pin. Likewise, the table VQ100 4 3 6 13 shows the maximum number of differential pin-pairs TQ144 4 4 8 13 available on the package. Finally, the table shows how the FT256 (50A/200A/400A) 6 4 16 28 total maximum user-I/Os are distributed by pin type, including the number of unconnected—N.C.—pins on the FT256 (700A/1400A) 15 10 13 50 device. FG320 6 8 16 32 Not all I/O standards are supported on all I/O banks. The left FG400 9 8 22 43 and right banks (I/O banks 1 and 3) support higher output FG484 15 10 24 53 drive current than the top and bottom banks (I/O banks 0 and 2). Similarly, true differential output standards, such as FG676 23 14 36 77 LVDS, RSDS, PPDS, miniLVDS, and TMDS, are only supported in the top or bottom banks (I/O banks 0 and 2). Inputs are unrestricted. For more details, see the chapter “Using I/O Resources” in UG331. 66 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions .Table 59: Maximum User I/O by Package Maximum All Possible I/Os by Type Maximum Maximum User I/Os Device Package Input- Differential and Only Pairs I/O INPUT DUAL VREF CLK N.C. Input-Only XC3S50A 68 6 60 17 2 20 6 23 0 VQ100 XC3S200A 68 6 60 17 2 20 6 23 0 XC3S50A TQ144 108 7 50 42 2 26 8 30 0 XC3S50A 144 32 64 53 20 26 15 30 51 XC3S200A 195 35 90 69 21 52 21 32 0 XC3S400A FT256 195 35 90 69 21 52 21 32 0 XC3S700A 161 13 60 59 2 52 18 30 0 XC3S1400A 161 13 60 59 2 52 18 30 0 XC3S200A 248 56 112 101 40 52 23 32 3 FG320 XC3S400A 251 59 112 101 42 52 24 32 0 XC3S400A 311 63 142 155 46 52 26 32 0 FG400 XC3S700A 311 63 142 155 46 52 26 32 0 XC3S700A 372 84 165 194 61 52 33 32 3 FG484 XC3S1400A 375 87 165 195 62 52 34 32 0 XC3S1400A FG676 502 94 227 313 67 52 38 32 17 Notes: 1. Some VREFs are on INPUT pins. See pinout tables for details. Electronic versions of the package pinout tables and foot- prints are available for download from the Xilinx website. Using a spreadsheet program, the data can be sorted and reformatted according to any specific needs. Similarly, the ASCII-text file is easily parsed by most scripting programs. http://www.xilinx.com/support/documentation/data_sheets/ s3a_pin.zip DS529 (v2.1) December 18, 2018 www.xilinx.com 67

Pinout Descriptions Package Overview Table 60 shows the six low-cost, space-saving production package styles for the Spartan-3A family. Table 60: Spartan-3A Family Package Options(1) Maximum Lead Pitch Body Area Height Package Leads Type I/O (mm) (mm) (mm) VQ100 / VQG100 100 Very Thin Quad Flat Pack (VQFP) 68 0.5 14 x 14 1.20 TQ144 / TQG144 144 Thin Quad Flat Pack (TQFP) 108 0.5 20 x 20 1.60 FT256 / FTG256 256 Fine-pitch Thin Ball Grid Array (FBGA) 195 1.0 17 x 17 1.55 FG320 / FGG320 320 Fine-pitch Ball Grid Array (FBGA) 251 1.0 19 x 19 2.00 FG400 / FGG400 400 Fine-pitch Ball Grid Array (FBGA) 311 1.0 21 x 21 2.43 FG484 / FGG484 484 Fine-pitch Ball Grid Array (FBGA) 375 1.0 23 x 23 2.60 FG676 / FGG676 676 Fine-pitch Ball Grid Array (FBGA) 502 1.0 27 x 27 2.60 Notes: 1. See the package material declaration data sheet for package mass. Each package style is available in an environmentally Mechanical Drawings friendly lead-free (Pb-free) option. The Pb-free packages Material Declaration Data Sheets (MDDS) are also available include an extra ‘G’ in the package style name. For on the www.xilinx.com for each package. example, the standard “CS484” package becomes “CSG484” when ordered as the Pb-free option. The mechanical dimensions of the standard and Pb-free packages are similar. Package drawings and package material declaration data sheets (MDDS) are available on www.xilinx.com. For additional package information, see UG112: Device Package User Guide. 68 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions Package Thermal Characteristics The power dissipated by an FPGA application has The junction-to-case thermal resistance (θ ) indicates the JC implications on package selection and system design. The difference between the temperature measured on the power consumed by a Spartan-3A FPGA is reported using package body (case) and the die junction temperature per either the XPower Power Estimator or the XPower Analyzer watt of power consumption. The junction-to-board (θ ) JB calculator integrated in the Xilinx® ISE® development value similarly reports the difference between the board and software. Table 61 provides the thermal characteristics for junction temperature. The junction-to-ambient (θ ) value JA the various Spartan-3A FPGA package offerings. This reports the temperature difference between the ambient information is also available using the Thermal Query tool environment and the junction temperature. The θ value is JA on xilinx.com (www.xilinx.com/cgi-bin/thermal/thermal.pl). reported at different air velocities, measured in linear feet per minute (LFM). The “Still Air (0 LFM)” column shows the θ value in a system without a fan. The thermal resistance JA drops with increasing air flow. Table 61: Spartan-3A Package Thermal Characteristics Junction-to-Ambient (θ ) JA at Different Air Flows Junction-to-Case Junction-to- Still Air Package Device (θ ) Board (θ ) (0 LFM) 250 LFM 500 LFM 750 LFM Units JC JB XC3S50A 12.9 30.1 48.5 40.4 37.6 36.6 °C/Watt VQ100 VQG100 XC3S200A 10.9 25.7 42.9 35.7 33.2 32.4 °C/Watt TQ144 XC3S50A 16.5 32.0 42.4 36.3 35.8 34.9 °C/Watt TQG144 XC3S50A 16.0 33.5 42.3 35.6 35.5 34.5 °C/Watt XC3S200A 10.3 23.8 32.7 26.6 26.1 25.2 °C/Watt FT256 XC3S400A 8.4 19.3 29.9 24.9 23.0 22.3 °C/Watt FTG256 XC3S700A 7.8 18.6 28.1 22.3 21.2 20.7 °C/Watt XC3S1400A 5.4 14.1 24.2 18.7 17.5 17.0 °C/Watt XC3S200A 11.7 18.5 27.8 22.3 21.1 20.3 °C/Watt FG320 FGG320 XC3S400A 9.9 15.4 25.2 19.8 18.6 17.8 °C/Watt XC3S400A 9.8 15.5 25.6 19.2 18.0 17.3 °C/Watt FG400 FGG400 XC3S700A 8.2 13.0 23.1 17.9 16.7 16.0 °C/Watt XC3S700A 7.9 12.8 22.3 17.4 16.2 15.5 °C/Watt FG484 FGG484 XC3S1400A 6.0 9.9 19.5 14.7 13.5 12.8 °C/Watt FG676 XC3S1400A 5.8 9.4 17.8 13.5 12.4 11.8 °C/Watt FGG676 DS529 (v2.1) December 18, 2018 www.xilinx.com 69

Pinout Descriptions VQ100: 100-lead Very Thin Quad Flat Package The XC3S50A and XC3S200 are available in the 100-lead Table 62: Spartan-3A VQ100 Pinout(Continued) very thin quad flat package, VQ100. 1 IO_L02P_1/RHCLK0 P59 CLK Table 62 lists all the package pins. They are sorted by bank 1 IO_L03N_1/TRDY1/RHCLK3 P62 CLK number and then by pin name. Pins that form a differential 1 IO_L03P_1/RHCLK2 P61 CLK I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined 1 IO_L04N_1/RHCLK7 P65 CLK earlier. 1 IO_L04P_1/IRDY1/RHCLK6 P64 CLK The VQ100 does not support Suspend mode (SUSPEND 1 IO_L05N_1 P71 IO and AWAKE are not connected), the address output pins for 1 IO_L05P_1 P70 IO the Byte-wide Peripheral Interface (BPI) configuration mode, or daisy chain configuration (DOUT is not connected). 1 IO_L06N_1 P73 IO 1 IO_L06P_1 P72 IO Table 62 also indicates that some differential I/O pairs have different assignments between the XC3S50A and the 1 IP_1/VREF_1 P68 VREF XC3S200A, highlighted in light blue. See "Footprint 1 VCCO_1 P67 VCCO Migration Differences," page 72 for additional information. 2 IO_2/MOSI/CSI_B P46 DUAL An electronic version of this package pinout table and 2 IO_L01N_2/M0 P25 DUAL footprint diagram is available for download from the Xilinx website at 2 IO_L01P_2/M1 P23 DUAL www.xilinx.com/support/documentation/data_sheets/ 2 IO_L02N_2/CSO_B P27 DUAL s3a_pin.zip. 2 IO_L02P_2/M2 P24 DUAL IO_L03N_2/VS1 (3S50A) Pinout Table 2 IO_L04P_2/VS1 (3S200A) P30 DUAL Table 62: Spartan-3A VQ100 Pinout 2 IO_L03P_2/RDWR_B P28 DUAL 2 IO_L04N_2/VS0 P31 DUAL Bank Pin Name Pin Type IO_L04P_2/VS2 (3S50A) 0 IO_0/GCLK11 P90 CLK 2 P29 DUAL IO_L03N_2/VS2 (3S200A) 0 IO_L01N_0 P78 IO IO_L05N_2/D7 (3S50A) 2 P34 DUAL 0 IO_L01P_0/VREF_0 P77 VREF IO_L06P_2/D7 (3S200A) 0 IO_L02N_0/GCLK5 P84 CLK 2 IO_L05P_2 P32 IO 0 IO_L02P_0/GCLK4 P83 CLK 2 IO_L06N_2/D6 P35 DUAL 0 IO_L03N_0/GCLK7 P86 CLK IO_L06P_2 (3S50A) 2 P33 IO IO_L05N_2 (3S200A) 0 IO_L03P_0/GCLK6 P85 CLK 2 IO_L07N_2/D4 P37 DUAL 0 IO_L04N_0/GCLK9 P89 CLK 2 IO_L07P_2/D5 P36 DUAL 0 IO_L04P_0/GCLK8 P88 CLK 2 IO_L08N_2/GCLK15 P41 CLK 0 IO_L05N_0 P94 IO 2 IO_L08P_2/GCLK14 P40 CLK 0 IO_L05P_0 P93 IO 2 IO_L09N_2/GCLK1 P44 CLK 0 IO_L06N_0/PUDC_B P99 DUAL 2 IO_L09P_2/GCLK0 P43 CLK 0 IO_L06P_0/VREF_0 P98 VREF 2 IO_L10N_2/D3 P49 DUAL 0 IP_0 P97 IP 2 IO_L10P_2/INIT_B P48 DUAL 0 IP_0/VREF_0 P82 VREF IO_L11N_2/D0/DIN/MISO 0 VCCO_0 P79 VCCO (3S50A) 2 P51 DUAL 0 VCCO_0 P96 VCCO IO_L12P_2/D0/DIN/MISO (3S200A) 1 IO_L01N_1 P57 IO 2 IO_L11P_2/D2 P50 DUAL 1 IO_L01P_1 P56 IO 2 IO_L12N_2/CCLK P53 DUAL 1 IO_L02N_1/RHCLK1 P60 CLK 70 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions Table 62: Spartan-3A VQ100 Pinout(Continued) Table 62: Spartan-3A VQ100 Pinout(Continued) IO_L12P_2/D1 (3S50A) VCCINT VCCINT P17 VCCINT 2 P52 DUAL IO_L11N_2/D1 (3S200A) VCCINT VCCINT P38 VCCINT 2 IP_2/VREF_2 P39 VREF VCCINT VCCINT P66 VCCINT 2 VCCO_2 P26 VCCO VCCINT VCCINT P81 VCCINT 2 VCCO_2 P45 VCCO 3 IO_L01N_3 P4 IO 3 IO_L01P_3 P3 IO 3 IO_L02N_3 P6 IO 3 IO_L02P_3 P5 IO 3 IO_L03N_3/LHCLK1 P10 CLK 3 IO_L03P_3/LHCLK0 P9 CLK 3 IO_L04N_3/IRDY2/LHCLK3 P13 CLK 3 IO_L04P_3/LHCLK2 P12 CLK 3 IO_L05N_3/LHCLK7 P16 CLK 3 IO_L05P_3/TRDY2/LHCLK6 P15 CLK 3 IO_L06N_3 P20 IO 3 IO_L06P_3 P19 IO 3 IP_3 P21 IP 3 IP_3/VREF_3 P7 VREF 3 VCCO_3 P11 VCCO GND GND P14 GND GND GND P18 GND GND GND P42 GND GND GND P47 GND GND GND P58 GND GND GND P63 GND GND GND P69 GND GND GND P74 GND GND GND P8 GND GND GND P80 GND GND GND P87 GND GND GND P91 GND GND GND P95 GND VCCAUX DONE P54 CONFIG VCCAUX PROG_B P100 CONFIG VCCAUX TCK P76 JTAG VCCAUX TDI P2 JTAG VCCAUX TDO P75 JTAG VCCAUX TMS P1 JTAG VCCAUX VCCAUX P22 VCCAUX VCCAUX VCCAUX P55 VCCAUX VCCAUX VCCAUX P92 VCCAUX DS529 (v2.1) December 18, 2018 www.xilinx.com 71

Pinout Descriptions User I/Os by Bank Table 63 indicates how the 68 available user-I/O pins are distributed between the four I/O banks on the VQ100 package. Table 63: User I/Os Per Bank for the XC3S50A and XC3S200A in the VQ100 Package All Possible I/O Pins by Type Package I/O Bank Maximum I/O Edge I/O INPUT DUAL VREF CLK Top 0 15 3 1 1 3 7 Right 1 13 6 0 0 1 6 Bottom 2 26 2 0 19 1 4 Left 3 14 6 1 0 1 6 TOTAL 68 17 2 20 6 23 Footprint Migration Differences The XC3S50A and XC3S200 have common VQ100 pinouts except for some differences in alignment of differential I/O pairs. Differential I/O Alignment Differences Some differential I/O pairs in the VQ100 on the XC3S50A FPGA are aligned differently than the corresponding pairs on the XC3S200A FPGAs, as shown in Table 64. All the mismatched pairs are in I/O Bank 2. These differences are indicated with the black diamond character () in the footprint diagrams Figure 17 and Figure 18. Table 64: Differential I/O Differences in VQ100 VQ100 Pin Bank XC3S50A XC3S200A P29 IIO_L04P_2/VS2 IO_L03N_2/VS2 P30 IO_L03N_2/VS1 IO_L04P_2/VS1 P33 IO_L06P_2 IO_L05N_2 2 P34 IO_L05N_2/D7 IO_L06P_2/D7 IO_L11N_2/D0/DIN/ IO_L12P_2/D0/DIN/ P51 MISO MISO P52 IO_L12P_2/D1 IO_L11N_2/D1 72 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions VQ100 Footprint (XC3S50A) Note pin 1 indicator in top-left corner and logo orientation. C_B F_0 K9 K8 K7 K6 K5 K4 F_0 D E L L L L L L E U R C C C C C C R PROG_B IO_L06N_0/P IO_L06P_0/V IP_0 VCCO_0 GND IO_L05N_0 IO_L05P_0 VCCAUX GND IO_0/GCLK11 IO_L04N_0/G IO_L04P_0/G GND IO_L03N_0/G IO_L03P_0/G IO_L02N_0/G IO_L02P_0/G IP_0/VREF_0 VCCINT GND VCCO_0 IO_L01N_0 IO_L01P_0/V TCK 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 TMS 1 Bank 0 75 TDO TDI 2 74 GND IO_L01P_3 3 73 IO_L06N_1 IO_L01N_3 4 72 IO_L06P_1 IO_L02P_3 5 71 IO_L05N_1 6 70 IO_L05P_1 IO_L02N_3 IP_3/VREF_3 7 69 GND GND 8 68 IP_1/VREF_1 IO_L03P_3/LHCLK0 9 67 VCCO_1 IO_L03N_3/LHCLK1 10 66 VCCINT 1 VCCO_3 11 k 3 nk 65 IO_L04N_1/RHCLK7 IO_L04P_3/LHCLK2 12 n a 64 IO_L04P_1/IRDY1/RHCLK6 a B IO_L04N_3/IRDY2/LHCLK3 13 B 63 GND GND 14 62 IO_L03N_1/TRDY1/RHCLK3 IO_L05P_3/TRDY2/LHCLK6 15 61 IO_L03P_1/RHCLK2 IO_L05N_3/LHCLK7 16 60 IO_L02N_1/RHCLK1 VCCINT 17 59 IO_L02P_1/RHCLK0 GND 18 58 GND IO_L06P_3 19 57 IO_L01N_1 IO_L06N_3 20 56 IO_L01P_1 IP_3 21 55 VCCAUX VCCAUX 22 54 DONE IO_L01P_2/M1 23 53 IO_L12N_2/CCLK IO_L02P_2/M2 24 52 IO_L12P_2/D1(◆) IO_L01N_2/M0 25 Bank 2 51 IO_L11N_2/D0/DIN/MISO (◆) 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 VCCO_2 IO_L02N_2/CSO_B O_L03P_2/RDWR_B◆IO_L04P_2/VS2 ()◆IO_L03N_2/VS1 () IO_L04N_2/VS0 IO_L05P_2◆IO_L06P_2 ()◆IO_L05N_2/D7 () IO_L06N_2/D6 IO_L07P_2/D5 IO_L07N_2/D4 VCCINT IP_2/VREF_2 IO_L08P_2/GCLK14 IO_L08N_2/GCLK15 GND IO_L09P_2/GCLK0 IO_L09N_2/GCLK1 VCCO_2 IO_2/MOSI/CSI_B GND IO_L10P_2/INIT_B IO_L10N_2/D3 IO_L11P_2/D2 I Figure 17: VQ100 Package Footprint - XC3S50A (Top View) 17 I/O: Unrestricted, general-purpose 20 DUAL: Configuration pins, then 6 VREF: User I/O or input voltage user I/O possible user I/O reference for bank 2 INPUT: Unrestricted, 23 CLK: User I/O, input, or global 6 VCCO: Output voltage supply for general-purpose input pin buffer input bank 2 CONFIG: Dedicated configuration 4 JTAG: Dedicated JTAG port pins 4 VCCINT: Internal core supply pins voltage (+1.2V) 0 N.C.: Not connected 13 GND: Ground 3 VCCAUX: Auxiliary supply voltage DS529 (v2.1) December 18, 2018 www.xilinx.com 73

Pinout Descriptions VQ100 Footprint (XC3S200A) Note pin 1 indicator in top-left corner and logo orientation. C_B F_0 K9 K8 K7 K6 K5 K4 F_0 D E L L L L L L E U R C C C C C C R PROG_B IO_L06N_0/P IO_L06P_0/V IP_0 VCCO_0 GND IO_L05N_0 IO_L05P_0 VCCAUX GND IO_0/GCLK11 IO_L04N_0/G IO_L04P_0/G GND IO_L03N_0/G IO_L03P_0/G IO_L02N_0/G IO_L02P_0/G IP_0/VREF_0 VCCINT GND VCCO_0 IO_L01N_0 IO_L01P_0/V TCK 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 TMS 1 Bank 0 75 TDO TDI 2 74 GND IO_L01P_3 3 73 IO_L06N_1 IO_L01N_3 4 72 IO_L06P_1 IO_L02P_3 5 71 IO_L05N_1 6 70 IO_L05P_1 IO_L02N_3 IP_3/VREF_3 7 69 GND GND 8 68 IP_1/VREF_1 IO_L03P_3/LHCLK0 9 67 VCCO_1 IO_L03N_3/LHCLK1 10 66 VCCINT 1 VCCO_3 11 k 3 nk 65 IO_L04N_1/RHCLK7 IO_L04P_3/LHCLK2 12 n a 64 IO_L04P_1/IRDY1/RHCLK6 a B IO_L04N_3/IRDY2/LHCLK3 13 B 63 GND GND 14 62 IO_L03N_1/TRDY1/RHCLK3 IO_L05P_3/TRDY2/LHCLK6 15 61 IO_L03P_1/RHCLK2 IO_L05N_3/LHCLK7 16 60 IO_L02N_1/RHCLK1 VCCINT 17 59 IO_L02P_1/RHCLK0 GND 18 58 GND IO_L06P_3 19 57 IO_L01N_1 IO_L06N_3 20 56 IO_L01P_1 IP_3 21 55 VCCAUX VCCAUX 22 54 DONE IO_L01P_2/M1 23 53 IO_L12N_2/CCLK IO_L02P_2/M2 24 52 IO_L11N_2/D1(◆) IO_L01N_2/M0 25 Bank 2 51 IO_L12P_2/D0/DIN/MISO (◆) 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 200A 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 VCCO_2 IO_L02N_2/CSO_B O_L03P_2/RDWR_B◆IO_L03N_2/VS2 ()◆IO_L04P_2/VS1() IO_L04N_2/VS0 IO_L05P_2◆IO_L05N_2 ()◆IO_L06P_2/D7 () IO_L06N_2/D6 IO_L07P_2/D5 IO_L07N_2/D4 VCCINT IP_2/VREF_2 IO_L08P_2/GCLK14 IO_L08N_2/GCLK15 GND IO_L09P_2/GCLK0 IO_L09N_2/GCLK1 VCCO_2 IO_2/MOSI/CSI_B GND IO_L10P_2/INIT_B IO_L10N_2/D3 IO_L11P_2/D2 I Figure 18: VQ100 Package Footprint - XC3S200A (Top View) 17 I/O: Unrestricted, general-purpose 20 DUAL: Configuration pins, then 6 VREF: User I/O or input voltage user I/O possible user I/O reference for bank 2 INPUT: Unrestricted, 23 CLK: User I/O, input, or global 6 VCCO: Output voltage supply for general-purpose input pin buffer input bank 2 CONFIG: Dedicated configuration 4 JTAG: Dedicated JTAG port pins 4 VCCINT: Internal core supply pins voltage (+1.2V) 0 N.C.: Not connected 13 GND: Ground 3 VCCAUX: Auxiliary supply voltage 74 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions TQ144: 144-lead Thin Quad Flat Package The XC3S50A is available in the 144-lead thin quad flat Table 65: Spartan-3A TQ144 Pinout(Continued) package, TQ144. Bank Pin Name Pin Type Table 65 lists all the package pins. They are sorted by bank 0 IP_0/VREF_0 P123 VREF number and then by pin name. Pins that form a differential 0 VCCO_0 P119 VCCO I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined 0 VCCO_0 P136 VCCO earlier. 1 IO_1 P79 I/O The XC3S50A does not support the address output pins for 1 IO_L01N_1/LDC2 P78 DUAL the Byte-wide Peripheral Interface (BPI) configuration mode. 1 IO_L01P_1/HDC P76 DUAL An electronic version of this package pinout table and 1 IO_L02N_1/LDC0 P77 DUAL footprint diagram is available for download from the Xilinx 1 IO_L02P_1/LDC1 P75 DUAL website at 1 IO_L03N_1 P84 I/O www.xilinx.com/support/documentation/data_sheets/ 1 IO_L03P_1 P82 I/O s3a_pin.zip. 1 IO_L04N_1/RHCLK1 P85 RHCLK Pinout Table 1 IO_L04P_1/RHCLK0 P83 RHCLK 1 IO_L05N_1/TRDY1/RHCLK3 P88 RHCLK Table 65: Spartan-3A TQ144 Pinout 1 IO_L05P_1/RHCLK2 P87 RHCLK Bank Pin Name Pin Type 1 IO_L06N_1/RHCLK5 P92 RHCLK 0 IO_0 P142 I/O 1 IO_L06P_1/RHCLK4 P90 RHCLK 0 IO_L01N_0 P111 I/O 1 IO_L07N_1/RHCLK7 P93 RHCLK 0 IO_L01P_0 P110 I/O 1 IO_L07P_1/IRDY1/RHCLK6 P91 RHCLK 0 IO_L02N_0 P113 I/O 1 IO_L08N_1 P98 I/O 0 IO_L02P_0/VREF_0 P112 VREF 1 IO_L08P_1 P96 I/O 0 IO_L03N_0 P117 I/O 1 IO_L09N_1 P101 I/O 0 IO_L03P_0 P115 I/O 1 IO_L09P_1 P99 I/O 0 IO_L04N_0 P116 I/O 1 IO_L10N_1 P104 I/O 0 IO_L04P_0 P114 I/O 1 IO_L10P_1 P102 I/O 0 IO_L05N_0 P121 I/O 1 IO_L11N_1 P105 I/O 0 IO_L05P_0 P120 I/O 1 IO_L11P_1 P103 I/O 0 IO_L06N_0/GCLK5 P126 GCLK 1 IP_1/VREF_1 P80 VREF 0 IO_L06P_0/GCLK4 P124 GCLK 1 IP_1/VREF_1 P97 VREF 0 IO_L07N_0/GCLK7 P127 GCLK 1 VCCO_1 P86 VCCO 0 IO_L07P_0/GCLK6 P125 GCLK 1 VCCO_1 P95 VCCO 0 IO_L08N_0/GCLK9 P131 GCLK 2 IO_2/MOSI/CSI_B P62 DUAL 0 IO_L08P_0/GCLK8 P129 GCLK 2 IO_L01N_2/M0 P38 DUAL 0 IO_L09N_0/GCLK11 P132 GCLK 2 IO_L01P_2/M1 P37 DUAL 0 IO_L09P_0/GCLK10 P130 GCLK 2 IO_L02N_2/CSO_B P41 DUAL 0 IO_L10N_0 P135 I/O 2 IO_L02P_2/M2 P39 DUAL 0 IO_L10P_0 P134 I/O 2 IO_L03N_2/VS1 P44 DUAL 0 IO_L11N_0 P139 I/O 2 IO_L03P_2/RDWR_B P42 DUAL 0 IO_L11P_0 P138 I/O 2 IO_L04N_2/VS0 P45 DUAL 0 IO_L12N_0/PUDC_B P143 DUAL 2 IO_L04P_2/VS2 P43 DUAL 0 IO_L12P_0/VREF_0 P141 VREF 2 IO_L05N_2/D7 P48 DUAL 0 IP_0 P140 INPUT DS529 (v2.1) December 18, 2018 www.xilinx.com 75

Pinout Descriptions Table 65: Spartan-3A TQ144 Pinout(Continued) Table 65: Spartan-3A TQ144 Pinout(Continued) Bank Pin Name Pin Type Bank Pin Name Pin Type 2 IO_L05P_2 P46 I/O 3 IO_L10P_3 P27 I/O 2 IO_L06N_2/D6 P49 DUAL 3 IO_L11N_3 P30 I/O 2 IO_L06P_2 P47 I/O 3 IO_L11P_3 P28 I/O 2 IO_L07N_2/D4 P51 DUAL 3 IO_L12N_3 P32 I/O 2 IO_L07P_2/D5 P50 DUAL 3 IO_L12P_3 P31 I/O 2 IO_L08N_2/GCLK15 P55 GCLK 3 IP_L13N_3/VREF_3 P35 VREF 2 IO_L08P_2/GCLK14 P54 GCLK 3 IP_L13P_3 P33 INPUT 2 IO_L09N_2/GCLK1 P59 GCLK 3 VCCO_3 P14 VCCO 2 IO_L09P_2/GCLK0 P57 GCLK 3 VCCO_3 P23 VCCO 2 IO_L10N_2/GCLK3 P60 GCLK GND GND P9 GND 2 IO_L10P_2/GCLK2 P58 GCLK GND GND P17 GND 2 IO_L11N_2/DOUT P64 DUAL GND GND P26 GND PWR GND GND P34 GND 2 IO_L11P_2/AWAKE P63 MGMT GND GND P56 GND 2 IO_L12N_2/D3 P68 DUAL GND GND P65 GND 2 IO_L12P_2/INIT_B P67 DUAL GND GND P81 GND 2 IO_L13N_2/D0/DIN/MISO P71 DUAL GND GND P89 GND 2 IO_L13P_2/D2 P69 DUAL GND GND P100 GND 2 IO_L14N_2/CCLK P72 DUAL GND GND P106 GND 2 IO_L14P_2/D1 P70 DUAL GND GND P118 GND 2 IP_2/VREF_2 P53 VREF GND GND P128 GND 2 VCCO_2 P40 VCCO GND GND P137 GND 2 VCCO_2 P61 VCCO PWR VCCAUX SUSPEND P74 3 IO_L01N_3 P6 I/O MGMT 3 IO_L01P_3 P4 I/O VCCAUX DONE P73 CONFIG 3 IO_L02N_3 P5 I/O VCCAUX PROG_B P144 CONFIG 3 IO_L02P_3 P3 I/O VCCAUX TCK P109 JTAG 3 IO_L03N_3 P8 I/O VCCAUX TDI P2 JTAG 3 IO_L03P_3 P7 I/O VCCAUX TDO P107 JTAG 3 IO_L04N_3/VREF_3 P11 VREF VCCAUX TMS P1 JTAG 3 IO_L04P_3 P10 I/O VCCAUX VCCAUX P36 VCCAUX 3 IO_L05N_3/LHCLK1 P13 LHCLK VCCAUX VCCAUX P66 VCCAUX 3 IO_L05P_3/LHCLK0 P12 LHCLK VCCAUX VCCAUX P108 VCCAUX 3 IO_L06N_3/IRDY2/LHCLK3 P16 LHCLK VCCAUX VCCAUX P133 VCCAUX 3 IO_L06P_3/LHCLK2 P15 LHCLK VCCINT VCCINT P22 VCCINT 3 IO_L07N_3/LHCLK5 P20 LHCLK VCCINT VCCINT P52 VCCINT 3 IO_L07P_3/LHCLK4 P18 LHCLK VCCINT VCCINT P94 VCCINT 3 IO_L08N_3/LHCLK7 P21 LHCLK VCCINT VCCINT P122 VCCINT 3 IO_L08P_3/TRDY2/LHCLK6 P19 LHCLK 3 IO_L09N_3 P25 I/O 3 IO_L09P_3 P24 I/O 3 IO_L10N_3 P29 I/O 76 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions User I/Os by Bank Table 66 indicates how the 108 available user-I/O pins are distributed between the four I/O banks on the TQ144 package. The AWAKE pin is counted as a dual-purpose I/O. Table 66: User I/Os Per Bank for the XC3S50A in the TQ144 Package All Possible I/O Pins by Type Package I/O Bank Maximum I/O Edge I/O INPUT DUAL VREF CLK Top 0 27 14 1 1 3 8 Right 1 25 11 0 4 2 8 Bottom 2 30 2 0 21 1 6 Left 3 26 15 1 0 2 8 TOTAL 108 42 2 26 8 30 Footprint Migration Differences The XC3S50A FPGA is the only Spartan-3A device offered in the TQ144 package. DS529 (v2.1) December 18, 2018 www.xilinx.com 77

Pinout Descriptions TQ144 Footprint Note pin 1 indicator in top-left corner and logo orientation. C_B F_0 K11 K9 K10 K8 K7 K5 K6 K4 F_0 D E L L L L L L L L E U R C C C C C C C C R PROG_B IO_L12N_0/P IO_0 IO_L12P_0/V IP_0 IO_L11N_0 IO_L11P_0 GND VCCO_0 IO_L10N_0 IO_L10P_0 VCCAUX IO_L09N_0/G IO_L08N_0/G IO_L09P_0/G IO_L08P_0/G GND IO_L07N_0/G IO_L06N_0/G IO_L07P_0/G IO_L06P_0/G IP_0/VREF_0 VCCINT IO_L05N_0 IO_L05P_0 VCCO_0 GND IO_L03N_0 IO_L04N_0 IO_L03P_0 IO_L04P_0 IO_L02N_0 IO_L02P_0/V IO_L01N_0 IO_L01P_0 TCK 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 TMS 1 108VCCAUX Bank 0 TDI 2 107TDO X IO_L02P_3 3 106GND IO_L01P_3 4 105IO_L11N_1 IO_L02N_3 5 104IO_L10N_1 IO_L01N_3 6 103IO_L11P_1 IO_L03P_3 7 102IO_L10P_1 IO_L03N_3 8 101IO_L09N_1 GND 9 100GND IO_L04P_3 10 99IO_L09P_1 IO_L04N_3/VREF_3 11 98IO_L08N_1 IO_L05P_3/LHCLK0 12 97IP_1/VREF_1 IO_L05N_3/LHCLK1 13 96IO_L08P_1 VCCO_3 14 95VCCO_1 IO_L06P_3/LHCLK2 15 94VCCINT IO_L06N_3/LHCLK3 16 93IO_L07N_1/RHCLK7 IIOO__LL0078PP__33//LLHHCCGLLNKKD46 111789 Bank 3 nk 1 999210IIIOOO___LLL000676NPP___111///RRRHHHCCCLLLKKK645 IO_L07N_3/LHCLK5 20 Ba 89GND IO_L08N_3/LHCLK7 21 88IO_L05N_1/RHCLK3 VCCINT 22 87IO_L05P_1/RHCLK2 VCCO_3 23 86VCCO_1 IO_L09P_3 24 85IO_L04N_1/RHCLK1 IO_L09N_3 25 84IO_L03N_1 GND 26 83IO_L04P_1/RHCLK0 IO_L10P_3 27 82IO_L03P_1 IO_L11P_3 28 81GND IO_L10N_3 29 80IP_1/VREF_1 IO_L11N_3 30 79IO_1 IO_L12P_3 31 78IO_L01N_1/LDC2 IO_L12N_3 32 77IO_L02N_1/LDC0 IP_L13P_3 33 76IO_L01P_1/HDC GND 34 75IO_L02P_1/LDC1 IP_L13N_3/VREF_3 35 Bank 2 74SUSPEND VCCAUX 36 73DONE 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 1 0 2 2 B B 2 1 0 2 2 7 6 5 4 T 2 4 5 D 0 2 1 3 2 B E T D X B 3 2 1 O K IO_L01P_2/M IO_L01N_2/M IO_L02P_2/M VCCO_ IO_L02N_2/CSO_ IO_L03P_2/RDWR_ IO_L04P_2/VS IO_L03N_2/VS IO_L04N_2/VS IO_L05P_ IO_L06P_ IO_L05N_2/D IO_L06N_2/D IO_L07P_2/D IO_L07N_2/D VCCIN IP_2/VREF_ IO_L08P_2/GCLK1 IO_L08N_2/GCLK1 GN IO_L09P_2/GCLK IO_L10P_2/GCLK IO_L09N_2/GCLK IO_L10N_2/GCLK VCCO_ IO_2/MOSI/CSI_ IO_L11P_2/AWAK IO_L11N_2/DOU GN VCCAU IO_L12P_2/INIT_ IO_L12N_2/D IO_L13P_2/D IO_L14P_2/D _L13N_2/D0/DIN/MIS IO_L14N_2/CCL O DS529-4_10_031207 I Figure 19: TQ144 Package Footprint (Top View) 42 I/O: Unrestricted, general-purpose 25 DUAL: Configuration pins, then 8 VREF: User I/O or input voltage user I/O possible user I/O reference for bank 2 INPUT: Unrestricted, 30 CLK: User I/O, input, or global 8 VCCO: Output voltage supply for general-purpose input pin buffer input bank 2 CONFIG: Dedicated configuration 4 JTAG: Dedicated JTAG port pins 4 VCCINT: Internal core supply pins voltage (+1.2V) 0 N.C.: Not connected 13 GND: Ground 4 VCCAUX: Auxiliary supply voltage SUSPEND: Dedicated SUSPEND 2 and dual-purpose AWAKE Power Management pins 78 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions FT256: 256-ball Fine-pitch, Thin Ball Grid Array The 256-ball fine-pitch, thin ball grid array package, FT256, Pinout Table supports all five Spartan-3A FPGAs. The XC3S200A and XC3S400A have identical footprints, and the XC3S700A Table 67: Spartan-3A FT256 Pinout (XC3S50A, and XC3S1400A have identical footprints. The XC3S50A is XC3S200A, XC3S400) compatible with the XC3S200A/XC3S400A but has 51 XC3S200A FT256 unconnected balls. The XC3S200A/XC3S400A is similar to Bank XC3S50A XC3S400A Ball Type the XC3S700A/XC3S1400A, but the XC3S700A/ 0 IO_L01N_0 IO_L01N_0 C13 I/O XC3S1400A adds more power and ground pins and 0 IO_L01P_0 IO_L01P_0 D13 I/O therefore is not compatible. 0 IO_L02N_0 IO_L02N_0 B14 I/O Table 67 lists all the package pins for the XC3S50A, IO_L02P_0/ IO_L02P_0/ XC3S200A, and XC3S400A. They are sorted by bank 0 VREF_0 VREF_0 B15 VREF number and then by pin name of the largest device. Pins 0 IO_L03N_0 IO_L03N_0 D11 I/O that form a differential I/O pair appear together in the table. 0 IO_L03P_0 IO_L03P_0 C12 I/O The table also shows the pin number for each pin and the pin type, as defined earlier. 0 IO_L04N_0 IO_L04N_0 A13 I/O 0 IO_L04P_0 IO_L04P_0 A14 I/O The highlighted rows indicate pinout differences between the XC3S50A, the XC3S200A, and the XC3S400A FPGAs. 0 N.C. (◆) IO_L05N_0 A12 I/O The XC3S50A has 51 unconnected balls, indicated as N.C. 0 IP_0 IO_L05P_0 B12 I/O (No Connection) in Table 67 and Figure 20 and with the 0 N.C. (◆) IO_L06N_0/ E10 VREF black diamond character () in Table 67. Figure 21 VREF_0 provides the common footprint for the XC3S200A and 0 N.C. (◆) IO_L06P_0 D10 I/O XC3S400A. 0 IO_L07N_0 IO_L07N_0 A11 I/O Table 67 also indicates that some differential I/O pairs have 0 IO_L07P_0 IO_L07P_0 C11 I/O different assignments between the XC3S50A and the 0 IO_L08N_0 IO_L08N_0 A10 I/O XC3S200A/XC3S400A, highlighted in light blue. See "Footprint Migration Differences," page 99 for additional 0 IO_L08P_0 IO_L08P_0 B10 I/O information. IO_L09N_0/ IO_L09N_0/ 0 D9 GCLK GCLK5 GCLK5 All other balls have nearly identical functionality on all three IO_L09P_0/ IO_L09P_0/ devices. Table 72 summarizes the XC3S50A FPGA footprint 0 GCLK4 GCLK4 C10 GCLK migration differences for the FT256 package. IO_L10N_0/ IO_L10N_0/ 0 A9 GCLK GCLK7 GCLK7 The XC3S50A does not support the address output pins for the Byte-wide Peripheral Interface (BPI) configuration mode. 0 IO_L10P_0/ IO_L10P_0/ C9 GCLK GCLK6 GCLK6 Table 68 lists all the package pins for the XC3S700A and IO_L11N_0/ IO_L11N_0/ 0 D8 GCLK XC3S1400A. They are sorted by bank number and then by GCLK9 GCLK9 pin name. Pins that form a differential I/O pair appear IO_L11P_0/ IO_L11P_0/ 0 C8 GCLK together in the table. The table also shows the pin number GCLK8 GCLK8 for each pin and the pin type, as defined earlier. Figure 22 IO_L12N_0/ IO_L12N_0/ 0 B8 GCLK GCLK11 GCLK11 provides the common footprint for the XC3S200A and XC3S400A. IO_L12P_0/ IO_L12P_0/ 0 A8 GCLK GCLK10 GCLK10 An electronic version of this package pinout table and 0 N.C. (◆) IO_L13N_0 C7 I/O footprint diagram is available for download from the Xilinx 0 N.C. (◆) IO_L13P_0 A7 I/O website at www.xilinx.com/support/documentation/data_sheets/ 0 N.C. (◆) IVOR_ELF1_40N_0/ E7 VREF s3a_pin.zip. 0 N.C. (◆) IO_L14P_0 F8 I/O 0 IO_L15N_0 IO_L15N_0 B6 I/O 0 IO_L15P_0 IO_L15P_0 A6 I/O 0 IO_L16N_0 IO_L16N_0 C6 I/O 0 IO_L16P_0 IO_L16P_0 D7 I/O 0 IO_L17N_0 IO_L17N_0 C5 I/O DS529 (v2.1) December 18, 2018 www.xilinx.com 79

Pinout Descriptions Table 67: Spartan-3A FT256 Pinout (XC3S50A, Table 67: Spartan-3A FT256 Pinout (XC3S50A, XC3S200A, XC3S400) (Continued) XC3S200A, XC3S400) (Continued) XC3S200A FT256 XC3S200A FT256 Bank XC3S50A XC3S400A Ball Type Bank XC3S50A XC3S400A Ball Type 0 IO_L17P_0 IO_L17P_0 A5 I/O IO_L12N_1/ IO_L12N_1/ 1 J16 RHCLK TRDY1/RHCLK3 TRDY1/RHCLK3 0 IO_L18N_0 IO_L18N_0 B4 I/O IO_L12P_1/ IO_L12P_1/ 0 IO_L18P_0 IO_L18P_0 A4 I/O 1 RHCLK2 RHCLK2 K16 RHCLK 0 IO_L19N_0 IO_L19N_0 B3 I/O IO_L14N_1/ IO_L14N_1/ 1 H14 RHCLK RHCLK5 RHCLK5 0 IO_L19P_0 IO_L19P_0 A3 I/O IO_L14P_1/ IO_L14P_1/ 0 IO_L20N_0/ IO_L20N_0/ D5 DUAL 1 RHCLK4 RHCLK4 J14 RHCLK PUDC_B PUDC_B IO_L15N_1/ IO_L15N_1/ 0 IO_L20P_0/ IO_L20P_0/ C4 VREF 1 RHCLK7 RHCLK7 H16 RHCLK VREF_0 VREF_0 IO_L15P_1/ IO_L15P_1/ 0 IP_0 IP_0 D6 INPUT 1 IRDY1/RHCLK6 IRDY1/RHCLK6 H15 RHCLK 0 IP_0 IP_0 D12 INPUT 1 N.C. (◆) IO_L16N_1/A11 F16 DUAL 0 IP_0 IP_0 E6 INPUT 1 N.C. (◆) IO_L16P_1/A10 G16 DUAL 0 IP_0 IP_0 F7 INPUT 1 N.C. (◆) IO_L17N_1/A13 G14 DUAL 0 IP_0 IP_0 F9 INPUT 1 N.C. (◆) IO_L17P_1/A12 H13 DUAL 0 IP_0 IP_0 F10 INPUT 1 N.C. (◆) IO_L18N_1/A15 F15 DUAL 0 IP_0/VREF_0 IP_0/VREF_0 E9 VREF 1 N.C. (◆) IO_L18P_1/A14 E16 DUAL 0 VCCO_0 VCCO_0 B5 VCCO 1 N.C. (◆) IO_L19N_1/A17 F14 DUAL 0 VCCO_0 VCCO_0 B9 VCCO 1 N.C. (◆) IO_L19P_1/A16 G13 DUAL 0 VCCO_0 VCCO_0 B13 VCCO 1 IO_L20N_1 IO_L20N_1/A19 F13 DUAL 0 VCCO_0 VCCO_0 E8 VCCO 1 IO_L20P_1 IO_L20P_1/A18 E14 DUAL 1 IO_L01N_1/ IO_L01N_1/ N14 DUAL 1 IO_L22N_1 IO_L22N_1/A21 D15 DUAL LDC2 LDC2 1 IO_L22P_1 IO_L22P_1/A20 D16 DUAL IO_L01P_1/ IO_L01P_1/ 1 N13 DUAL HDC HDC 1 IO_L23N_1 IO_L23N_1/A23 D14 DUAL 1 IO_L02N_1/ IO_L02N_1/ P15 DUAL 1 IO_L23P_1 IO_L23P_1/A22 E13 DUAL LDC0 LDC0 1 IO_L24N_1 IO_L24N_1/A25 C15 DUAL IO_L02P_1/ IO_L02P_1/ 1 R15 DUAL LDC1 LDC1 1 IO_L24P_1 IO_L24P_1/A24 C16 DUAL 1 IO_L03N_1 IO_L03N_1/A1 N16 DUAL IP_L04N_1/ IP_L04N_1/ 1 K12 VREF VREF_1 VREF_1 1 IO_L03P_1 IO_L03P_1/A0 P16 DUAL 1 IP_L04P_1 IP_L04P_1 K11 INPUT 1 N.C. (◆) IVOR_ELF0_51N_1/ M14 VREF 1 N.C. (◆) IP_L09N_1 J11 INPUT 1 N.C. (◆) IO_L05P_1 M13 I/O 1 N.C. (◆) IP_L09P_1/ J10 VREF VREF_1 1 N.C. (◆) IO_L06N_1/A3 K13 DUAL 1 IP_L13N_1 IP_L13N_1 H11 INPUT 1 N.C. (◆) IO_L06P_1/A2 L13 DUAL 1 IP_L13P_1 IP_L13P_1 H10 INPUT 1 N.C. (◆) IO_L07N_1/A5 M16 DUAL 1 IP_L21N_1 IP_L21N_1 G11 INPUT 1 N.C. (◆) IO_L07P_1/A4 M15 DUAL IP_L21P_1/ IP_L21P_1/ 1 N.C. (◆) IO_L08N_1/A7 L16 DUAL 1 VREF_1 VREF_1 G12 VREF 1 N.C. (◆) IO_L08P_1/A6 L14 DUAL 1 IP_L25N_1 IP_L25N_1 F11 INPUT 1 IO_L10N_1 IO_L10N_1/A9 J13 DUAL IP_L25P_1/ IP_L25P_1/ 1 F12 VREF VREF_1 VREF_1 1 IO_L10P_1 IO_L10P_1/A8 J12 DUAL 1 VCCO_1 VCCO_1 E15 VCCO IO_L11N_1/ IO_L11N_1/ 1 K14 RHCLK RHCLK1 RHCLK1 1 VCCO_1 VCCO_1 H12 VCCO 1 IO_L11P_1/ IO_L11P_1/ K15 RHCLK 1 VCCO_1 VCCO_1 J15 VCCO RHCLK0 RHCLK0 1 VCCO_1 VCCO_1 N15 VCCO 80 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions Table 67: Spartan-3A FT256 Pinout (XC3S50A, Table 67: Spartan-3A FT256 Pinout (XC3S50A, XC3S200A, XC3S400) (Continued) XC3S200A, XC3S400) (Continued) XC3S200A FT256 XC3S200A FT256 Bank XC3S50A XC3S400A Ball Type Bank XC3S50A XC3S400A Ball Type 2 IO_L01N_2/M0 IO_L01N_2/M0 P4 DUAL 2 IO_L20P_2/D1 IO_L18N_2/D1 R13 DUAL 2 IO_L01P_2/M1 IO_L01P_2/M1 N4 DUAL 2 IO_L18P_2/D2 IO_L18P_2/D2 T13 DUAL IO_L02N_2/ IO_L02N_2/ 2 N.C. (◆) IO_L19N_2 P13 I/O 2 T2 DUAL CSO_B CSO_B 2 N.C. (◆) IO_L19P_2 N12 I/O 2 IO_L02P_2/M2 IO_L02P_2/M2 R2 DUAL IO_L20N_2/ IO_L20N_2/ 2 R14 DUAL 2 IO_L04P_2/VS2 IO_L03N_2/VS2 T3 DUAL CCLK CCLK IO_L03P_2/ IO_L03P_2/ IO_L18N_2/D0/ IO_L20P_2/D0/ 2 R3 DUAL 2 T14 DUAL RDWR_B RDWR_B DIN/MISO DIN/MISO 2 IO_L04N_2/VS0 IO_L04N_2/VS0 P5 DUAL 2 IP_2 IP_2 L7 INPUT 2 IO_L03N_2/VS1 IO_L04P_2/VS1 N6 DUAL 2 IP_2 IP_2 L8 INPUT 2 IO_L06P_2 IO_L05N_2 R5 I/O 2 IP_2/VREF_2 IP_2/VREF_2 L9 VREF 2 IO_L05P_2 IO_L05P_2 T4 I/O 2 IP_2/VREF_2 IP_2/VREF_2 L10 VREF 2 IO_L06N_2/D6 IO_L06N_2/D6 T6 DUAL 2 IP_2/VREF_2 IP_2/VREF_2 M7 VREF 2 IO_L05N_2/D7 IO_L06P_2/D7 T5 DUAL 2 IP_2/VREF_2 IP_2/VREF_2 M8 VREF 2 N.C. (◆) IO_L07N_2 P6 I/O 2 IP_2/VREF_2 IP_2/VREF_2 M11 VREF 2 N.C. (◆) IO_L07P_2 N7 I/O 2 IP_2/VREF_2 IP_2/VREF_2 N5 VREF 2 IO_L08N_2/D4 IO_L08N_2/D4 N8 DUAL 2 VCCO_2 VCCO_2 M9 VCCO 2 IO_L08P_2/D5 IO_L08P_2/D5 P7 DUAL 2 VCCO_2 VCCO_2 R4 VCCO 2 N.C. (◆) IO_L09N_2/ T7 GCLK 2 VCCO_2 VCCO_2 R8 VCCO GCLK13 2 VCCO_2 VCCO_2 R12 VCCO 2 N.C. (◆) IGOC_LLK091P2_2/ R7 GCLK 3 IO_L01N_3 IO_L01N_3 C1 I/O IO_L10N_2/ IO_L10N_2/ 3 IO_L01P_3 IO_L01P_3 C2 I/O 2 T8 GCLK GCLK15 GCLK15 3 IO_L02N_3 IO_L02N_3 D3 I/O IO_L10P_2/ IO_L10P_2/ 2 GCLK14 GCLK14 P8 GCLK 3 IO_L02P_3 IO_L02P_3 D4 I/O IO_L11N_2/ IO_L11N_2/ 3 IO_L03N_3 IO_L03N_3 E1 I/O 2 P9 GCLK GCLK1 GCLK1 3 IO_L03P_3 IO_L03P_3 D1 I/O IO_L11P_2/ IO_L11P_2/ 2 N9 GCLK 3 N.C. (◆) IO_L05N_3 E2 I/O GCLK0 GCLK0 IO_L12N_2/ IO_L12N_2/ 3 N.C. (◆) IO_L05P_3 E3 I/O 2 T9 GCLK GCLK3 GCLK3 3 N.C. (◆) IO_L07N_3 G4 I/O 2 IO_L12P_2/ IO_L12P_2/ R9 GCLK 3 N.C. (◆) IO_L07P_3 F3 I/O GCLK2 GCLK2 2 N.C. (◆) IO_L13N_2 M10 I/O 3 IO_L08N_3/ IO_L08N_3/ G1 VREF VREF_3 VREF_3 2 N.C. (◆) IO_L13P_2 N10 I/O 3 IO_L08P_3 IO_L08P_3 F1 I/O 2 IO_L14P_2/ IO_L14N_2/ P10 DUAL 3 N.C. (◆) IO_L09N_3 H4 I/O MOSI/CSI_B MOSI/CSI_B 3 N.C. (◆) IO_L09P_3 G3 I/O 2 IO_L14N_2 IO_L14P_2 T10 I/O IO_L15N_2/ IO_L15N_2/ 3 N.C. (◆) IO_L10N_3 H5 I/O 2 R11 DUAL DOUT DOUT 3 N.C. (◆) IO_L10P_3 H6 I/O 2 IAOW_AL1K5EP_2/ IAOW_LA1K5EP_2/ T11 MPGWMRT 3 ILOH_CLL1K11N_3/ ILOH_CLL1K11N_3/ H1 LHCLK 2 IO_L16N_2 IO_L16N_2 N11 I/O IO_L11P_3/ IO_L11P_3/ 3 G2 LHCLK LHCLK0 LHCLK0 2 IO_L16P_2 IO_L16P_2 P11 I/O IO_L12N_3/ IO_L12N_3/ 2 IO_L17N_2/D3 IO_L17N_2/D3 P12 DUAL 3 J3 LHCLK IRDY2/LHCLK3 IRDY2/LHCLK3 2 IO_L17P_2/ IO_L17P_2/ T12 DUAL IO_L12P_3/ IO_L12P_3/ INIT_B INIT_B 3 H3 LHCLK LHCLK2 LHCLK2 DS529 (v2.1) December 18, 2018 www.xilinx.com 81

Pinout Descriptions Table 67: Spartan-3A FT256 Pinout (XC3S50A, Table 67: Spartan-3A FT256 Pinout (XC3S50A, XC3S200A, XC3S400) (Continued) XC3S200A, XC3S400) (Continued) XC3S200A FT256 XC3S200A FT256 Bank XC3S50A XC3S400A Ball Type Bank XC3S50A XC3S400A Ball Type IO_L14N_3/ IO_L14N_3/ GND GND GND B11 GND 3 J1 LHCLK LHCLK5 LHCLK5 GND GND GND C3 GND IO_L14P_3/ IO_L14P_3/ 3 LHCLK4 LHCLK4 J2 LHCLK GND GND GND C14 GND IO_L15N_3/ IO_L15N_3/ GND GND GND E5 GND 3 K1 LHCLK LHCLK7 LHCLK7 GND GND GND E12 GND IO_L15P_3/ IO_L15P_3/ 3 TRDY2/LHCLK6 TRDY2/LHCLK6 K3 LHCLK GND GND GND F2 GND 3 N.C. (◆) IO_L16N_3 L2 I/O GND GND GND F6 GND 3 N.C. (◆) IO_L16P_3/ L1 VREF GND GND GND G8 GND VREF_3 GND GND GND G10 GND 3 N.C. (◆) IO_L17N_3 J6 I/O GND GND GND G15 GND 3 N.C. (◆) IO_L17P_3 J4 I/O GND GND GND H9 GND 3 N.C. (◆) IO_L18N_3 L3 I/O GND GND GND J8 GND 3 N.C. (◆) IO_L18P_3 K4 I/O GND GND GND K2 GND 3 N.C. (◆) IO_L19N_3 L4 I/O GND GND GND K7 GND 3 N.C. (◆) IO_L19P_3 M3 I/O GND GND GND K9 GND 3 IO_L20N_3 IO_L20N_3 N1 I/O GND GND GND L11 GND 3 IO_L20P_3 IO_L20P_3 M1 I/O GND GND GND L15 GND 3 IO_L22N_3 IO_L22N_3 P1 I/O GND GND GND M5 GND 3 IO_L22P_3 IO_L22P_3 N2 I/O GND GND GND M12 GND 3 IO_L23N_3 IO_L23N_3 P2 I/O GND GND GND P3 GND 3 IO_L23P_3 IO_L23P_3 R1 I/O GND GND GND P14 GND 3 IO_L24N_3 IO_L24N_3 M4 I/O GND GND GND R6 GND 3 IO_L24P_3 IO_L24P_3 N3 I/O GND GND GND R10 GND IP_L04N_3/ IP_L04N_3/ 3 F4 VREF GND GND GND T1 GND VREF_3 VREF_3 3 IP_L04P_3 IP_L04P_3 E4 INPUT GND GND GND T16 GND 3 N.C. (◆) IP_L06N_3/ G5 VREF VCCAUX SUSPEND SUSPEND R16 MPGWMRT VREF_3 3 N.C. (◆) IP_L06P_3 G6 INPUT VCCAUX DONE DONE T15 CONFIG 3 IP_L13N_3 IP_L13N_3 J7 INPUT VCCAUX PROG_B PROG_B A2 CONFIG 3 IP_L13P_3 IP_L13P_3 H7 INPUT VCCAUX TCK TCK A15 JTAG 3 IP_L21N_3 IP_L21N_3 K6 INPUT VCCAUX TDI TDI B1 JTAG 3 IP_L21P_3 IP_L21P_3 K5 INPUT VCCAUX TDO TDO B16 JTAG IP_L25N_3/ IP_L25N_3/ VCCAUX TMS TMS B2 JTAG 3 L6 VREF VREF_3 VREF_3 VCCAUX VCCAUX VCCAUX E11 VCCAUX 3 IP_L25P_3 IP_L25P_3 L5 INPUT VCCAUX VCCAUX VCCAUX F5 VCCAUX 3 VCCO_3 VCCO_3 D2 VCCO VCCAUX VCCAUX VCCAUX L12 VCCAUX 3 VCCO_3 VCCO_3 H2 VCCO VCCAUX VCCAUX VCCAUX M6 VCCAUX 3 VCCO_3 VCCO_3 J5 VCCO VCCINT VCCINT VCCINT G7 VCCINT 3 VCCO_3 VCCO_3 M2 VCCO VCCINT VCCINT VCCINT G9 VCCINT GND GND GND A1 GND VCCINT VCCINT VCCINT H8 VCCINT GND GND GND A16 GND VCCINT VCCINT VCCINT J9 VCCINT GND GND GND B7 GND 82 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions Table 67: Spartan-3A FT256 Pinout (XC3S50A, Table 68: Spartan-3A FT256 Pinout (XC3S700A, XC3S200A, XC3S400) (Continued) XC3S700A FT256 Bank Type XC3S200A FT256 XC3S1400A Ball Bank XC3S50A XC3S400A Ball Type 0 IO_L18N_0 B4 I/O VCCINT VCCINT VCCINT K8 VCCINT 0 IO_L18P_0 A4 I/O VCCINT VCCINT VCCINT K10 VCCINT 0 IO_L19N_0 B3 I/O 0 IO_L19P_0 A3 I/O Table 68: Spartan-3A FT256 Pinout (XC3S700A, XC3S1400A) 0 IO_L20N_0/PUDC_B D5 DUAL XC3S700A FT256 Bank Type XC3S1400A Ball 0 IO_L20P_0/VREF_0 C4 VREF 0 IO_L01N_0 C13 I/O 0 IP_0 E6 INPUT 0 IO_L01P_0 D13 I/O 0 VCCO_0 B13 VCCO 0 IO_L02N_0 B14 I/O 0 VCCO_0 B5 VCCO 0 IO_L02P_0/VREF_0 B15 VREF 0 VCCO_0 B9 VCCO 0 IO_L03N_0 D12 I/O 0 VCCO_0 E8 VCCO 0 IO_L03P_0 C12 I/O 1 IO_L01N_1/LDC2 N14 DUAL 0 IO_L04N_0 A13 I/O 1 IO_L01P_1/HDC N13 DUAL 0 IO_L04P_0 A14 I/O 1 IO_L02N_1/LDC0 P15 DUAL 0 IO_L05N_0 A12 I/O 1 IO_L02P_1/LDC1 R15 DUAL 0 IO_L05P_0 B12 I/O 1 IO_L03N_1/A1 N16 DUAL 0 IO_L06N_0/VREF_0 D10 VREF 1 IO_L03P_1/A0 P16 DUAL 0 IO_L06P_0 D11 I/O 1 IO_L06N_1/A3 K13 DUAL 0 IO_L07N_0 A11 I/O 1 IO_L06P_1/A2 L13 DUAL 0 IO_L07P_0 C11 I/O 1 IO_L07N_1/A5 M16 DUAL 0 IO_L08N_0 A10 I/O 1 IO_L07P_1/A4 M15 DUAL 0 IO_L08P_0 B10 I/O 1 IO_L08N_1/A7 L16 DUAL 0 IO_L09N_0/GCLK5 D9 GCLK 1 IO_L08P_1/A6 L14 DUAL 0 IO_L09P_0/GCLK4 C10 GCLK 1 IO_L10N_1/A9 J13 DUAL 0 IO_L10N_0/GCLK7 A9 GCLK 1 IO_L10P_1/A8 J12 DUAL 0 IO_L10P_0/GCLK6 C9 GCLK 1 IO_L11N_1/RHCLK1 K14 RHCLK 0 IO_L11N_0/GCLK9 D8 GCLK 1 IO_L11P_1/RHCLK0 K15 RHCLK 0 IO_L11P_0/GCLK8 C8 GCLK 1 IO_L12N_1/TRDY1/RHCLK3 J16 RHCLK 0 IO_L12N_0/GCLK11 B8 GCLK 1 IO_L12P_1/RHCLK2 K16 RHCLK 0 IO_L12P_0/GCLK10 A8 GCLK 1 IO_L15N_1/RHCLK7 H16 RHCLK 0 IO_L13N_0 C7 I/O 1 IO_L15P_1/IRDY1/RHCLK6 H15 RHCLK 0 IO_L13P_0 A7 I/O 1 IO_L16N_1/A11 F16 DUAL 0 IO_L14N_0/VREF_0 E7 VREF 1 IO_L16P_1/A10 G16 DUAL 0 IO_L14P_0 E9 I/O 1 IO_L17N_1/A13 G14 DUAL 0 IO_L15N_0 B6 I/O 1 IO_L17P_1/A12 H13 DUAL 0 IO_L15P_0 A6 I/O 1 IO_L18N_1/A15 F15 DUAL 0 IO_L16N_0 C6 I/O 1 IO_L18P_1/A14 E16 DUAL 0 IO_L16P_0 D7 I/O 1 IO_L19N_1/A17 F14 DUAL 0 IO_L17N_0 C5 I/O 1 IO_L19P_1/A16 G13 DUAL 0 IO_L17P_0 A5 I/O 1 IO_L20N_1/A19 F13 DUAL DS529 (v2.1) December 18, 2018 www.xilinx.com 83

Pinout Descriptions Table 68: Spartan-3A FT256 Pinout (XC3S700A, Table 68: Spartan-3A FT256 Pinout (XC3S700A, XC3S700A FT256 XC3S700A FT256 Bank Type Bank Type XC3S1400A Ball XC3S1400A Ball 1 IO_L20P_1/A18 E14 DUAL 2 IO_L16N_2 N11 I/O 1 IO_L22N_1/A21 D15 DUAL 2 IO_L16P_2 P11 I/O 1 IO_L22P_1/A20 D16 DUAL 2 IO_L17N_2/D3 P12 DUAL 1 IO_L23N_1/A23 D14 DUAL 2 IO_L17P_2/INIT_B T12 DUAL 1 IO_L23P_1/A22 E13 DUAL 2 IO_L18N_2/D1 R13 DUAL 1 IO_L24N_1/A25 C15 DUAL 2 IO_L18P_2/D2 T13 DUAL 1 IO_L24P_1/A24 C16 DUAL 2 IO_L19N_2 P13 I/O 1 IP_1/VREF_1 H12 VREF 2 IO_L19P_2 N12 I/O 1 IP_1/VREF_1 J14 VREF 2 IO_L20N_2/CCLK R14 DUAL 1 IP_1/VREF_1 M13 VREF 2 IO_L20P_2/D0/DIN/MISO T14 DUAL 1 IP_1/VREF_1 M14 VREF 2 IP_2/VREF_2 M11 VREF 1 VCCO_1 E15 VCCO 2 IP_2/VREF_2 M7 VREF 1 VCCO_1 J15 VCCO 2 IP_2/VREF_2 M9 VREF 1 VCCO_1 N15 VCCO 2 IP_2/VREF_2 N5 VREF 2 IO_L01N_2/M0 P4 DUAL 2 IP_2/VREF_2 P6 VREF 2 IO_L01P_2/M1 N4 DUAL 2 VCCO_2 R12 VCCO 2 IO_L02N_2/CSO_B T2 DUAL 2 VCCO_2 R4 VCCO 2 IO_L02P_2/M2 R2 DUAL 2 VCCO_2 R8 VCCO 2 IO_L03N_2/VS2 T3 DUAL 3 IO_L01N_3 C1 I/O 2 IO_L03P_2/RDWR_B R3 DUAL 3 IO_L01P_3 C2 I/O 2 IO_L04N_2/VS0 P5 DUAL 3 IO_L02N_3 D3 I/O 2 IO_L04P_2/VS1 N6 DUAL 3 IO_L02P_3 D4 I/O 2 IO_L05N_2 R5 I/O 3 IO_L03N_3 E1 I/O 2 IO_L05P_2 T4 I/O 3 IO_L03P_3 D1 I/O 2 IO_L06N_2/D6 T6 DUAL 3 IO_L04N_3 F4 I/O 2 IO_L06P_2/D7 T5 DUAL 3 IO_L04P_3 E4 I/O 2 IO_L08N_2/D4 N8 DUAL 3 IO_L05N_3 E2 I/O 2 IO_L08P_2/D5 P7 DUAL 3 IO_L05P_3 E3 I/O 2 IO_L09N_2/GCLK13 T7 GCLK 3 IO_L07N_3 G3 I/O 2 IO_L09P_2/GCLK12 R7 GCLK 3 IO_L07P_3 F3 I/O 2 IO_L10N_2/GCLK15 T8 GCLK 3 IO_L08N_3/VREF_3 G1 VREF 2 IO_L10P_2/GCLK14 P8 GCLK 3 IO_L08P_3 F1 I/O 2 IO_L11N_2/GCLK1 P9 GCLK 3 IO_L11N_3/LHCLK1 H1 LHCLK 2 IO_L11P_2/GCLK0 N9 GCLK 3 IO_L11P_3/LHCLK0 G2 LHCLK 2 IO_L12N_2/GCLK3 T9 GCLK 3 IO_L12N_3/IRDY2/LHCLK3 J3 LHCLK 2 IO_L12P_2/GCLK2 R9 GCLK 3 IO_L12P_3/LHCLK2 H3 LHCLK 2 IO_L14N_2/MOSI/CSI_B P10 DUAL 3 IO_L14N_3/LHCLK5 J1 LHCLK 2 IO_L14P_2 T10 I/O 3 IO_L14P_3/LHCLK4 J2 LHCLK 2 IO_L15N_2/DOUT R11 DUAL 3 IO_L15N_3/LHCLK7 K1 LHCLK 2 IO_L15P_2/AWAKE T11 PWRMGT 3 IO_L15P_3/TRDY2/LHCLK6 K3 LHCLK 84 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions Table 68: Spartan-3A FT256 Pinout (XC3S700A, Table 68: Spartan-3A FT256 Pinout (XC3S700A, XC3S700A FT256 XC3S700A FT256 Bank Type Bank Type XC3S1400A Ball XC3S1400A Ball 3 IO_L16N_3 L2 I/O GND GND G8 GND 3 IO_L16P_3/VREF_3 L1 VREF GND GND H11 GND 3 IO_L18N_3 L3 I/O GND GND H5 GND 3 IO_L18P_3 K4 I/O GND GND H7 GND 3 IO_L19N_3 L4 I/O GND GND H9 GND 3 IO_L19P_3 M3 I/O GND GND J10 GND 3 IO_L20N_3 N1 I/O GND GND J6 GND 3 IO_L20P_3 M1 I/O GND GND J8 GND 3 IO_L22N_3 P1 I/O GND GND K11 GND 3 IO_L22P_3/VREF_3 N2 VREF GND GND K12 GND 3 IO_L23N_3 P2 I/O GND GND K2 GND 3 IO_L23P_3 R1 I/O GND GND K5 GND 3 IO_L24N_3 M4 I/O GND GND K7 GND 3 IO_L24P_3 N3 I/O GND GND K9 GND 3 IP_3 J4 INPUT GND GND L10 GND 3 IP_3/VREF_3 G4 VREF GND GND L11 GND 3 IP_3/VREF_3 J5 VREF GND GND L15 GND 3 VCCO_3 D2 VCCO GND GND L6 GND 3 VCCO_3 H2 VCCO GND GND L8 GND 3 VCCO_3 M2 VCCO GND GND M12 GND GND GND A1 GND GND GND M5 GND GND GND A16 GND GND GND M8 GND GND GND B11 GND GND GND N10 GND GND GND B7 GND GND GND N7 GND GND GND C14 GND GND GND P14 GND GND GND C3 GND GND GND P3 GND GND GND E10 GND GND GND R10 GND GND GND E12 GND GND GND R6 GND GND GND E5 GND GND GND T1 GND GND GND F11 GND GND GND T16 GND GND GND F2 GND VCCAUX SUSPEND R16 PWRMGT GND GND F6 GND VCCAUX DONE T15 CONFIG GND GND F7 GND VCCAUX PROG_B A2 CONFIG GND GND F8 GND VCCAUX TCK A15 JTAG GND GND F9 GND VCCAUX TDI B1 JTAG GND GND G10 GND VCCAUX TDO B16 JTAG GND GND G12 GND VCCAUX TMS B2 JTAG GND GND G15 GND VCCAUX VCCAUX D6 VCCAUX GND GND G5 GND VCCAUX VCCAUX E11 VCCAUX GND GND G6 GND VCCAUX VCCAUX F12 VCCAUX DS529 (v2.1) December 18, 2018 www.xilinx.com 85

Pinout Descriptions Table 68: Spartan-3A FT256 Pinout (XC3S700A, XC3S700A FT256 Bank Type XC3S1400A Ball VCCAUX VCCAUX F5 VCCAUX VCCAUX VCCAUX H14 VCCAUX VCCAUX VCCAUX H4 VCCAUX VCCAUX VCCAUX L12 VCCAUX VCCAUX VCCAUX L5 VCCAUX VCCAUX VCCAUX M10 VCCAUX VCCAUX VCCAUX M6 VCCAUX VCCINT VCCINT F10 VCCINT VCCINT VCCINT G11 VCCINT VCCINT VCCINT G7 VCCINT VCCINT VCCINT G9 VCCINT VCCINT VCCINT H10 VCCINT VCCINT VCCINT H6 VCCINT VCCINT VCCINT H8 VCCINT VCCINT VCCINT J11 VCCINT VCCINT VCCINT J7 VCCINT VCCINT VCCINT J9 VCCINT VCCINT VCCINT K10 VCCINT VCCINT VCCINT K6 VCCINT VCCINT VCCINT K8 VCCINT VCCINT VCCINT L7 VCCINT VCCINT VCCINT L9 VCCINT 86 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions User I/Os by Bank Table 69, Table 70, and Table 71 indicate how the available The XC3S50A FPGA in the FT256 package has 51 user-I/O pins are distributed between the four I/O banks on unconnected balls, labeled with an “N.C.” type. These pins the FT256 package. The AWAKE pin is counted as a are also indicated in Figure 20. dual-purpose I/O. Table 69: User I/Os Per Bank on XC3S50A in the FT256 Package All Possible I/O Pins by Type Package I/O Bank Maximum I/O Edge I/O INPUT DUAL VREF CLK Top 0 40 21 7 1 3 8 Right 1 32 12 5 4 3 8 Bottom 2 40 5 2 21 6 6 Left 3 32 15 6 0 3 8 TOTAL 144 53 20 26 15 30 .Table 70: User I/Os Per Bank on XC3S200A and XC3S400A in the FT256 Package All Possible I/O Pins by Type Package I/O Bank Maximum I/O Edge I/O INPUT DUAL VREF CLK Top 0 47 27 6 1 5 8 Right 1 50 1 6 30 5 8 Bottom 2 48 11 2 21 6 8 Left 3 50 30 7 0 5 8 TOTAL 195 69 21 52 21 32 Table 71: User I/Os Per Bank on XC3S700A and XC3S1400A in the FT256 Package All Possible I/O Pins by Type Package I/O Bank Maximum I/O Edge I/O INPUT DUAL VREF CLK Top 0 41 27 1 1 4 8 Right 1 40 0 0 30 4 6 Bottom 2 41 7 0 21 5 8 Left 3 39 25 1 0 5 8 TOTAL 161 59 2 52 18 30 DS529 (v2.1) December 18, 2018 www.xilinx.com 87

Pinout Descriptions Footprint Migration Differences Unconnected Balls on XC3S50A Table 72 summarizes any footprint and functionality Table 72: FT256 XC3S50A Footprint Migration differences between the XC3S50A and the XC3S200A or XC3S200A/ XC3S400A FPGAs that might affect easy migration between FT256 XC3S50A XC3S400A these devices in the FT256 package. The XC3S200A and Ball Bank Type Migration Type XC3S400A have identical pinouts. The XC3S50A pinout is K4 3 N.C.  I/O compatible, but there are 52 balls that are different. K13 1 N.C.  I/O Generally, designs easily migrate upward from the L1 3 N.C.  I/O XC3S50A to either the XC3S200A or XC3S400A. If using differential I/O, see Table 73. If using the BPI configuration L2 3 N.C.  I/O mode (parallel Flash), see Table 74. L3 3 N.C.  I/O Table 72: FT256 XC3S50A Footprint Migration Difference L4 3 N.C.  I/O XC3S200A/ L13 1 N.C.  I/O FT256 XC3S50A XC3S400A L14 1 N.C.  I/O Ball Bank Type Migration Type L16 1 N.C.  I/O A7 0 N.C.  I/O M3 3 N.C.  I/O A12 0 N.C.  I/O M10 2 N.C.  I/O B12 0 INPUT  I/O M13 1 N.C.  I/O C7 0 N.C.  I/O M14 1 N.C.  I/O D10 0 N.C.  I/O M15 1 N.C.  I/O E2 3 N.C.  I/O M16 1 N.C.  I/O E3 3 N.C.  I/O N7 2 N.C.  I/O E7 0 N.C.  I/O N10 2 N.C.  I/O E10 0 N.C.  I/O N12 2 N.C.  I/O E16 1 N.C.  I/O P6 2 N.C.  I/O F3 3 N.C.  I/O P13 2 N.C.  I/O F8 0 N.C.  I/O R7 2 N.C.  I/O F14 1 N.C.  I/O T7 2 N.C.  I/O F15 1 N.C.  I/O DIFFERENCES 52 F16 1 N.C.  I/O Legend: G3 3 N.C.  I/O  This pin can unconditionally migrate from the device G4 3 N.C.  I/O on the left to the device on the right. Migration in the other direction is possible depending on how the pin is G5 3 N.C.  INPUT configured for the device on the right. G6 3 N.C.  INPUT G13 1 N.C.  I/O G14 1 N.C.  I/O G16 1 N.C.  I/O H4 3 N.C.  I/O H5 3 N.C.  I/O H6 3 N.C.  I/O H13 1 N.C.  I/O J4 3 N.C.  I/O J6 3 N.C.  I/O J10 1 N.C.  INPUT J11 1 N.C.  INPUT 88 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions XC3S50A Differential I/O Alignment Differences Also, some differential I/O pairs on the XC3S50A FPGA are Table 73: Differential I/O Differences in FT256 aligned differently than the corresponding pairs on the FT256 XC3S200A XC3S200A or XC3S400A FPGAs, as shown in Table 73. All Bank XC3S50A Ball XC3S400A the mismatched pairs are in I/O Bank 2. The shading T3 IO_L04P_2/VS2 IO_L03N_2/VS2 highlights the N side of each pair. N6 IO_L03N_2/VS1 IO_L04P_2/VS1 R5 IO_L06P_2 IO_L05N_2 T5 IO_L05N_2/D7 IO_L06P_2/D7 2 IO_L14P_2/MOSI IO_L14N_2/MOSI P10 /CSI_B /CSI_B T10 IO_L14N_2 IO_L14P_2 R13 IO_L20P_2 IO_L18N_2 T14 IO_L18N_2 IO_L20P_2 XC3S50A Does Not Have BPI Mode Address Outputs The XC3S50A FPGA does not generate the BPI-mode address pins during configuration. Table 74 summarizes these differences. Table 74: XC3S50A BPI Functional Differences FT256 XC3S200A Bank XC3S50A Ball XC3S400A N16 IO_L03N_1 IO_L03N_1/A1 P16 IO_L03P_1 IO_L03P_1/A0 J13 IO_L10N_1 IO_L10N_1/A9 J12 IO_L10P_1 IO_L10P_1/A8 F13 IO_L20N_1 IO_L20N_1/A19 E14 IO_L20P_1 IO_L20P_1/A18 1 D15 IO_L22N_1 IO_L22N_1/A21 D16 IO_L22P_1 IO_L22P_1/A20 D14 IO_L23N_1 IO_L23N_1/A23 E13 IO_L23P_1 IO_L23P_1/A22 C15 IO_L24N_1 IO_L24N_1/A25 C16 IO_L24P_1 IO_L24P_1/A24 DS529 (v2.1) December 18, 2018 www.xilinx.com 89

Pinout Descriptions Differences Between XC3S200A/XC3S400A and XC3S700A/XC3S1400A The XC3S700A and XC3S1400A FPGAs have several Table 75: Differences Between XC3S200A/XC3S400A additional power and ground pins as compared to the and XC3S700A/XC3S1400A (Continued) XC3S200A and XC3S400A. Table 75 summarizes all the XC3S200A XC3S700A differences. All dedicated and dual-purpose configuration FT256 XC3S400A XC3S1400A Bank pins are in the same location. Ball Pin Name Type Pin Name Type Table 75: Differences Between XC3S200A/XC3S400A N10 2 IO_L13P_2 I/O GND GND and XC3S700A/XC3S1400A M10 2 IO_L13N_2 I/O VCCAUX VCCAUX XC3S200A XC3S700A FBT2a5ll6 Bank XC3S400A XC3S1400A P6 2 IO_L07N_2 I/O IVPR_E2F/ _2 VREF Pin Name Type Pin Name Type L8 2 IP_2 INPUT GND GND F8 0 IO_L14P_0 I/O GND GND L7 2 IP_2 INPUT VCCINT VCCINT D11 0 IO_L03N_0 I/O IO_L06P_0 I/O IP_2/ M9 2 VCCO_2 VCCO VREF IO_L06N_0/ VREF_2 D10 0 IO_L06P_0 I/O VREF VREF_0 IP_2/ L10 2 VREF GND GND F7 0 IP_0 INPUT GND GND VREF_2 F9 0 IP_0 INPUT GND GND M8 2 IP_2/ VREF GND GND VREF_2 D12 0 IP_0 INPUT IO_L03N_0 I/O IP_2/ IP_0/ L9 2 VREF_2 VREF VCCINT VCCINT E9 0 INPUT IO_L14P_0 I/O VREF_0 H5 3 IO_L10N_3 I/O GND GND D6 0 IP_0 INPUT VCCAUX VCCAUX J6 3 IO_L17N_3 I/O GND GND F10 0 IP_0 INPUT VCCINT VCCINT G3 3 IO_L09P_3 I/O IO_L07N_3 I/O IO_L06N_0/ E10 0 VREF_0 VREF GND GND J4 3 IO_L17P_3 I/O IP_3 IP IP_1/ H4 3 IO_L09N_3 I/O VCCAUX VCCAUX M13 1 IO_L05P_1 I/O VREF VREF_1 H6 3 IO_L10P_3 I/O VCCINT VCCINT F11 1 IP_L25N_1 INPUT GND GND IO_L22P_3/ N2 3 IO_L22P_3 I/O VREF H11 1 IP_L13N_1 INPUT GND GND VREF_3 K11 1 IP_L04P_1 INPUT GND GND G4 3 IO_L07N_3 I/O IP_3/ VREF VREF_3 G11 1 IP_L21N_1 INPUT VCCINT VCCINT G6 3 IP_L06P_3 INPUT GND GND H10 1 IP_L13P_1 INPUT VCCINT VCCINT H7 3 IP_L13P_3 INPUT GND GND J11 1 IP_L09N_1 INPUT VCCINT VCCINT K5 3 IP_L21P_3 INPUT GND GND IO_L14N_1/ H14 1 RHCLK5 RHCLK VCCAUX VCCAUX E4 3 IP_L04P_3 INPUT IO_L04P_3 I/O IO_L14P_1/ IP_1/ L5 3 IP_L25P_3 INPUT VCCAUX VCCAUX J14 1 RHCLK VREF RHCLK4 VREF_1 J7 3 IP_L13N_3 INPUT VCCINT VCCINT IP_1/ H12 1 VCCO_1 VCCO VREF K6 3 IP_L21N_3 INPUT VCCINT VCCINT VREF_1 IP_3/ IP_L21P_1/ J5 3 VCCO_3 VCCO VREF G12 1 VREF GND GND VREF_3 VREF_1 IP_L06N_3/ IP_L09P_1/ G5 3 VREF GND GND J10 1 VREF GND GND VREF_3 VREF_1 IP_L25N_3/ IP_L04N_1/ L6 3 VREF GND GND K12 1 VREF GND GND VREF_3 VREF_1 IP_L04N_3/ IP_L25P_1/ F4 3 VREF IO_L04N_3 I/O F12 1 VREF VCCAUX VCCAUX VREF_3 VREF_1 IO_L05N_1/ IP_1/ M14 1 VREF VREF VREF_1 VREF_1 N7 2 IO_L07P_2 I/O GND GND 90 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions FT256 Footprint (XC3S50A) (Differential Outputs) Bank 0 (Differential Outputs) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 G_B I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O A GND PRO L19P_0 L18P_0 L17P_0 L15P_0 N.C. GL1C2LPK_100 LG1C0LNK_70 L08N_0 L07N_0 N.C. L04N_0 L04P_0 TCK GND I/O I/O I/O I/O I/O I/O I/O B TDI TMS VCCO_0 GND L12N_0 VCCO_0 GND INPUT VCCO_0 L02P_0 TDO L19N_0 L18N_0 L15N_0 L08P_0 L02N_0 GCLK11 VREF_0 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O C GND L20P_0 N.C. L11P_0 L10P_0 L09P_0 GND L01N_3 L01P_3 L17N_0 L16N_0 L07P_0 L03P_0 L01N_0 L24N_1 L24P_1 VREF_0 GCLK8 GCLK6 GCLK4 Output Drive) DE LL00II33//OONP__33 VCNC.CO._3 LN0I2/.ONC_.3 ILLN00IP24/OPPU__T33 PLUG2ID0/NONCD__0B IINNPPUUTT LN1I6/.OPC_.0 VLGC1CI1C/OLNOK__900 VILGNR0CI9PE/OLNFUK__T500 NN..CC.. VLC0IC3/ONA_U0X INGPNUDT LL02II13//OOPP__01 LL22II30//OONP__11 VLC2I2C/ONO__11 LN2I2/.OPC_.1 Output Drive) (High F L0I8/OP_3 GND N.C. ILN04PNU_T3 VCCAUX GND INPUT N.C. INPUT INPUT ILN25PNU_T1 ILN2P5PU_T1 L2I0/ON_1 N.C. N.C. N.C. (High VREF_3 VREF_1 I/O I/O INPUT INPUT G L08N_3 L11P_3 N.C. N.C. N.C. N.C. VCCINT GND VCCINT GND L21P_1 N.C. N.C. GND N.C. L21N_1 VREF_3 LHCLK0 VREF_1 I/O I/O I/O I/O I/O 3 H L11N_3 VCCO_3 L12P_3 N.C. N.C. N.C. ILN1P3PU_T3 VCCINT GND ILN1P3PU_T1 ILN13PNU_T1 VCCO_1 N.C. L14N_1 LIR15DPY_11 L15N_1 1 k LHCLK1 LHCLK2 RHCLK5 RHCLK6 RHCLK7 k n n Ba J L1I4/ON_3 L1I4/OP_3 LIR1I2/DONY_23 N.C. VCCO_3 N.C. ILN13PNU_T3 GND VCCINT N.C. N.C. L1I0/OP_1 L1I0/ON_1 L1I4/OP_1 VCCO_1 LT1RI2/DONY_11 Ba LHCLK5 LHCLK4 LHCLK3 RHCLK4 RHCLK3 I/O I/O INPUT I/O I/O I/O K L15N_3 GND LT1R5DPY_23 N.C. ILN2P1PU_T3 ILN21PNU_T3 GND VCCINT GND VCCINT ILN0P4PU_T1 L04N_1 N.C. L11N_1 L11P_1 L12P_1 LHCLK7 LHCLK6 VREF_1 RHCLK1 RHCLK0 RHCLK2 Drive) L N.C. N.C. N.C. N.C. ILN2P5PU_T3 VILNR25PENFU__T33 INPUT INPUT VINRPEFU_T2 VINRPEFU_T2 GND VCCAUX N.C. N.C. GND N.C. Drive) put M I/O VCCO_3 N.C. I/O GND VCCAUX INPUT INPUT VCCO_2 N.C. INPUT GND N.C. N.C. N.C. N.C. put ut L20P_3 L24N_3 VREF_2 VREF_2 VREF_2 ut O O h I/O I/O I/O I/O I/O I/O h Hig N L2I0/ON_3 L2I2/OP_3 L2I4/OP_3 L01P_2 VINRPEFU_T2 L03N_2 N.C. L08N_2 L11P_2 N.C. L1I6/ON_2 N.C. L01P_1 L01N_1 VCCO_1 L0I3/ON_1 Hig ( M1 VS1 D4 GCLK0 HDC LDC2 ( I/O I/O I/O I/O I/O I/O I/O I/O P L2I2/ON_3 L2I3/ON_3 GND L01N_2 L04N_2 N.C. L08P_2 L10P_2 L11N_2 LM14OPS_I2 L1I6/OP_2 L17N_2 N.C. GND L02N_1 L0I3/OP_1 M0 VS0 D5 GCLK14 GCLK1 CSI_B D3 LDC0 I/O I/O I/O I/O I/O I/O I/O ND R L2I3/OP_3 L0M2P2_2 RLD0W3PR__2B VCCO_2 L0I6/OP_2 GND N.C. VCCO_2 LG1C2LPK_22 GND LD1O5NU_T2 VCCO_2 L20DP1_2 LC20CNL_K2 LL0D2PC_11 SUSPE I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O T GND L02N_2 L04P_2 L0I5/OP_2 L05N_2 L06N_2 N.C. L10N_2 L12N_2 L1I4/ON_2 L15P_2 L17P_2 L18P_2 L1D8N0_2 DONE GND CSO_B VS2 D7 D6 GCLK15 GCLK3 AWAKE INIT_B D2 DIN/MISO (Differential Outputs) Bank 2 (Differential Outputs) DS529-4_09_012009 Figure 20: XC3S50A FT256 Package Footprint (Top View) 53 I/O: Unrestricted, 25 DUAL: Configuration pins, 15 VREF: User I/O or input 2 SUSPEND: Dedicated general-purpose user I/O then possible user I/O voltage reference for bank SUSPEND and dual-purpose AWAKE 20 INPUT: Unrestricted, 30 CLK: User I/O, input, or 16 VCCO: Output voltage Power Management pins general-purpose input pin global buffer input supply for bank 2 CONFIG: Dedicated 4 JTAG: Dedicated JTAG 6 VCCINT: Internal core configuration pins port pins supply voltage (+1.2V) 51 N.C.: Not connected 28 GND: Ground 4 VCCAUX: Auxiliary supply (XC3S50A only) voltage DS529 (v2.1) December 18, 2018 www.xilinx.com 91

Pinout Descriptions FT256 Footprint (XC3S200A, XC3S400A) Bank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 G_B I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O A GND PRO L19P_0 L18P_0 L17P_0 L15P_0 L13P_0 GL1C2LPK_100 LG1C0LNK_70 L08N_0 L07N_0 L05N_0 L04N_0 L04P_0 TCK GND I/O I/O I/O I/O I/O I/O I/O I/O B TDI TMS VCCO_0 GND L12N_0 VCCO_0 GND VCCO_0 L02P_0 TDO L19N_0 L18N_0 L15N_0 L08P_0 L05P_0 L02N_0 GCLK11 VREF_0 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O C GND L20P_0 L11P_0 L10P_0 L09P_0 GND L24N_1 L24P_1 L01N_3 L01P_3 L17N_0 L16N_0 L13N_0 L07P_0 L03P_0 L01N_0 VREF_0 GCLK8 GCLK6 GCLK4 A25 A24 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O D VCCO_3 L20N_0 INPUT L11N_0 L09N_0 INPUT L23N_1 L22N_1 L22P_1 L03P_3 L02N_3 L02P_3 L16P_0 L06P_0 L03N_0 L01P_0 PUDC_B GCLK9 GCLK5 A23 A21 A20 I/O I/O I/O I/O I/O I/O I/O I/O INPUT INPUT E GND INPUT L14N_0 VCCO_0 L06N_0 VCCAUX GND L23P_1 L20P_1 VCCO_1 L18P_1 L03N_3 L05N_3 L05P_3 L04P_3 VREF_0 VREF_0 VREF_0 A22 A18 A14 INPUT INPUT I/O I/O I/O I/O I/O I/O I/O INPUT F GND L04N_3 VCCAUX GND INPUT INPUT INPUT L25P_1 L20N_1 L19N_1 L18N_1 L16N_1 L08P_3 L07P_3 L14P_0 L25N_1 VREF_3 VREF_1 A19 A17 A15 A11 I/O I/O INPUT INPUT I/O I/O I/O I/O I/O INPUT INPUT G L08N_3 L11P_3 L06N_3 VCCINT GND VCCINT GND L21P_1 L19P_1 L17N_1 GND L16P_1 L09P_3 L07N_3 L06P_3 L21N_1 VREF_3 LHCLK0 VREF_3 VREF_1 A16 A13 A10 I/O I/O I/O I/O I/O I/O 3 H L11N_3 VCCO_3 L12P_3 L0I9/ON_3 L1I0/ON_3 L1I0/OP_3 ILN1P3PU_T3 VCCINT GND ILN1P3PU_T1 ILN13PNU_T1 VCCO_1 L17P_1 L14N_1 LIR15DPY_11 L15N_1 1 k LHCLK1 LHCLK2 A12 RHCLK5 RHCLK6 RHCLK7 k n n Ba J L1I4/ON_3 L1I4/OP_3 LIR1I2/DONY_23 L1I7/OP_3 VCCO_3 L1I7/ON_3 ILN13PNU_T3 GND VCCINT ILN0P9PU_T1 ILN09PNU_T1 L1I0/OP_1 L1I0/ON_1 L1I4/OP_1 VCCO_1 LT1RI2/DONY_11 Ba LHCLK5 LHCLK4 LHCLK3 VREF_1 A8 A9 RHCLK4 RHCLK3 I/O I/O INPUT I/O I/O I/O I/O K L15N_3 GND LT1R5DPY_23 L1I8/OP_3 ILN2P1PU_T3 ILN21PNU_T3 GND VCCINT GND VCCINT ILN0P4PU_T1 L04N_1 L06N_1 L11N_1 L11P_1 L12P_1 LHCLK7 LHCLK6 VREF_1 A3 RHCLK1 RHCLK0 RHCLK2 I/O INPUT I/O I/O I/O I/O I/O I/O INPUT INPUT INPUT L L16P_3 L25N_3 INPUT INPUT GND VCCAUX L06P_1 L08P_1 GND L08N_1 L16N_3 L18N_3 L19N_3 L25P_3 VREF_2 VREF_2 VREF_3 VREF_3 A2 A6 A7 I/O I/O I/O I/O I/O I/O INPUT INPUT I/O INPUT I/O M VCCO_3 GND VCCAUX VCCO_2 GND L05N_1 L07P_1 L07N_1 L20P_3 L19P_3 L24N_3 VREF_2 VREF_2 L13N_2 VREF_2 L05P_1 VREF_1 A4 A5 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O INPUT I/O I/O I/O I/O N L01P_2 L04P_2 L08N_2 L11P_2 L01P_1 L01N_1 VCCO_1 L03N_1 L20N_3 L22P_3 L24P_3 VREF_2 L07P_2 L13P_2 L16N_2 L19P_2 M1 VS1 D4 GCLK0 HDC LDC2 A1 I/O I/O I/O I/O I/O I/O I/O I/O I/O P L2I2/ON_3 L2I3/ON_3 GND L01N_2 L04N_2 L0I7/ON_2 L08P_2 L10P_2 L11N_2 LM14ONS_I2 L1I6/OP_2 L17N_2 L1I9/ON_2 GND L02N_1 L03P_1 M0 VS0 D5 GCLK14 GCLK1 CSI_B D3 LDC0 A0 R L2I3/OP_3 L0IM2/OP2_2 RLD0IW3/OPR__2B VCCO_2 L0I5/ON_2 GND GL0CI9/LOPK_122 VCCO_2 LG1CI2/OLPK_22 GND LD1IO5/ONU_T2 VCCO_2 L1ID8/ON1_2 LC2I0C/ONL_K2 LL0ID2/OPC_11 SUSPEND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O T GND L02N_2 L03N_2 L0I5/OP_2 L06P_2 L06N_2 L09N_2 L10N_2 L12N_2 L1I4/OP_2 L15P_2 L17P_2 L18P_2 L2D0P0_2 DONE GND CSO_B VS2 D7 D6 GCLK13 GCLK15 GCLK3 AWAKE INIT_B D2 DIN/MISO Bank 2 DS529-4_06_012009 Figure 21: XC3S200A and XC3S400A FT256 Package Footprint (Top View) 69 I/O: Unrestricted, 51 DUAL: Configuration pins, 21 VREF: User I/O or input 2 SUSPEND: Dedicated general-purpose user I/O then possible user I/O voltage reference for bank SUSPEND and dual-purpose AWAKE 21 INPUT: Unrestricted, 32 CLK: User I/O, input, or 16 VCCO: Output voltage Power Management pins general-purpose input pin global buffer input supply for bank 2 CONFIG: Dedicated 4 JTAG: Dedicated JTAG 6 VCCINT: Internal core configuration pins port pins supply voltage (+1.2V) N.C.: Not connected GND: Ground VCCAUX: Auxiliary supply 0 28 4 voltage 92 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions FT256 Footprint (XC3S700A, XC3S1400A) Bank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O A GND PROG_B L19P_0 L18P_0 L17P_0 L15P_0 L13P_0 L12P_0 L10N_0 L08N_0 L07N_0 L05N_0 L04N_0 L04P_0 TCK GND GCLK10 GCLK7 I/O I/O I/O I/O I/O I/O I/O I/O B TDI TMS L19N_0 L18N_0 VCCO_0 L15N_0 GND L12N_0 VCCO_0 L08P_0 GND L05P_0 VCCO_0 L02N_0 L02P_0 TDO GCLK11 VREF_0 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O C L01N_3 L01P_3 GND L20P_0 L17N_0 L16N_0 L13N_0 L11P_0 L10P_0 L09P_0 L07P_0 L03P_0 L01N_0 GND L24N_1 L24P_1 VREF_0 GCLK8 GCLK6 GCLK4 A25 A24 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O D L03P_3 VCCO_3 L02N_3 L02P_3 L20N_0 VCCAUX L16P_0 L11N_0 L09N_0 L06N_0 L06P_0 L03N_0 L01P_0 L23N_1 L22N_1 L22P_1 PUDC_B GCLK9 GCLK5 VREF_0 A23 A21 A20 I/O I/O I/O I/O I/O I/O I/O I/O I/O E L03N_3 L05N_3 L05P_3 L04P_3 GND INPUT L14N_0 VCCO_0 L14P_0 GND VCCAUX GND L23P_1 L20P_1 VCCO_1 L18P_1 VREF_0 A22 A18 A14 I/O I/O I/O I/O I/O I/O I/O F L08P_3 GND L07P_3 L04N_3 VCCAUX GND GND GND GND VCCINT GND VCCAUX L20N_1 L19N_1 L18N_1 L16N_1 A19 A17 A15 A11 I/O I/O I/O I/O I/O I/O INPUT G L08N_3 L11P_3 L07N_3 VREF_3 GND GND VCCINT GND VCCINT GND VCCINT GND L19P_1 L17N_1 GND L16P_1 VREF_3 LHCLK0 A16 A13 A10 I/O I/O I/O I/O I/O INPUT L15P_1 3 H L11N_3 VCCO_3 L12P_3 VCCAUX GND VCCINT GND VCCINT GND VCCINT GND VREF_1 L17P_1 VCCAUX IRDY1 L15N_1 1 k LHCLK1 LHCLK2 A12 RHCLK6 RHCLK7 k an I/O I/O I/O I/O I/O I/O an B J L14N_3 L14P_3 LI1R2DNY_23 INPUT VINRPEUFT_3 GND VCCINT GND VCCINT GND VCCINT L10P_1 L10N_1 VINRPEUF_T1 VCCO_1 LT1R2DNY_11 B LHCLK5 LHCLK4 A8 A9 LHCLK3 RHCLK3 I/O I/O I/O I/O I/O I/O L15P_3 I/O K L15N_3 GND TRDY2 L18P_3 GND VCCINT GND VCCINT GND VCCINT GND GND L06N_1 L11N_1 L11P_1 L12P_1 LHCLK7 A3 RHCLK1 RHCLK0 RHCLK2 LHCLK6 I/O I/O I/O I/O I/O I/O I/O L L16P_3 L16N_3 L18N_3 L19N_3 VCCAUX GND VCCINT GND VCCINT GND GND VCCAUX L06P_1 L08P_1 GND L08N_1 VREF_3 A2 A6 A7 I/O I/O I/O I/O I/O INPUT INPUT INPUT INPUT INPUT M L20P_3 VCCO_3 L19P_3 L24N_3 GND VCCAUX VREF_2 GND VREF_2VCCAUX VREF_2 GND VREF_1 VREF_1 L07P_1 L07N_1 A4 A5 I/O I/O I/O I/O INPUT I/O I/O I/O I/O I/O I/O I/O I/O N L20N_3 L22P_3 L24P_3 L01P_2 VREF_2 L04P_2 GND L08N_2 L11P_2 GND L16N_2 L19P_2 L01P_1 L01N_1 VCCO_1 L03N_1 VREF_3 M1 VS1 D4 GCLK0 HDC LDC2 A1 P L2I2/ON_3 L2I3/ON_3 GND L0I1/ON_2 L0I4/ON_2 VINRPEUFT_2 L0I8/OP_2 L1I0/OP_2 L1I1/ON_2 LM1I4O/ONS_I2 L1I6/OP_2 L1I7/ON_2 L1I9/ON_2 GND L0I2/ON_1 L0I3/OP_1 M0 VS0 D5 GCLK14 GCLK1 CSI_B D3 LDC0 A0 R L2I3/OP_3 L0MI2/OP2_2 RLD0WI3/OPR__2BVCCO_2 L0I5/ON_2 GND GL0CI9L/OPK_122 VCCO_2 LG1CI2/LOPK_22 GND LD1OI5/ONU_T2 VCCO_2 L1ID8/ON1_2 LC2I0C/ONL_K2 LL0DI2/OPC_11 SUSPEND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O T GND L02N_2 L03N_2 L0I5/OP_2 L06P_2 L06N_2 L09N_2 L10N_2 L12N_2 L1I4/OP_2 L15P_2 L17P_2 L18P_2 DL200/DPI_N2 DONE GND CSO_B VS2 D7 D6 GCLK13 GCLK15 GCLK3 AWAKE INIT_B D2 MISO Bank 2 DS529-4_012009 Figure 22: XC3S700A and XC3S1400A FT256 Package Footprint (Top View) 59 I/O: Unrestricted, 51 DUAL: Configuration, then 18 VREF: User I/O or input 2 SUSPEND: Dedicated general-purpose user I/O possible user I/O voltage reference for bank SUSPEND and dual-purpose AWAKE 2 INPUT: Unrestricted, 30 CLK: User I/O, input, or 13 VCCO: Output voltage Power Management pins general-purpose input pin global buffer input supply for bank 2 CONFIG: Dedicated 4 JTAG: Dedicated JTAG 15 VCCINT: Internal core configuration pins port pins supply voltage (+1.2V) N.C.: Not connected GND: Ground VCCAUX: Auxiliary supply 0 50 10 voltage DS529 (v2.1) December 18, 2018 www.xilinx.com 93

Pinout Descriptions FG320: 320-ball Fine-pitch Ball Grid Array The 320-ball fine-pitch ball grid array package, FG320, Table 76: Spartan-3A FG320 Pinout(Continued) supports two Spartan-3A FPGAs, the XC3S200A and the FG320 XC3S400A, as shown in Table 76 and Figure 23. Bank Pin Name Ball Type The FG320 package is an 18 x 18 array of solder balls 0 IO_L09P_0 B11 I/O minus the four center balls. 0 IO_L10N_0 D10 I/O Table 76 lists all the package pins. They are sorted by bank 0 IO_L10P_0 C11 I/O number and then by pin name of the largest device. Pins 0 IO_L11N_0/GCLK5 C9 GCLK that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the 0 IO_L11P_0/GCLK4 B10 GCLK pin type, as defined earlier. 0 IO_L12N_0/GCLK7 B9 GCLK The shaded rows indicate pinout differences between the 0 IO_L12P_0/GCLK6 A10 GCLK XC3S200A and the XC3S400A FPGAs. The XC3S200A 0 IO_L13N_0/GCLK9 B7 GCLK has three unconnected balls, indicated as N.C. (No 0 IO_L13P_0/GCLK8 A8 GCLK Connection) in Table 76 and with the black diamond character () in Table 76 and Figure 23. 0 IO_L14N_0/GCLK11 C8 GCLK All other balls have nearly identical functionality on all three 0 IO_L14P_0/GCLK10 B8 GCLK devices. Table 79 summarizes the Spartan-3A FPGA 0 IO_L15N_0 C7 I/O footprint migration differences for the FG320 package. 0 IO_L15P_0 D8 I/O An electronic version of this package pinout table and 0 IO_L16N_0 E9 I/O footprint diagram is available for download from the Xilinx 0 IO_L16P_0 D9 I/O website at 0 IO_L17N_0 B6 I/O www.xilinx.com/support/documentation/data_sheets/ s3a_pin.zip. 0 IO_L17P_0 A6 I/O 0 IO_L18N_0/VREF_0 A4 VREF Pinout Table 0 IO_L18P_0 A5 I/O Table 76: Spartan-3A FG320 Pinout 0 IO_L19N_0 E7 I/O FG320 0 IO_L19P_0 F8 I/O Bank Pin Name Ball Type 0 IO_L20N_0 D6 I/O 0 IO_L01N_0 C15 I/O 0 IO_L20P_0 C6 I/O 0 IO_L01P_0 C16 I/O 0 IO_L21N_0 A3 I/O 0 IO_L02N_0 A16 I/O 0 IO_L21P_0 B4 I/O 0 IO_L02P_0/VREF_0 B16 VREF 0 IO_L22N_0 D5 I/O 0 IO_L03N_0 A14 I/O 0 IO_L22P_0 C5 I/O 0 IO_L03P_0 A15 I/O 0 IO_L23N_0 A2 I/O 0 IO_L04N_0 C14 I/O 0 IO_L23P_0 B3 I/O 0 IO_L04P_0 B15 I/O 0 IO_L24N_0/PUDC_B E5 DUAL 0 IO_L05N_0 D12 I/O 0 IO_L24P_0/VREF_0 E6 VREF 0 IO_L05P_0 C13 I/O 0 IP_0 D13 INPUT 0 IO_L06N_0/VREF_0 A13 VREF 0 IP_0 D14 INPUT 0 IO_L06P_0 B13 I/O 0 IP_0 E12 INPUT 0 IO_L07N_0 B12 I/O XC3S400A: IP_0 0 IO_L07P_0 C12 I/O 0 XC3S200A: N.C. (◆) E13 INPUT 0 IO_L08N_0 F11 I/O 0 IP_0 F7 INPUT 0 IO_L08P_0 E11 I/O 0 IP_0 F9 INPUT 0 IO_L09N_0 A11 I/O 0 IP_0 F10 INPUT 94 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions Table 76: Spartan-3A FG320 Pinout(Continued) Table 76: Spartan-3A FG320 Pinout(Continued) FG320 FG320 Bank Pin Name Ball Type Bank Pin Name Ball Type 0 IP_0 F12 INPUT 1 IO_L21N_1 F17 I/O 0 IP_0 G7 INPUT 1 IO_L21P_1 G17 I/O 0 IP_0 G8 INPUT 1 IO_L22N_1/A13 E18 DUAL 0 IP_0 G9 INPUT 1 IO_L22P_1/A12 F18 DUAL 0 IP_0 G11 INPUT 1 IO_L23N_1/A15 H15 DUAL 0 IP_0/VREF_0 E10 VREF 1 IO_L23P_1/A14 J14 DUAL 0 VCCO_0 B5 VCCO 1 IO_L25N_1 D17 I/O 0 VCCO_0 B14 VCCO 1 IO_L25P_1 D18 I/O 0 VCCO_0 D11 VCCO 1 IO_L26N_1/A17 E16 DUAL 0 VCCO_0 E8 VCCO 1 IO_L26P_1/A16 F16 DUAL 1 IO_L01N_1/LDC2 T17 DUAL 1 IO_L27N_1/A19 F15 DUAL 1 IO_L01P_1/HDC R16 DUAL 1 IO_L27P_1/A18 G15 DUAL 1 IO_L02N_1/LDC0 U18 DUAL 1 IO_L29N_1/A21 E15 DUAL 1 IO_L02P_1/LDC1 U17 DUAL 1 IO_L29P_1/A20 D16 DUAL 1 IO_L03N_1/A1 R17 DUAL 1 IO_L30N_1/A23 B18 DUAL 1 IO_L03P_1/A0 T18 DUAL 1 IO_L30P_1/A22 C18 DUAL 1 IO_L05N_1 N16 I/O 1 IO_L31N_1/A25 B17 DUAL 1 IO_L05P_1 P16 I/O 1 IO_L31P_1/A24 C17 DUAL 1 IO_L06N_1 M14 I/O 1 IP_L04N_1/VREF_1 N14 VREF 1 IO_L06P_1 N15 I/O 1 IP_L04P_1 P15 INPUT 1 IO_L07N_1/VREF_1 P18 VREF 1 IP_L08N_1/VREF_1 L14 VREF 1 IO_L07P_1 R18 I/O 1 IP_L08P_1 M13 INPUT 1 IO_L09N_1/A3 M17 DUAL 1 IP_L12N_1 L16 INPUT 1 IO_L09P_1/A2 M16 DUAL 1 IP_L12P_1/VREF_1 M15 VREF 1 IO_L10N_1/A5 N18 DUAL 1 IP_L16N_1 K14 INPUT 1 IO_L10P_1/A4 N17 DUAL 1 IP_L16P_1 K13 INPUT 1 IO_L11N_1/A7 L12 DUAL 1 IP_L20N_1 J13 INPUT 1 IO_L11P_1/A6 L13 DUAL 1 IP_L20P_1/VREF_1 K12 VREF 1 IO_L13N_1/A9 K16 DUAL 1 IP_L24N_1 G14 INPUT 1 IO_L13P_1/A8 L17 DUAL 1 IP_L24P_1 H13 INPUT 1 IO_L14N_1/RHCLK1 K17 RHCLK 1 IP_L28N_1 G13 INPUT 1 IO_L14P_1/RHCLK0 L18 RHCLK 1 IP_L28P_1/VREF_1 H12 VREF 1 IO_L15N_1/TRDY1/RHCLK3 J17 RHCLK 1 IP_L32N_1 F13 INPUT 1 IO_L15P_1/RHCLK2 K18 RHCLK 1 IP_L32P_1/VREF_1 F14 VREF 1 IO_L17N_1/RHCLK5 K15 RHCLK 1 VCCO_1 E17 VCCO 1 IO_L17P_1/RHCLK4 J16 RHCLK 1 VCCO_1 H14 VCCO 1 IO_L18N_1/RHCLK7 H17 RHCLK 1 VCCO_1 L15 VCCO 1 IO_L18P_1/IRDY1/RHCLK6 H18 RHCLK 1 VCCO_1 P17 VCCO 1 IO_L19N_1/A11 G16 DUAL 2 IO_L01N_2/M0 U3 DUAL 1 IO_L19P_1/A10 H16 DUAL 2 IO_L01P_2/M1 T3 DUAL DS529 (v2.1) December 18, 2018 www.xilinx.com 95

Pinout Descriptions Table 76: Spartan-3A FG320 Pinout(Continued) Table 76: Spartan-3A FG320 Pinout(Continued) FG320 FG320 Bank Pin Name Ball Type Bank Pin Name Ball Type 2 IO_L02N_2/CSO_B V3 DUAL 2 IO_L21P_2 V14 I/O 2 IO_L02P_2/M2 V2 DUAL 2 IO_L22N_2/D1 U15 DUAL 2 IO_L03N_2/VS2 U4 DUAL 2 IO_L22P_2/D2 V15 DUAL 2 IO_L03P_2/RDWR_B T4 DUAL 2 IO_L23N_2 T15 I/O 2 IO_L04N_2 T5 I/O 2 IO_L23P_2 R14 I/O 2 IO_L04P_2 R5 I/O 2 IO_L24N_2/CCLK U16 DUAL 2 IO_L05N_2/VS0 V5 DUAL 2 IO_L24P_2/D0/DIN/MISO V16 DUAL 2 IO_L05P_2/VS1 V4 DUAL 2 IP_2 M8 INPUT 2 IO_L06N_2 U6 I/O 2 IP_2 M9 INPUT 2 IO_L06P_2 T6 I/O 2 IP_2 M12 INPUT 2 IO_L07N_2 P8 I/O XC3S400A: IP_2 2 XC3S200A: N.C. (◆) N7 INPUT 2 IO_L07P_2 N8 I/O 2 IP_2 N9 INPUT 2 IO_L08N_2/D6 T7 DUAL 2 IP_2 N11 INPUT 2 IO_L08P_2/D7 R7 DUAL 2 IP_2 R6 INPUT 2 IO_L09N_2 R9 I/O 2 IP_2/VREF_2 M11 VREF 2 IO_L09P_2 T8 I/O 2 IP_2/VREF_2 N10 VREF 2 IO_L10N_2/D4 V6 DUAL 2 IP_2/VREF_2 P6 VREF 2 IO_L10P_2/D5 U7 DUAL 2 IP_2/VREF_2 P7 VREF 2 IO_L11N_2/GCLK13 V8 GCLK 2 IP_2/VREF_2 P9 VREF 2 IO_L11P_2/GCLK12 U8 GCLK 2 IP_2/VREF_2 P13 VREF 2 IO_L12N_2/GCLK15 V9 GCLK XC3S400A: IP_2/VREF_2 2 IO_L12P_2/GCLK14 U9 GCLK 2 XC3S200A: N.C. (◆) P14 VREF 2 IO_L13N_2/GCLK1 T10 GCLK 2 VCCO_2 P11 VCCO 2 IO_L13P_2/GCLK0 U10 GCLK 2 VCCO_2 R8 VCCO 2 IO_L14N_2/GCLK3 U11 GCLK 2 VCCO_2 U5 VCCO 2 IO_L14P_2/GCLK2 V11 GCLK 2 VCCO_2 U14 VCCO 2 IO_L15N_2 R10 I/O 3 IO_L01N_3 C1 I/O 2 IO_L15P_2 P10 I/O 3 IO_L01P_3 C2 I/O 2 IO_L16N_2/MOSI/CSI_B T11 DUAL 3 IO_L02N_3 B1 I/O 2 IO_L16P_2 R11 I/O 3 IO_L02P_3 B2 I/O 2 IO_L17N_2 V13 I/O 3 IO_L03N_3 D2 I/O 2 IO_L17P_2 U12 I/O 3 IO_L03P_3 D3 I/O 2 IO_L18N_2/DOUT U13 DUAL 3 IO_L05N_3 G5 I/O 2 IO_L18P_2/AWAKE T12 PWR 3 IO_L05P_3 F5 I/O MGMT 3 IO_L06N_3 E3 I/O 2 IO_L19N_2 P12 I/O 3 IO_L06P_3 F4 I/O 2 IO_L19P_2 N12 I/O 3 IO_L07N_3 E1 I/O 2 IO_L20N_2/D3 R13 DUAL 3 IO_L07P_3 D1 I/O 2 IO_L20P_2/INIT_B T13 DUAL 3 IO_L09N_3 G4 I/O 2 IO_L21N_2 T14 I/O 3 IO_L09P_3 F3 I/O 96 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions Table 76: Spartan-3A FG320 Pinout(Continued) Table 76: Spartan-3A FG320 Pinout(Continued) FG320 FG320 Bank Pin Name Ball Type Bank Pin Name Ball Type 3 IO_L10N_3/VREF_3 F1 VREF 3 IP_L16N_3 K6 INPUT 3 IO_L10P_3 F2 I/O 3 IP_L16P_3 J5 INPUT 3 IO_L11N_3 J6 I/O 3 IP_L20N_3 L6 INPUT 3 IO_L11P_3 J7 I/O 3 IP_L20P_3 L7 INPUT 3 IO_L13N_3 H1 I/O 3 IP_L24N_3 M4 INPUT 3 IO_L13P_3 H2 I/O 3 IP_L24P_3 M3 INPUT 3 IO_L14N_3/LHCLK1 J3 LHCLK 3 IP_L28N_3 M5 INPUT 3 IO_L14P_3/LHCLK0 H3 LHCLK 3 IP_L28P_3 M6 INPUT 3 IO_L15N_3/IRDY2/LHCLK3 J1 LHCLK 3 IP_L32N_3/VREF_3 P4 VREF 3 IO_L15P_3/LHCLK2 J2 LHCLK 3 IP_L32P_3 P5 INPUT 3 IO_L17N_3/LHCLK5 K5 LHCLK 3 VCCO_3 E2 VCCO 3 IO_L17P_3/LHCLK4 J4 LHCLK 3 VCCO_3 H4 VCCO 3 IO_L18N_3/LHCLK7 K3 LHCLK 3 VCCO_3 L5 VCCO 3 IO_L18P_3/TRDY2/LHCLK6 K2 LHCLK 3 VCCO_3 P2 VCCO 3 IO_L19N_3 L2 I/O GND GND A1 GND 3 IO_L19P_3/VREF_3 L1 VREF GND GND A7 GND 3 IO_L21N_3 M2 I/O GND GND A12 GND 3 IO_L21P_3 N1 I/O GND GND A18 GND 3 IO_L22N_3 N2 I/O GND GND C10 GND 3 IO_L22P_3 P1 I/O GND GND D4 GND 3 IO_L23N_3 L4 I/O GND GND D7 GND 3 IO_L23P_3 L3 I/O GND GND D15 GND 3 IO_L25N_3 R2 I/O GND GND F6 GND 3 IO_L25P_3 R1 I/O GND GND G1 GND 3 IO_L26N_3 N4 I/O GND GND G12 GND 3 IO_L26P_3 N3 I/O GND GND G18 GND 3 IO_L27N_3 T2 I/O GND GND H8 GND 3 IO_L27P_3 T1 I/O GND GND H10 GND 3 IO_L29N_3 N6 I/O GND GND J11 GND 3 IO_L29P_3 N5 I/O GND GND J15 GND 3 IO_L30N_3 R3 I/O GND GND K4 GND 3 IO_L30P_3 P3 I/O GND GND K8 GND 3 IO_L31N_3 U2 I/O GND GND L9 GND 3 IO_L31P_3 U1 I/O GND GND L11 GND 3 IP_L04N_3/VREF_3 H7 VREF GND GND M1 GND 3 IP_L04P_3 G6 INPUT GND GND M7 GND 3 IP_L08N_3/VREF_3 H5 VREF GND GND M18 GND 3 IP_L08P_3 H6 INPUT GND GND N13 GND 3 IP_L12N_3 G2 INPUT GND GND R4 GND 3 IP_L12P_3 G3 INPUT GND GND R12 GND DS529 (v2.1) December 18, 2018 www.xilinx.com 97

Pinout Descriptions Table 76: Spartan-3A FG320 Pinout(Continued) FG320 Bank Pin Name Ball Type GND GND R15 GND GND GND T9 GND GND GND V1 GND GND GND V7 GND GND GND V12 GND GND GND V18 GND PWR VCCAUX SUSPEND T16 MGMT VCCAUX DONE V17 CONFIG VCCAUX PROG_B C4 CONFIG VCCAUX TCK A17 JTAG VCCAUX TDI E4 JTAG VCCAUX TDO E14 JTAG VCCAUX TMS C3 JTAG VCCAUX VCCAUX A9 VCCAUX VCCAUX VCCAUX G10 VCCAUX VCCAUX VCCAUX J12 VCCAUX VCCAUX VCCAUX J18 VCCAUX VCCAUX VCCAUX K1 VCCAUX VCCAUX VCCAUX K7 VCCAUX VCCAUX VCCAUX M10 VCCAUX VCCAUX VCCAUX V10 VCCAUX VCCINT VCCINT H9 VCCINT VCCINT VCCINT H11 VCCINT VCCINT VCCINT J8 VCCINT VCCINT VCCINT K11 VCCINT VCCINT VCCINT L8 VCCINT VCCINT VCCINT L10 VCCINT 98 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions User I/Os by Bank Table 77 and Table 78 indicate how the available user-I/O pins are distributed between the four I/O banks on the FG320 package. The AWAKE pin is counted as a dual-purpose I/O. Table 77: User I/Os Per Bank for XC3S200A in the FG320 Package All Possible I/O Pins by Type Package I/O Bank Maximum I/O Edge I/O INPUT DUAL VREF CLK Top 0 60 35 11 1 5 8 Right 1 64 9 10 30 7 8 Bottom 2 60 19 6 21 6 8 Left 3 64 38 13 0 5 8 TOTAL 248 101 40 52 23 32 Table 78: User I/Os Per Bank for XC3S400A in the FG320 Package All Possible I/O Pins by Type Package I/O Bank Maximum I/O Edge I/O INPUT DUAL VREF CLK Top 0 61 35 12 1 5 8 Right 1 64 9 10 30 7 8 Bottom 2 62 19 7 21 7 8 Left 3 64 38 13 0 5 8 TOTAL 251 101 42 52 24 32 Footprint Migration Differences Table 79 summarizes any footprint and functionality differences between the XC3S200A and the XC3S400A FPGAs that might affect easy migration between devices available in the FG320 package. There are three such balls. All other pins not listed in Table 79 unconditionally migrate between Spartan-3A devices available in the FG320 package. The arrows indicate the direction for easy migration. Table 79: FG320 Footprint Migration Differences Pin Bank XC3S200A Migration XC3S400A E13 0 N.C.  INPUT N7 2 N.C.  INPUT P14 2 N.C.  INPUT/VREF DIFFERENCES 3 Legend:  This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction is possible depending on how the pin is configured for the device on the right. DS529 (v2.1) December 18, 2018 www.xilinx.com 99

Pinout Descriptions FG320 Footprint Bank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 A GND L2I3/ON_0 L2I1/ON_0 VLR1I8E/ONF__00 L1I8/OP_0 L1I7/OP_0 GND LG1CI3/LOPK_80 VCCAUX LG1CI2/LOPK_60 L0I9/ON_0 GND VLR0I6E/ONF__00 L0I3/ON_0 L0I3/OP_0 L0I2/ON_0 TCK GND B L0I2/ON_3 L0I2/OP_3 L2I3/OP_0 L2I1/OP_0 VCCO_0 L1I7/ON_0 LG1CI3/LONK_90 GL1CI4/LOPK_100 LG1CI2/LONK_70 LG1CI1/LOPK_40 L0I9/OP_0 L0I7/ON_0 L0I6/OP_0 VCCO_0 L0I4/OP_0 VLR0I2E/OPF__00 L3AI1/2ON5_1 L3AI0/2ON3_1 C L0I1/ON_3 L0I1/OP_3 TMS PROG_B L2I2/OP_0 L2I0/OP_0 L1I5/ON_0 GL1CI4/LONK_101 LG1CI1/LONK_50 GND L1I0/OP_0 L0I7/OP_0 L0I5/OP_0 L0I4/ON_0 L0I1/ON_0 L0I1/OP_0 L3AI1/2OP4_1 L3AI0/2OP2_1 D L0I7/OP_3 L0I3/ON_3 L0I3/OP_3 GND L2I2/ON_0 L2I0/ON_0 GND L1I5/OP_0 L1I6/OP_0 L1I0/ON_0 VCCO_0 L0I5/ON_0 INPUT INPUT GND L2AI9/2OP0_1 L2I5/ON_1 L2I5/OP_1 E L0I7/ON_3 VCCO_3 L0I6/ON_3 TDI PLU2I4D/ONC__0B VLR2I4E/OPF__00 L1I9/ON_0 VCCO_0 L1I6/ON_0 VINRPEFU_T0 L0I8/OP_0 INPUT INP◆UT TDO L2AI9/2ON1_1 L2AI6/1ON7_1 VCCO_1 L2AI2/1ON3_1 F VLR1I0E/ONF__33 L1I0/OP_3 L0I9/OP_3 L0I6/OP_3 L0I5/OP_3 GND INPUT L1I9/OP_0 INPUT INPUT L0I8/ON_0 INPUT ILN32PNU_T1 VILNR32PEPFU__T11 L2AI7/1ON9_1 L2AI6/1OP6_1 L2I1/ON_1 L2AI2/1OP2_1 G GND ILN12PNU_T3 ILN12PPU_T3 L0I9/ON_3 L0I5/ON_3 ILN04PPU_T3 INPUT INPUT INPUT VCCAUX INPUT GND ILN28PNU_T1 ILN24PNU_T1 L2AI7/1OP8_1 L1AI9/1ON1_1 L2I1/OP_1 GND H L1I3/ON_3 L1I3/OP_3 LLH1I4C/OPL_K30 VCCO_3 VILNR08PENFU__T33 ILN08PPU_T3 VILNR04PENFU__T33 GND VCCINT GND VCCINT VILNR28PEPFU__T11 ILN24PPU_T1 VCCO_1 L2AI3/1ON5_1 L1AI9/1OP0_1 RLH1I8C/ONL_K17 RLIHR1I8CD/OPLY_K116 k 3 J LLIH1RI5CD/ONLY_K233 LLH1I5C/OPL_K32 LLH1I4C/ONL_K31 LLH1I7C/OPL_K34 ILN16PPU_T3 L1I1/ON_3 L1I1/OP_3 VCCINT GND VCCAUX ILN20PNU_T1 L2AI3/1OP4_1 GND RLH1I7C/OPL_K14 RLTH1RI5C/DONLY_K113 VCCAUX k 1 n n Ba K VCCAUX LLTH1RI8C/DOPLY_K236 LLH1I8C/ONL_K37 GND LLH1I7C/ONL_K35 ILN16PNU_T3 VCCAUX GND VCCINT VILNR20PEPFU__T11 ILN16PPU_T1 ILN16PNU_T1 RLH1I7C/ONL_K15 L1I3A/ON9_1 RLH1I4C/ONL_K11 RLH1I5C/OPL_K12 Ba L VLR1I9E/OPF__33 L1I9/ON_3 L2I3/OP_3 L2I3/ON_3 VCCO_3 ILN20PNU_T3 ILN20PPU_T3 VCCINT GND VCCINT GND L1I1A/ON7_1 L1I1A/OP6_1 VILNR08PENFU__T11 VCCO_1 ILN12PNU_T1 L1I3A/OP8_1 RLH1I4C/OPL_K10 M GND L2I1/ON_3 ILN24PPU_T3 ILN24PNU_T3 ILN28PNU_T3 ILN28PPU_T3 GND INPUT INPUT VCCAUX VINRPEFU_T2 INPUT ILN08PPU_T1 L0I6/ON_1 VILNR12PEPFU__T11 L0I9A/OP2_1 L0I9A/ON3_1 GND N L2I1/OP_3 L2I2/ON_3 L2I6/OP_3 L2I6/ON_3 L2I9/OP_3 L2I9/ON_3 INP◆UT L0I7/OP_2 INPUT VINRPEFU_T2 INPUT L1I9/OP_2 GND VILNR04PENFU__T11 L0I6/OP_1 L0I5/ON_1 L1I0A/OP4_1 L1I0A/ON5_1 P L2I2/OP_3 VCCO_3 L3I0/OP_3 VILNR32PENFU__T33 ILN32PPU_T3 VINRPEFU_T2 VINRPEFU_T2 L0I7/ON_2 VINRPEFU_T2 L1I5/OP_2 VCCO_2 L1I9/ON_2 VINRPEFU_T2 VINRPE◆FU_T2 ILN04PPU_T1 L0I5/OP_1 VCCO_1 VLR0I7E/ONF__11 R L2I5/OP_3 L2I5/ON_3 L3I0/ON_3 GND L0I4/OP_2 INPUT L0ID8/OP7_2 VCCO_2 L0I9/ON_2 L1I5/ON_2 L1I6/OP_2 GND L2I0D/ON3_2 L2I3/OP_2 GND L0HI1/DOPC_1 L0I3A/ON1_1 L0I7/OP_1 T L2I7/OP_3 L2I7/ON_3 L0IM1/OP1_2 RLD0IW3/OPR__2B L0I4/ON_2 L0I6/OP_2 L0I8D/ON6_2 L0I9/OP_2 GND LG1CI3/LONK_12 LCM1IS6/OONI_S_BI2 AL1WI8/AOPK_E2 LIN2I0I/TOP__B2 L2I1/ON_2 L2I3/ON_2 SUSPEND LL0ID1/ONC_21 L0I3A/OP0_1 U L3I1/OP_3 L3I1/ON_3 L0IM1/ON0_2 L0VI3/SON2_2 VCCO_2 L0I6/ON_2 L1ID0/OP5_2 GL1CI1/LOPK_122 GL1CI2/LOPK_124 LG1CI3/LOPK_02 LG1CI4/LONK_32 L1I7/OP_2 LD1IO8/ONU_T2 VCCO_2 L2I2D/ON1_2 LC2I4C/ONL_K2 LL0ID2/OPC_11 LL0ID2/ONC_01 V GND L0IM2/OP2_2 LC0SI2/OON__B2 L0VI5/SOP1_2 L0VI5/SON0_2 L1I0D/ON4_2 GND GL1CI1/LONK_123 GL1CI2/LONK_125 VCCAUX LG1CI4/LOPK_22 GND L1I7/ON_2 L2I1/OP_2 L2ID2/OP2_2 DLIN2ID4//MOP0I_S2O DONE GND Bank 2 DS529-4_05_012009 Figure 23: FG320 Package Footprint (Top View) I/O: Unrestricted, DUAL: Configuration 23 - VREF: User I/O or input SUSPEND: Dedicated 101 general-purpose user I/O 51 pins, then possible voltage reference for 2 SUSPEND and 24 user-I/O bank dual-purpose AWAKE Power Management pins 40 - INPUT: Unrestricted, CLK: User I/O, input, or VCCO: Output voltage general-purpose input 32 global buffer input 16 supply for bank 42 pin 2 CONFIG: Dedicated 4 JTAG: Dedicated JTAG 6 VCCINT: Internal core configuration pins port pins supply voltage (+1.2V) N.C.: Not connected. GND: Ground VCCAUX: Auxiliary 3 Only the XC3S200A has 32 8 supply voltage these pins (). 100 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions FG400: 400-ball Fine-pitch Ball Grid Array The 400-ball fine-pitch ball grid array, FG400, supports two Table 80: Spartan-3A FG400 Pinout(Continued) different Spartan-3A FPGAs, the XC3S400A and the FG400 XC3S700A. Both devices share a common footprint for this Bank Pin Name Ball Type package as shown in Table 80 and Figure 24. 0 IO_L13P_0 B12 I/O Table 80 lists all the FG400 package pins. They are sorted 0 IO_L14N_0 C11 I/O by bank number and then by pin name. Pairs of pins that 0 IO_L14P_0 B11 I/O form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin 0 IO_L15N_0/GCLK5 E11 GCLK type, as defined earlier. 0 IO_L15P_0/GCLK4 D11 GCLK An electronic version of this package pinout table and 0 IO_L16N_0/GCLK7 C10 GCLK footprint diagram is available for download from the Xilinx 0 IO_L16P_0/GCLK6 A10 GCLK website at 0 IO_L17N_0/GCLK9 E10 GCLK www.xilinx.com/support/documentation/data_sheets/ 0 IO_L17P_0/GCLK8 D10 GCLK s3a_pin.zip. 0 IO_L18N_0/GCLK11 A8 GCLK Pinout Table 0 IO_L18P_0/GCLK10 A9 GCLK Table 80: Spartan-3A FG400 Pinout 0 IO_L19N_0 C9 I/O FG400 0 IO_L19P_0 B9 I/O Bank Pin Name Ball Type 0 IO_L20N_0 C8 I/O 0 IO_L01N_0 A18 I/O 0 IO_L20P_0 B8 I/O 0 IO_L01P_0 B18 I/O 0 IO_L21N_0 D8 I/O 0 IO_L02N_0 C17 I/O 0 IO_L21P_0 C7 I/O 0 IO_L02P_0/VREF_0 D17 VREF 0 IO_L22N_0/VREF_0 F9 VREF 0 IO_L03N_0 E15 I/O 0 IO_L22P_0 E9 I/O 0 IO_L03P_0 D16 I/O 0 IO_L23N_0 F8 I/O 0 IO_L04N_0 A17 I/O 0 IO_L23P_0 E8 I/O 0 IO_L04P_0/VREF_0 B17 VREF 0 IO_L24N_0 A7 I/O 0 IO_L05N_0 A16 I/O 0 IO_L24P_0 B7 I/O 0 IO_L05P_0 C16 I/O 0 IO_L25N_0 C6 I/O 0 IO_L06N_0 C15 I/O 0 IO_L25P_0 A6 I/O 0 IO_L06P_0 D15 I/O 0 IO_L26N_0 B5 I/O 0 IO_L07N_0 A14 I/O 0 IO_L26P_0 A5 I/O 0 IO_L07P_0 C14 I/O 0 IO_L27N_0 F7 I/O 0 IO_L08N_0 A15 I/O 0 IO_L27P_0 E7 I/O 0 IO_L08P_0 B15 I/O 0 IO_L28N_0 D6 I/O 0 IO_L09N_0 F13 I/O 0 IO_L28P_0 C5 I/O 0 IO_L09P_0 E13 I/O 0 IO_L29N_0 C4 I/O 0 IO_L10N_0/VREF_0 C13 VREF 0 IO_L29P_0 A4 I/O 0 IO_L10P_0 D14 I/O 0 IO_L30N_0 B3 I/O 0 IO_L11N_0 C12 I/O 0 IO_L30P_0 A3 I/O 0 IO_L11P_0 B13 I/O 0 IO_L31N_0 F6 I/O 0 IO_L12N_0 F12 I/O 0 IO_L31P_0 E6 I/O 0 IO_L12P_0 D12 I/O 0 IO_L32N_0/PUDC_B B2 DUAL 0 IO_L13N_0 A12 I/O DS529 (v2.1) December 18, 2018 www.xilinx.com 101

Pinout Descriptions Table 80: Spartan-3A FG400 Pinout(Continued) Table 80: Spartan-3A FG400 Pinout(Continued) FG400 FG400 Bank Pin Name Ball Type Bank Pin Name Ball Type 0 IO_L32P_0/VREF_0 A2 VREF 1 IO_L13N_1/A5 N19 DUAL 0 IP_0 E14 INPUT 1 IO_L13P_1/A4 N18 DUAL 0 IP_0 F11 INPUT 1 IO_L14N_1/A7 M18 DUAL 0 IP_0 F14 INPUT 1 IO_L14P_1/A6 M17 DUAL 0 IP_0 G8 INPUT 1 IO_L16N_1/A9 L16 DUAL 0 IP_0 G9 INPUT 1 IO_L16P_1/A8 L15 DUAL 0 IP_0 G10 INPUT 1 IO_L17N_1/RHCLK1 M20 RHCLK 0 IP_0 G12 INPUT 1 IO_L17P_1/RHCLK0 M19 RHCLK 0 IP_0 G13 INPUT 1 IO_L18N_1/TRDY1/RHCLK3 L18 RHCLK 0 IP_0 H9 INPUT 1 IO_L18P_1/RHCLK2 L19 RHCLK 0 IP_0 H10 INPUT 1 IO_L20N_1/RHCLK5 L17 RHCLK 0 IP_0 H11 INPUT 1 IO_L20P_1/RHCLK4 K18 RHCLK 0 IP_0 H12 INPUT 1 IO_L21N_1/RHCLK7 J20 RHCLK 0 IP_0/VREF_0 G11 VREF 1 IO_L21P_1/IRDY1/RHCLK6 K20 RHCLK 0 VCCO_0 B4 VCCO 1 IO_L22N_1/A11 J18 DUAL 0 VCCO_0 B10 VCCO 1 IO_L22P_1/A10 J19 DUAL 0 VCCO_0 B16 VCCO 1 IO_L24N_1 K16 I/O 0 VCCO_0 D7 VCCO 1 IO_L24P_1 J17 I/O 0 VCCO_0 D13 VCCO 1 IO_L25N_1/A13 H18 DUAL 0 VCCO_0 F10 VCCO 1 IO_L25P_1/A12 H19 DUAL 1 IO_L01N_1/LDC2 V20 DUAL 1 IO_L26N_1/A15 G20 DUAL 1 IO_L01P_1/HDC W20 DUAL 1 IO_L26P_1/A14 H20 DUAL 1 IO_L02N_1/LDC0 U18 DUAL 1 IO_L28N_1 H17 I/O 1 IO_L02P_1/LDC1 V19 DUAL 1 IO_L28P_1 G18 I/O 1 IO_L03N_1/A1 R16 DUAL 1 IO_L29N_1/A17 F19 DUAL 1 IO_L03P_1/A0 T17 DUAL 1 IO_L29P_1/A16 F20 DUAL 1 IO_L05N_1 T20 I/O 1 IO_L30N_1/A19 F18 DUAL 1 IO_L05P_1 T18 I/O 1 IO_L30P_1/A18 G17 DUAL 1 IO_L06N_1 U20 I/O 1 IO_L32N_1 E19 I/O 1 IO_L06P_1 U19 I/O 1 IO_L32P_1 E20 I/O 1 IO_L07N_1 P17 I/O 1 IO_L33N_1 F17 I/O 1 IO_L07P_1 P16 I/O 1 IO_L33P_1 E18 I/O 1 IO_L08N_1 R17 I/O 1 IO_L34N_1 D18 I/O 1 IO_L08P_1 R18 I/O 1 IO_L34P_1 D20 I/O 1 IO_L09N_1 R20 I/O 1 IO_L36N_1/A21 F16 DUAL 1 IO_L09P_1 R19 I/O 1 IO_L36P_1/A20 G16 DUAL 1 IO_L10N_1/VREF_1 P20 VREF 1 IO_L37N_1/A23 C19 DUAL 1 IO_L10P_1 P18 I/O 1 IO_L37P_1/A22 C20 DUAL 1 IO_L12N_1/A3 N17 DUAL 1 IO_L38N_1/A25 B19 DUAL 1 IO_L12P_1/A2 N15 DUAL 1 IO_L38P_1/A24 B20 DUAL 102 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions Table 80: Spartan-3A FG400 Pinout(Continued) Table 80: Spartan-3A FG400 Pinout(Continued) FG400 FG400 Bank Pin Name Ball Type Bank Pin Name Ball Type 1 IP_1/VREF_1 N14 VREF 2 IO_L09N_2/VS0 W6 DUAL 1 IP_L04N_1/VREF_1 P15 VREF 2 IO_L09P_2/VS1 V6 DUAL 1 IP_L04P_1 P14 INPUT 2 IO_L10N_2 Y7 I/O 1 IP_L11N_1/VREF_1 M15 VREF 2 IO_L10P_2 Y6 I/O 1 IP_L11P_1 M16 INPUT 2 IO_L11N_2 U9 I/O 1 IP_L15N_1 M13 INPUT 2 IO_L11P_2 T9 I/O 1 IP_L15P_1/VREF_1 M14 VREF 2 IO_L12N_2/D6 W8 DUAL 1 IP_L19N_1 L13 INPUT 2 IO_L12P_2/D7 V7 DUAL 1 IP_L19P_1 L14 INPUT 2 IO_L13N_2 V9 I/O 1 IP_L23N_1 K14 INPUT 2 IO_L13P_2 V8 I/O 1 IP_L23P_1/VREF_1 K15 VREF 2 IO_L14N_2/D4 T10 DUAL 1 IP_L27N_1 J15 INPUT 2 IO_L14P_2/D5 U10 DUAL 1 IP_L27P_1 J16 INPUT 2 IO_L15N_2/GCLK13 Y9 GCLK 1 IP_L31N_1 J13 INPUT 2 IO_L15P_2/GCLK12 W9 GCLK 1 IP_L31P_1/VREF_1 J14 VREF 2 IO_L16N_2/GCLK15 W10 GCLK 1 IP_L35N_1 H14 INPUT 2 IO_L16P_2/GCLK14 V10 GCLK 1 IP_L35P_1 H15 INPUT 2 IO_L17N_2/GCLK1 V11 GCLK 1 IP_L39N_1 G14 INPUT 2 IO_L17P_2/GCLK0 Y11 GCLK 1 IP_L39P_1/VREF_1 G15 VREF 2 IO_L18N_2/GCLK3 V12 GCLK 1 VCCO_1 D19 VCCO 2 IO_L18P_2/GCLK2 U11 GCLK 1 VCCO_1 H16 VCCO 2 IO_L19N_2 R12 I/O 1 VCCO_1 K19 VCCO 2 IO_L19P_2 T12 I/O 1 VCCO_1 N16 VCCO 2 IO_L20N_2/MOSI/CSI_B W12 DUAL 1 VCCO_1 T19 VCCO 2 IO_L20P_2 Y12 I/O 2 IO_L01N_2/M0 V4 DUAL 2 IO_L21N_2 W13 I/O 2 IO_L01P_2/M1 U4 DUAL 2 IO_L21P_2 Y13 I/O 2 IO_L02N_2/CSO_B Y2 DUAL 2 IO_L22N_2/DOUT V13 DUAL 2 IO_L02P_2/M2 W3 DUAL IO_L22P_2/AWAKE U13 PWR 2 MGMT 2 IO_L03N_2 W4 I/O 2 IO_L23N_2 R13 I/O 2 IO_L03P_2 Y3 I/O 2 IO_L23P_2 T13 I/O 2 IO_L04N_2 R7 I/O 2 IO_L24N_2/D3 W14 DUAL 2 IO_L04P_2 T6 I/O 2 IO_L24P_2/INIT_B Y14 DUAL 2 IO_L05N_2 U5 I/O 2 IO_L25N_2 T14 I/O 2 IO_L05P_2 V5 I/O 2 IO_L25P_2 V14 I/O 2 IO_L06N_2 U6 I/O 2 IO_L26N_2/D1 V15 DUAL 2 IO_L06P_2 T7 I/O 2 IO_L26P_2/D2 Y15 DUAL 2 IO_L07N_2/VS2 U7 DUAL 2 IO_L27N_2 T15 I/O 2 IO_L07P_2/RDWR_B T8 DUAL 2 IO_L27P_2 U15 I/O 2 IO_L08N_2 Y5 I/O 2 IO_L28N_2 W16 I/O 2 IO_L08P_2 Y4 I/O DS529 (v2.1) December 18, 2018 www.xilinx.com 103

Pinout Descriptions Table 80: Spartan-3A FG400 Pinout(Continued) Table 80: Spartan-3A FG400 Pinout(Continued) FG400 FG400 Bank Pin Name Ball Type Bank Pin Name Ball Type 2 IO_L28P_2 Y16 I/O 3 IO_L08P_3 H6 I/O 2 IO_L29N_2 U16 I/O 3 IO_L09N_3 G4 I/O 2 IO_L29P_2 V16 I/O 3 IO_L09P_3 F3 I/O 2 IO_L30N_2 Y18 I/O 3 IO_L10N_3 F2 I/O 2 IO_L30P_2 Y17 I/O 3 IO_L10P_3 E3 I/O 2 IO_L31N_2 U17 I/O 3 IO_L12N_3 H2 I/O 2 IO_L31P_2 V17 I/O 3 IO_L12P_3 G3 I/O 2 IO_L32N_2/CCLK Y19 DUAL 3 IO_L13N_3/VREF_3 G1 VREF 2 IO_L32P_2/D0/DIN/MISO W18 DUAL 3 IO_L13P_3 F1 I/O 2 IP_2 P9 INPUT 3 IO_L14N_3 H3 I/O 2 IP_2 P12 INPUT 3 IO_L14P_3 J4 I/O 2 IP_2 P13 INPUT 3 IO_L16N_3 J2 I/O 2 IP_2 R8 INPUT 3 IO_L16P_3 J3 I/O 2 IP_2 R10 INPUT 3 IO_L17N_3/LHCLK1 K2 LHCLK 2 IP_2 T11 INPUT 3 IO_L17P_3/LHCLK0 J1 LHCLK 2 IP_2/VREF_2 N9 VREF 3 IO_L18N_3/IRDY2/LHCLK3 L3 LHCLK 2 IP_2/VREF_2 N12 VREF 3 IO_L18P_3/LHCLK2 K3 LHCLK 2 IP_2/VREF_2 P8 VREF 3 IO_L20N_3/LHCLK5 L5 LHCLK 2 IP_2/VREF_2 P10 VREF 3 IO_L20P_3/LHCLK4 K4 LHCLK 2 IP_2/VREF_2 P11 VREF 3 IO_L21N_3/LHCLK7 M1 LHCLK 2 IP_2/VREF_2 R14 VREF 3 IO_L21P_3/TRDY2/LHCLK6 L1 LHCLK 2 VCCO_2 R11 VCCO 3 IO_L22N_3 M3 I/O 2 VCCO_2 U8 VCCO 3 IO_L22P_3/VREF_3 M2 VREF 2 VCCO_2 U14 VCCO 3 IO_L24N_3 M5 I/O 2 VCCO_2 W5 VCCO 3 IO_L24P_3 M4 I/O 2 VCCO_2 W11 VCCO 3 IO_L25N_3 N2 I/O 2 VCCO_2 W17 VCCO 3 IO_L25P_3 N1 I/O 3 IO_L01N_3 D3 I/O 3 IO_L26N_3 N4 I/O 3 IO_L01P_3 D4 I/O 3 IO_L26P_3 N3 I/O 3 IO_L02N_3 C2 I/O 3 IO_L28N_3 R1 I/O 3 IO_L02P_3 B1 I/O 3 IO_L28P_3 P1 I/O 3 IO_L03N_3 D2 I/O 3 IO_L29N_3 P4 I/O 3 IO_L03P_3 C1 I/O 3 IO_L29P_3 P3 I/O 3 IO_L05N_3 E1 I/O 3 IO_L30N_3 R3 I/O 3 IO_L05P_3 D1 I/O 3 IO_L30P_3 R2 I/O 3 IO_L06N_3 G5 I/O 3 IO_L32N_3 T2 I/O 3 IO_L06P_3 F4 I/O 3 IO_L32P_3/VREF_3 T1 VREF 3 IO_L07N_3 J5 I/O 3 IO_L33N_3 R4 I/O 3 IO_L07P_3 J6 I/O 3 IO_L33P_3 T3 I/O 3 IO_L08N_3 H4 I/O 3 IO_L34N_3 U3 I/O 104 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions Table 80: Spartan-3A FG400 Pinout(Continued) Table 80: Spartan-3A FG400 Pinout(Continued) FG400 FG400 Bank Pin Name Ball Type Bank Pin Name Ball Type 3 IO_L34P_3 U1 I/O GND GND E12 GND 3 IO_L36N_3 T4 I/O GND GND F15 GND 3 IO_L36P_3 R5 I/O GND GND G2 GND 3 IO_L37N_3 V2 I/O GND GND G19 GND 3 IO_L37P_3 V1 I/O GND GND H8 GND 3 IO_L38N_3 W2 I/O GND GND H13 GND 3 IO_L38P_3 W1 I/O GND GND J9 GND 3 IP_3 H7 INPUT GND GND J11 GND 3 IP_L04N_3/VREF_3 G6 VREF GND GND K1 GND 3 IP_L04P_3 G7 INPUT GND GND K10 GND 3 IP_L11N_3/VREF_3 J7 VREF GND GND K12 GND 3 IP_L11P_3 J8 INPUT GND GND K17 GND 3 IP_L15N_3 K7 INPUT GND GND L4 GND 3 IP_L15P_3 K8 INPUT GND GND L9 GND 3 IP_L19N_3 K5 INPUT GND GND L11 GND 3 IP_L19P_3 K6 INPUT GND GND L20 GND 3 IP_L23N_3 L6 INPUT GND GND M10 GND 3 IP_L23P_3 L7 INPUT GND GND M12 GND 3 IP_L27N_3 M7 INPUT GND GND N8 GND 3 IP_L27P_3 M8 INPUT GND GND N11 GND 3 IP_L31N_3 N7 INPUT GND GND N13 GND 3 IP_L31P_3 M6 INPUT GND GND P2 GND 3 IP_L35N_3 N6 INPUT GND GND P19 GND 3 IP_L35P_3 P5 INPUT GND GND R6 GND 3 IP_L39N_3/VREF_3 P7 VREF GND GND R9 GND 3 IP_L39P_3 P6 INPUT GND GND T16 GND 3 VCCO_3 E2 VCCO GND GND U12 GND 3 VCCO_3 H5 VCCO GND GND V3 GND 3 VCCO_3 L2 VCCO GND GND V18 GND 3 VCCO_3 N5 VCCO GND GND W7 GND 3 VCCO_3 U2 VCCO GND GND W15 GND GND GND A1 GND GND GND Y1 GND GND GND A11 GND GND GND Y10 GND GND GND A20 GND GND GND Y20 GND GND GND B6 GND PWR VCCAUX SUSPEND R15 MGMT GND GND B14 GND VCCAUX DONE W19 CONFIG GND GND C3 GND VCCAUX PROG_B D5 CONFIG GND GND C18 GND VCCAUX TCK A19 JTAG GND GND D9 GND VCCAUX TDI F5 JTAG GND GND E5 GND DS529 (v2.1) December 18, 2018 www.xilinx.com 105

Pinout Descriptions Table 80: Spartan-3A FG400 Pinout(Continued) FG400 Bank Pin Name Ball Type VCCAUX TDO E17 JTAG VCCAUX TMS E4 JTAG VCCAUX VCCAUX A13 VCCAUX VCCAUX VCCAUX E16 VCCAUX VCCAUX VCCAUX H1 VCCAUX VCCAUX VCCAUX K13 VCCAUX VCCAUX VCCAUX L8 VCCAUX VCCAUX VCCAUX N20 VCCAUX VCCAUX VCCAUX T5 VCCAUX VCCAUX VCCAUX Y8 VCCAUX VCCINT VCCINT J10 VCCINT VCCINT VCCINT J12 VCCINT VCCINT VCCINT K9 VCCINT VCCINT VCCINT K11 VCCINT VCCINT VCCINT L10 VCCINT VCCINT VCCINT L12 VCCINT VCCINT VCCINT M9 VCCINT VCCINT VCCINT M11 VCCINT VCCINT VCCINT N10 VCCINT User I/Os by Bank Table 81 indicates how the 311 available user-I/O pins are distributed between the four I/O banks on the FG400 package. The AWAKE pin is counted as a dual-purpose I/O. Table 81: User I/Os Per Bank for the XC3S400A and XC3S700A in the FG400 Package All Possible I/O Pins by Type Package I/O Bank Maximum I/O Edge I/O INPUT DUAL VREF CLK Top 0 77 50 12 1 6 8 Right 1 79 21 12 30 8 8 Bottom 2 76 35 6 21 6 8 Left 3 79 49 16 0 6 8 TOTAL 311 155 46 52 26 32 Footprint Migration Differences The XC3S400A and XC3S700A FPGAs have identical footprints in the FG400 package. Designs can migrate between the XC3S400A and XC3S700A FPGAs without further consideration. 106 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions FG400 Footprint Bank 0 1 2 3 4 5 6 7 8 9 10 Left Half of FG400 I/O I/O I/O I/O Package (Top View) A GND L32P_0 I/O I/O I/O I/O I/O L18N_0 L18P_0 L16P_0 L30P_0 L29P_0 L26P_0 L25P_0 L24N_0 VREF_0 GCLK11 GCLK10 GCLK6 I/O I/O I/O I/O I/O I/O I/O B L32N_0 VCCO_0 GND VCCO_0 L02P_3 L30N_0 L26N_0 L24P_0 L20P_0 L19P_0 I/O: Unrestricted, PUDC_B 155 general-purpose user I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O C GND L16N_0 L03P_3 L02N_3 L29N_0 L28P_0 L25N_0 L21P_0 L20N_0 L19N_0 GCLK7 INPUT: Unrestricted, 46 general-purpose input pin I/O I/O I/O I/O G_B I/O I/O I/O D L05P_3 L03N_3 L01N_3 L01P_3 PRO L28N_0 VCCO_0 L21N_0 GND LG1C7LPK_80 51 DUAL: Configuration pins, I/O I/O I/O I/O I/O I/O I/O then possible user I/O E VCCO_3 TMS GND L17N_0 L05N_3 L10P_3 L31P_0 L27P_0 L23P_0 L22P_0 GCLK9 VREF: User I/O or input I/O 26 voltage reference for bank I/O I/O I/O I/O I/O I/O I/O F TDI L22N_0 VCCO_0 L13P_3 L10N_3 L09P_3 L06P_3 L31N_0 L27N_0 L23N_0 VREF_0 I/O INPUT CLK: User I/O, input, or I/O I/O I/O INPUT 32 clock buffer input G L13N_3 GND L12P_3 L09N_3 L06N_3 L04N_3 L04P_3 INPUT INPUT INPUT VREF_3 VREF_3 I/O I/O I/O I/O 2 CONFIG: Dedicated H VCCAUX L12N_3 L14N_3 L08N_3 VCCO_3 L08P_3 INPUT GND INPUT INPUT configuration pins I/O INPUT I/O I/O I/O I/O I/O INPUT JTAG: Dedicated JTAG J L17P_3 L11N_3 GND VCCINT 4 port pins LHCLK0 L16N_3 L16P_3 L14P_3 L07N_3 L07P_3 VREF_3 L11P_3 I/O I/O I/O INPUT INPUT INPUT INPUT 3 K GND L17N_3 L18P_3 L20P_3 VCCINT GND SUSPEND: Dedicated k LHCLK1 LHCLK2 LHCLK4 L19N_3 L19P_3 L15N_3 L15P_3 2 SduUaSl-PpEurNpDos aen Ad WAKE an I/O I/O I/O Power Management pins B L LT2R1DPY_23 VCCO_3 LIR18DNY_23 GND L20N_3 ILN23PNU_T3 ILN2P3PU_T3 VCCAUX GND VCCINT LHCLK6 LHCLK3 LHCLK5 GND: Ground I/O I/O 43 M L21N_3 L22P_3 I/O I/O I/O INPUT INPUT INPUT VCCINT GND L22N_3 L24P_3 L24N_3 L31P_3 L27N_3 L27P_3 LHCLK7 VREF_3 VCCO: Output voltage I/O I/O I/O I/O INPUT INPUT INPUT N VCCO_3 GND VCCINT 22 supply for bank L25P_3 L25N_3 L26P_3 L26N_3 L35N_3 L31N_3 VREF_2 INPUT I/O I/O I/O INPUT INPUT INPUT INPUT VCCINT: Internal core P L28P_3 GND L29P_3 L29N_3 L35P_3 L39P_3 L39N_3 VREF_2 INPUT VREF_2 9 supply voltage (+1.2V) VREF_3 I/O I/O I/O I/O I/O I/O R GND INPUT GND INPUT L28N_3 L30P_3 L30N_3 L33N_3 L36P_3 L04N_2 VCCAUX: Auxiliary supply 8 voltage I/O I/O I/O I/O I/O I/O I/O I/O I/O T L32P_3 VCCAUX L07P_2 L14N_2 L32N_3 L33P_3 L36N_3 L04P_2 L06P_2 L11P_2 VREF_3 RDWR_B D4 I/O I/O I/O I/O I/O I/O I/O I/O U VCCO_3 L01P_2 L07N_2 VCCO_2 L14P_2 L34P_3 L34N_3 L05N_2 L06N_2 L11N_2 M1 VS2 D5 I/O I/O I/O I/O I/O I/O I/O I/O I/O V GND L01N_2 L09P_2 L12P_2 L16P_2 L37P_3 L37N_3 L05P_2 L13P_2 L13N_2 M0 VS1 D7 GCLK14 I/O I/O I/O I/O I/O I/O I/O I/O W L02P_2 VCCO_2 L09N_2 GND L12N_2 L15P_2 L16N_2 L38P_3 L38N_3 L03N_2 M2 VS0 D6 GCLK12 GCLK15 I/O I/O I/O I/O I/O I/O I/O Y GND L02N_2 VCCAUX L15N_2 GND L03P_2 L08P_2 L08N_2 L10P_2 L10N_2 CSO_B GCLK13 Bank 2 DS529-4_03_011608 Figure 24: FG400 Package Footprint (Top View) DS529 (v2.1) December 18, 2018 www.xilinx.com 107

Pinout Descriptions Bank 0 11 12 13 14 15 16 17 18 19 20 Right Half of FG400 I/O I/O I/O I/O I/O I/O Package (Top View) GND VCCAUX TCK GND A L13N_0 L07N_0 L08N_0 L05N_0 L04N_0 L01N_0 I/O I/O I/O I/O I/O I/O I/O I/O GND VCCO_0 L04P_0 L38N_1 L38P_1 B L14P_0 L13P_0 L11P_0 L08P_0 L01P_0 VREF_0 A25 A24 I/O I/O I/O I/O I/O I/O I/O I/O I/O L10N_0 GND L37N_1 L37P_1 C L14N_0 L11N_0 L07P_0 L06N_0 L05P_0 L02N_0 VREF_0 A23 A22 I/O I/O I/O I/O I/O I/O I/O I/O L15P_0 VCCO_0 L02P_0 VCCO_1 D L12P_0 L10P_0 L06P_0 L03P_0 L34N_1 L34P_1 GCLK4 VREF_0 I/O I/O I/O I/O I/O I/O L15N_0 GND INPUT VCCAUX TDO E L09P_0 L03N_0 L33P_1 L32N_1 L32P_1 GCLK5 I/O I/O I/O I/O I/O I/O I/O INPUT INPUT GND L36N_1 L30N_1 L29N_1 L29P_1 F L12N_0 L09N_0 L33N_1 A21 A19 A17 A16 INPUT I/O I/O I/O INPUT INPUT I/O INPUT INPUT L39P_1 L36P_1 L30P_1 GND L26N_1 G VREF_0 L39N_1 L28P_1 VREF_1 A20 A18 A15 I/O I/O I/O INPUT INPUT I/O INPUT INPUT GND VCCO_1 L25N_1 L25P_1 L26P_1 H L35N_1 L35P_1 L28N_1 A13 A12 A14 INPUT I/O I/O I/O INPUT INPUT INPUT I/O GND VCCINT L31P_1 L22N_1 L22P_1 L21N_1 J L31N_1 L27N_1 L27P_1 L24P_1 VREF_1 A11 A10 RHCLK7 INPUT I/O I/O VCCINT GND VCCAUX ILN23PNU_T1 VLR23EPF__11 L2I4/ON_1 GND RLH20CPL_K14 VCCO_1 RLIHR21CDPLY_K116 K k 1 n I/O I/O I/O I/O I/O a GND VCCINT ILN19PNU_T1 ILN1P9PU_T1 L16P_1 L16N_1 L20N_1 LT1R8DNY_11 L18P_1 GND L B A8 A9 RHCLK5 RHCLK3 RHCLK2 INPUT INPUT I/O I/O I/O I/O INPUT INPUT VCCINT GND L15P_1 L11N_1 L14P_1 L14N_1 L17P_1 L17N_1 M L15N_1 L11P_1 VREF_1 VREF_1 A6 A7 RHCLK0 RHCLK1 I/O I/O I/O I/O INPUT INPUT GND GND L12P_1 VCCO_1 L12N_1 L13P_1 L13N_1 VCCAUX N VREF_2 VREF_1 A2 A3 A4 A5 INPUT I/O INPUT INPUT I/O I/O I/O INPUT INPUT L04N_1 GND L10N_1 P VREF_2 L04P_1 L07P_1 L07N_1 L10P_1 VREF_1 VREF_1 D N I/O VCCO_2 I/O I/O INPUT SPE L03N_1 I/O I/O I/O I/O R L19N_2 L23N_2 VREF_2 SU A1 L08N_1 L08P_1 L09P_1 L09N_1 I/O I/O I/O I/O I/O I/O I/O INPUT GND L03P_1 VCCO_1 T L19P_2 L23P_2 L25N_2 L27N_2 L05P_1 L05N_1 A0 I/O I/O I/O I/O I/O I/O I/O I/O L18P_2 GND L22P_2 VCCO_2 L02N_1 U L27P_2 L29N_2 L31N_2 L06P_1 L06N_1 GCLK2 AWAKE LDC0 I/O I/O I/O I/O I/O I/O I/O I/O I/O L17N_2 L18N_2 L22N_2 L26N_2 GND L02P_1 L01N_1 V L25P_2 L29P_2 L31P_2 GCLK1 GCLK3 DOUT D1 LDC1 LDC2 I/O I/O I/O I/O VCCO_2 LM20ONS_I2 L2I1/ON_2 L24N_2 GND L2I8/ON_2 VCCO_2 L3D2P0_2 DONE L01P_1 W CSI_B D3 DIN/MISO HDC I/O I/O I/O I/O I/O I/O I/O I/O I/O L17P_2 L24P_2 L26P_2 L32N_2 GND Y L20P_2 L21P_2 L28P_2 L30P_2 L30N_2 GCLK0 INIT_B D2 CCLK Bank 2 DS529-4_04_012009 108 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions FG484: 484-ball Fine-pitch Ball Grid Array The 484-ball fine-pitch ball grid array, FG484, supports both Table 82: Spartan-3A FG484 Pinout(Continued) the XC3S700A and the XC3S1400A FPGAs. There are FG484 three pinout differences, as described in Table 85. Bank Pin Name Ball Type Table 82 lists all the FG484 package pins. They are sorted 0 IO_L11P_0 D15 I/O by bank number and then by pin name. Pairs of pins that 0 IO_L12N_0/VREF_0 A15 VREF form a differential I/O pair appear together in the table. The 0 IO_L12P_0 A16 I/O table also shows the pin number for each pin and the pin type, as defined earlier. 0 IO_L13N_0 A14 I/O The shaded rows indicate pinout differences between the 0 IO_L13P_0 B15 I/O XC3S700A and the XC3S1400A FPGAs. The XC3S700A 0 IO_L14N_0 E13 I/O has three unconnected balls, indicated as N.C. (No 0 IO_L14P_0 F13 I/O Connection) in Table 82 and with the black diamond character () in Table 82 and Figure 25. 0 IO_L15N_0 C13 I/O 0 IO_L15P_0 D13 I/O An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx 0 IO_L16N_0 A13 I/O website at 0 IO_L16P_0 B13 I/O www.xilinx.com/support/documentation/data_sheets/ 0 IO_L17N_0/GCLK5 E12 GCLK s3a_pin.zip. 0 IO_L17P_0/GCLK4 C12 GCLK Pinout Table 0 IO_L18N_0/GCLK7 A11 GCLK 0 IO_L18P_0/GCLK6 A12 GCLK Table 82: Spartan-3A FG484 Pinout 0 IO_L19N_0/GCLK9 C11 GCLK FG484 Bank Pin Name Ball Type 0 IO_L19P_0/GCLK8 B11 GCLK 0 IO_L01N_0 D18 I/O 0 IO_L20N_0/GCLK11 E11 GCLK 0 IO_L01P_0 E17 I/O 0 IO_L20P_0/GCLK10 D11 GCLK 0 IO_L02N_0 C19 I/O 0 IO_L21N_0 C10 I/O 0 IO_L02P_0/VREF_0 D19 VREF 0 IO_L21P_0 A10 I/O 0 IO_L03N_0 A20 I/O 0 IO_L22N_0 A8 I/O 0 IO_L03P_0 B20 I/O 0 IO_L22P_0 A9 I/O 0 IO_L04N_0 F15 I/O 0 IO_L23N_0 E10 I/O 0 IO_L04P_0 E15 I/O 0 IO_L23P_0 D10 I/O 0 IO_L05N_0 A18 I/O 0 IO_L24N_0/VREF_0 C9 VREF 0 IO_L05P_0 C18 I/O 0 IO_L24P_0 B9 I/O 0 IO_L06N_0 A19 I/O 0 IO_L25N_0 C8 I/O 0 IO_L06P_0/VREF_0 B19 VREF 0 IO_L25P_0 B8 I/O 0 IO_L07N_0 C17 I/O 0 IO_L26N_0 A6 I/O 0 IO_L07P_0 D17 I/O 0 IO_L26P_0 A7 I/O 0 IO_L08N_0 C16 I/O 0 IO_L27N_0 C7 I/O 0 IO_L08P_0 D16 I/O 0 IO_L27P_0 D7 I/O 0 IO_L09N_0 E14 I/O 0 IO_L28N_0 A5 I/O 0 IO_L09P_0 C14 I/O 0 IO_L28P_0 B6 I/O 0 IO_L10N_0 A17 I/O 0 IO_L29N_0 D6 I/O 0 IO_L10P_0 B17 I/O 0 IO_L29P_0 C6 I/O 0 IO_L11N_0 C15 I/O 0 IO_L30N_0 D8 I/O DS529 (v2.1) December 18, 2018 www.xilinx.com 109

Pinout Descriptions Table 82: Spartan-3A FG484 Pinout(Continued) Table 82: Spartan-3A FG484 Pinout(Continued) FG484 FG484 Bank Pin Name Ball Type Bank Pin Name Ball Type 0 IO_L30P_0 E9 I/O 1 IO_L01P_1/HDC AA22 DUAL 0 IO_L31N_0 B4 I/O 1 IO_L02N_1/LDC0 W20 DUAL 0 IO_L31P_0 A4 I/O 1 IO_L02P_1/LDC1 W19 DUAL 0 IO_L32N_0 D5 I/O 1 IO_L03N_1/A1 T18 DUAL 0 IO_L32P_0 C5 I/O 1 IO_L03P_1/A0 T17 DUAL 0 IO_L33N_0 B3 I/O 1 IO_L05N_1 W21 I/O 0 IO_L33P_0 A3 I/O 1 IO_L05P_1 Y22 I/O 0 IO_L34N_0 F8 I/O 1 IO_L06N_1 V20 I/O 0 IO_L34P_0 E7 I/O 1 IO_L06P_1 V19 I/O 0 IO_L35N_0 E6 I/O 1 IO_L07N_1 V22 I/O 0 IO_L35P_0 F7 I/O 1 IO_L07P_1 W22 I/O 0 IO_L36N_0/PUDC_B A2 DUAL 1 IO_L09N_1 U21 I/O 0 IO_L36P_0/VREF_0 B2 VREF 1 IO_L09P_1 U22 I/O 0 IP_0 E16 INPUT 1 IO_L10N_1 U19 I/O 0 IP_0 E8 INPUT 1 IO_L10P_1 U20 I/O 0 IP_0 F10 INPUT 1 IO_L11N_1 T22 I/O 0 IP_0 F12 INPUT 1 IO_L11P_1 T20 I/O 0 IP_0 F16 INPUT 1 IO_L13N_1 T19 I/O 0 IP_0 G10 INPUT 1 IO_L13P_1 R20 I/O 0 IP_0 G11 INPUT 1 IO_L14N_1 R22 I/O 0 IP_0 G12 INPUT 1 IO_L14P_1 R21 I/O 0 IP_0 G13 INPUT 1 IO_L15N_1/VREF_1 P22 VREF 0 IP_0 G14 INPUT 1 IO_L15P_1 P20 I/O 0 IP_0 G15 INPUT 1 IO_L17N_1/A3 P18 DUAL 0 IP_0 G16 INPUT 1 IO_L17P_1/A2 R19 DUAL 0 IP_0 G7 INPUT 1 IO_L18N_1/A5 N21 DUAL 0 IP_0 G9 INPUT 1 IO_L18P_1/A4 N22 DUAL 0 IP_0 H10 INPUT 1 IO_L19N_1/A7 N19 DUAL 0 IP_0 H13 INPUT 1 IO_L19P_1/A6 N20 DUAL 0 IP_0 H14 INPUT 1 IO_L20N_1/A9 N17 DUAL 0 IP_0/VREF_0 G8 VREF 1 IO_L20P_1/A8 N18 DUAL 0 IP_0/VREF_0 H12 VREF 1 IO_L21N_1/RHCLK1 L22 RHCLK 0 IP_0/VREF_0 H9 VREF 1 IO_L21P_1/RHCLK0 M22 RHCLK 0 VCCO_0 B10 VCCO 1 IO_L22N_1/TRDY1/RHCLK3 L20 RHCLK 0 VCCO_0 B14 VCCO 1 IO_L22P_1/RHCLK2 L21 RHCLK 0 VCCO_0 B18 VCCO 1 IO_L24N_1/RHCLK5 M20 RHCLK 0 VCCO_0 B5 VCCO 1 IO_L24P_1/RHCLK4 M18 RHCLK 0 VCCO_0 F14 VCCO 1 IO_L25N_1/RHCLK7 K19 RHCLK 0 VCCO_0 F9 VCCO 1 IO_L25P_1/IRDY1/RHCLK6 K20 RHCLK 1 IO_L01N_1/LDC2 Y21 DUAL 1 IO_L26N_1/A11 J22 DUAL 110 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions Table 82: Spartan-3A FG484 Pinout(Continued) Table 82: Spartan-3A FG484 Pinout(Continued) FG484 FG484 Bank Pin Name Ball Type Bank Pin Name Ball Type 1 IO_L26P_1/A10 K22 DUAL 1 IP_L23P_1 M17 INPUT 1 IO_L28N_1 L19 I/O 1 IP_L27N_1 L16 INPUT 1 IO_L28P_1 L18 I/O 1 IP_L27P_1/VREF_1 M15 VREF 1 IO_L29N_1/A13 J20 DUAL 1 IP_L31N_1 K16 INPUT 1 IO_L29P_1/A12 J21 DUAL 1 IP_L31P_1 L15 INPUT 1 IO_L30N_1/A15 G22 DUAL 1 IP_L35N_1 K15 INPUT 1 IO_L30P_1/A14 H22 DUAL 1 IP_L35P_1/VREF_1 K14 VREF 1 IO_L32N_1 K18 I/O 1 IP_L39N_1 H18 INPUT 1 IO_L32P_1 K17 I/O 1 IP_L39P_1 H17 INPUT 1 IO_L33N_1/A17 H20 DUAL 1 IP_L43N_1/VREF_1 J15 VREF 1 IO_L33P_1/A16 H21 DUAL 1 IP_L43P_1 J16 INPUT 1 IO_L34N_1/A19 F21 DUAL 1 IP_L47N_1 H15 INPUT 1 IO_L34P_1/A18 F22 DUAL 1 IP_L47P_1/VREF_1 H16 VREF 1 IO_L36N_1 G20 I/O PWR VCCAUX SUSPEND U18 MGMT 1 IO_L36P_1 G19 I/O 1 VCCO_1 E21 VCCO 1 IO_L37N_1 H19 I/O 1 VCCO_1 J17 VCCO 1 IO_L37P_1 J18 I/O 1 VCCO_1 K21 VCCO 1 IO_L38N_1 F20 I/O 1 VCCO_1 P17 VCCO 1 IO_L38P_1 E20 I/O 1 VCCO_1 P21 VCCO 1 IO_L40N_1 F18 I/O 1 VCCO_1 V21 VCCO 1 IO_L40P_1 F19 I/O 2 IO_L01N_2/M0 W5 DUAL 1 IO_L41N_1 D22 I/O 2 IO_L01P_2/M1 V6 DUAL 1 IO_L41P_1 E22 I/O 2 IO_L02N_2/CSO_B Y4 DUAL 1 IO_L42N_1 D20 I/O 2 IO_L02P_2/M2 W4 DUAL 1 IO_L42P_1 D21 I/O 2 IO_L03N_2 AA3 I/O 1 IO_L44N_1/A21 C21 DUAL 2 IO_L03P_2 AB2 I/O 1 IO_L44P_1/A20 C22 DUAL 2 IO_L04N_2 AA4 I/O 1 IO_L45N_1/A23 B21 DUAL 2 IO_L04P_2 AB3 I/O 1 IO_L45P_1/A22 B22 DUAL 2 IO_L05N_2 Y5 I/O 1 IO_L46N_1/A25 G17 DUAL 2 IO_L05P_2 W6 I/O 1 IO_L46P_1/A24 G18 DUAL 2 IO_L06N_2 AB5 I/O 1 IP_L04N_1/VREF_1 R16 VREF 2 IO_L06P_2 AB4 I/O 1 IP_L04P_1 R15 INPUT 2 IO_L07N_2 Y6 I/O 1 IP_L08N_1 P16 INPUT 2 IO_L07P_2 W7 I/O 1 IP_L08P_1 P15 INPUT 2 IO_L08N_2 AB6 I/O 1 IP_L12N_1/VREF_1 R18 VREF 2 IO_L08P_2 AA6 I/O 1 IP_L12P_1 R17 INPUT 2 IO_L09N_2/VS2 W9 DUAL 1 IP_L16N_1/VREF_1 N16 VREF 2 IO_L09P_2/RDWR_B V9 DUAL 1 IP_L16P_1 N15 INPUT 2 IO_L10N_2 AB7 I/O 1 IP_L23N_1 M16 INPUT DS529 (v2.1) December 18, 2018 www.xilinx.com 111

Pinout Descriptions Table 82: Spartan-3A FG484 Pinout(Continued) Table 82: Spartan-3A FG484 Pinout(Continued) FG484 FG484 Bank Pin Name Ball Type Bank Pin Name Ball Type 2 IO_L10P_2 Y7 I/O 2 IO_L30N_2 V15 I/O 2 IO_L11N_2/VS0 Y8 DUAL 2 IO_L30P_2 V14 I/O 2 IO_L11P_2/VS1 W8 DUAL 2 IO_L31N_2 V16 I/O 2 IO_L12N_2 AB8 I/O 2 IO_L31P_2 W16 I/O 2 IO_L12P_2 AA8 I/O 2 IO_L32N_2 AA19 I/O 2 IO_L13N_2 Y10 I/O 2 IO_L32P_2 AB19 I/O 2 IO_L13P_2 V10 I/O 2 IO_L33N_2 V17 I/O 2 IO_L14N_2/D6 AB9 DUAL 2 IO_L33P_2 W18 I/O 2 IO_L14P_2/D7 Y9 DUAL 2 IO_L34N_2 W17 I/O 2 IO_L15N_2 AB10 I/O 2 IO_L34P_2 Y18 I/O 2 IO_L15P_2 AA10 I/O 2 IO_L35N_2 AA21 I/O 2 IO_L16N_2/D4 AB11 DUAL 2 IO_L35P_2 AB21 I/O 2 IO_L16P_2/D5 Y11 DUAL 2 IO_L36N_2/CCLK AA20 DUAL 2 IO_L17N_2/GCLK13 V11 GCLK 2 IO_L36P_2/D0/DIN/MISO AB20 DUAL 2 IO_L17P_2/GCLK12 U11 GCLK 2 IP_2 P12 INPUT 2 IO_L18N_2/GCLK15 Y12 GCLK 2 IP_2 R10 INPUT 2 IO_L18P_2/GCLK14 W12 GCLK 2 IP_2 R11 INPUT 2 IO_L19N_2/GCLK1 AB12 GCLK 2 IP_2 R9 INPUT 2 IO_L19P_2/GCLK0 AA12 GCLK 2 IP_2 T13 INPUT 2 IO_L20N_2/GCLK3 U12 GCLK 2 IP_2 T14 INPUT 2 IO_L20P_2/GCLK2 V12 GCLK 2 IP_2 T9 INPUT 2 IO_L21N_2 Y13 I/O 2 IP_2 U10 INPUT 2 IO_L21P_2 AB13 I/O 2 IP_2 U15 INPUT 2 IO_L22N_2/MOSI/CSI_B AB14 DUAL XC3S1400A: IP_2 2 U16 INPUT XC3S700A: N.C. (◆) 2 IO_L22P_2 AA14 I/O XC3S1400A: IP_2 2 IO_L23N_2 Y14 I/O 2 U7 INPUT XC3S700A: N.C. (◆) 2 IO_L23P_2 W13 I/O 2 IP_2 U8 INPUT IO_L24N_2/ 2 AA15 DUAL DOUT 2 IP_2 V7 INPUT PWR 2 IP_2/VREF_2 R12 VREF 2 IO_L24P_2/AWAKE AB15 MGMT 2 IP_2/VREF_2 R13 VREF 2 IO_L25N_2 Y15 I/O 2 IP_2/VREF_2 R14 VREF 2 IO_L25P_2 W15 I/O 2 IP_2/VREF_2 T10 VREF 2 IO_L26N_2/D3 U13 DUAL 2 IP_2/VREF_2 T11 VREF 2 IO_L26P_2/INIT_B V13 DUAL 2 IP_2/VREF_2 T15 VREF 2 IO_L27N_2 Y16 I/O 2 IP_2/VREF_2 T16 VREF 2 IO_L27P_2 AB16 I/O 2 IP_2/VREF_2 T7 VREF 2 IO_L28N_2/D1 Y17 DUAL XC3S1400A: IP_2/VREF_2 2 T8 VREF 2 IO_L28P_2/D2 AA17 DUAL XC3S700A: N.C. (◆) 2 IO_L29N_2 AB18 I/O 2 IP_2/VREF_2 V8 VREF 2 IO_L29P_2 AB17 I/O 2 VCCO_2 AA13 VCCO 112 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions Table 82: Spartan-3A FG484 Pinout(Continued) Table 82: Spartan-3A FG484 Pinout(Continued) FG484 FG484 Bank Pin Name Ball Type Bank Pin Name Ball Type 2 VCCO_2 AA18 VCCO 3 IO_L22P_3/LHCLK2 K1 LHCLK 2 VCCO_2 AA5 VCCO 3 IO_L24N_3/LHCLK5 M2 LHCLK 2 VCCO_2 AA9 VCCO 3 IO_L24P_3/LHCLK4 M1 LHCLK 2 VCCO_2 U14 VCCO 3 IO_L25N_3/LHCLK7 M4 LHCLK 2 VCCO_2 U9 VCCO 3 IO_L25P_3/TRDY2/LHCLK6 M3 LHCLK 3 IO_L01N_3 D2 I/O 3 IO_L26N_3 N3 I/O 3 IO_L01P_3 C1 I/O 3 IO_L26P_3/VREF_3 N1 VREF 3 IO_L02N_3 C2 I/O 3 IO_L28N_3 P2 I/O 3 IO_L02P_3 B1 I/O 3 IO_L28P_3 P1 I/O 3 IO_L03N_3 E4 I/O 3 IO_L29N_3 P5 I/O 3 IO_L03P_3 D3 I/O 3 IO_L29P_3 P3 I/O 3 IO_L05N_3 G5 I/O 3 IO_L30N_3 N4 I/O 3 IO_L05P_3 G6 I/O 3 IO_L30P_3 M5 I/O 3 IO_L06N_3 E1 I/O 3 IO_L32N_3 R2 I/O 3 IO_L06P_3 D1 I/O 3 IO_L32P_3 R1 I/O 3 IO_L07N_3 E3 I/O 3 IO_L33N_3 R4 I/O 3 IO_L07P_3 F4 I/O 3 IO_L33P_3 R3 I/O 3 IO_L08N_3 G4 I/O 3 IO_L34N_3 T4 I/O 3 IO_L08P_3 F3 I/O 3 IO_L34P_3 R5 I/O 3 IO_L09N_3 H6 I/O 3 IO_L36N_3 T3 I/O 3 IO_L09P_3 H5 I/O 3 IO_L36P_3/VREF_3 T1 VREF 3 IO_L10N_3 J5 I/O 3 IO_L37N_3 U2 I/O 3 IO_L10P_3 K6 I/O 3 IO_L37P_3 U1 I/O 3 IO_L12N_3 F1 I/O 3 IO_L38N_3 V3 I/O 3 IO_L12P_3 F2 I/O 3 IO_L38P_3 V1 I/O 3 IO_L13N_3 G1 I/O 3 IO_L40N_3 U5 I/O 3 IO_L13P_3 G3 I/O 3 IO_L40P_3 T5 I/O 3 IO_L14N_3 H3 I/O 3 IO_L41N_3 U4 I/O 3 IO_L14P_3 H4 I/O 3 IO_L41P_3 U3 I/O 3 IO_L16N_3 H1 I/O 3 IO_L42N_3 W2 I/O 3 IO_L16P_3 H2 I/O 3 IO_L42P_3 W1 I/O 3 IO_L17N_3/VREF_3 J1 VREF 3 IO_L43N_3 W3 I/O 3 IO_L17P_3 J3 I/O 3 IO_L43P_3 V4 I/O 3 IO_L18N_3 K4 I/O 3 IO_L44N_3 Y2 I/O 3 IO_L18P_3 K5 I/O 3 IO_L44P_3 Y1 I/O 3 IO_L20N_3 K2 I/O 3 IO_L45N_3 AA2 I/O 3 IO_L20P_3 K3 I/O 3 IO_L45P_3 AA1 I/O 3 IO_L21N_3/LHCLK1 L3 LHCLK 3 IP_3/VREF_3 J8 VREF 3 IO_L21P_3/LHCLK0 L5 LHCLK 3 IP_3/VREF_3 R6 VREF 3 IO_L22N_3/IRDY2/LHCLK3 L1 LHCLK 3 IP_L04N_3/VREF_3 H7 VREF DS529 (v2.1) December 18, 2018 www.xilinx.com 113

Pinout Descriptions Table 82: Spartan-3A FG484 Pinout(Continued) Table 82: Spartan-3A FG484 Pinout(Continued) FG484 FG484 Bank Pin Name Ball Type Bank Pin Name Ball Type 3 IP_L04P_3 H8 INPUT GND GND F17 GND 3 IP_L11N_3 K8 INPUT GND GND F6 GND 3 IP_L11P_3 J7 INPUT GND GND G2 GND 3 IP_L15N_3/VREF_3 L8 VREF GND GND G21 GND 3 IP_L15P_3 K7 INPUT GND GND J11 GND 3 IP_L19N_3 M8 INPUT GND GND J13 GND 3 IP_L19P_3 L7 INPUT GND GND J14 GND 3 IP_L23N_3 M6 INPUT GND GND J19 GND 3 IP_L23P_3 M7 INPUT GND GND J4 GND 3 IP_L27N_3 N9 INPUT GND GND J9 GND 3 IP_L27P_3 N8 INPUT GND GND K10 GND 3 IP_L31N_3 N5 INPUT GND GND K12 GND 3 IP_L31P_3 N6 INPUT GND GND L11 GND 3 IP_L35N_3 P8 INPUT GND GND L13 GND 3 IP_L35P_3 N7 INPUT GND GND L17 GND 3 IP_L39N_3 R8 INPUT GND GND L2 GND 3 IP_L39P_3 P7 INPUT GND GND L6 GND 3 IP_L46N_3/VREF_3 T6 VREF GND GND L9 GND 3 IP_L46P_3 R7 INPUT GND GND M10 GND 3 VCCO_3 E2 VCCO GND GND M12 GND 3 VCCO_3 J2 VCCO GND GND M14 GND 3 VCCO_3 J6 VCCO GND GND M21 GND 3 VCCO_3 N2 VCCO GND GND N11 GND 3 VCCO_3 P6 VCCO GND GND N13 GND 3 VCCO_3 V2 VCCO GND GND P10 GND GND GND A1 GND GND GND P14 GND GND GND A22 GND GND GND P19 GND GND GND AA11 GND GND GND P4 GND GND GND AA16 GND GND GND P9 GND GND GND AA7 GND GND GND T12 GND GND GND AB1 GND GND GND T2 GND GND GND AB22 GND GND GND T21 GND GND GND B12 GND GND GND U17 GND GND GND B16 GND GND GND U6 GND GND GND B7 GND GND GND W10 GND GND GND C20 GND GND GND W14 GND GND GND C3 GND GND GND Y20 GND GND GND D14 GND GND GND Y3 GND GND GND D9 GND PWR VCCAUX SUSPEND U18 MGMT GND GND F11 GND 114 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions Table 82: Spartan-3A FG484 Pinout(Continued) FG484 Bank Pin Name Ball Type VCCAUX DONE Y19 CONFIG VCCAUX PROG_B C4 CONFIG VCCAUX TCK A21 JTAG VCCAUX TDI F5 JTAG VCCAUX TDO E19 JTAG VCCAUX TMS D4 JTAG VCCAUX VCCAUX D12 VCCAUX VCCAUX VCCAUX E18 VCCAUX VCCAUX VCCAUX E5 VCCAUX VCCAUX VCCAUX H11 VCCAUX VCCAUX VCCAUX L4 VCCAUX VCCAUX VCCAUX M19 VCCAUX VCCAUX VCCAUX P11 VCCAUX VCCAUX VCCAUX V18 VCCAUX VCCAUX VCCAUX V5 VCCAUX VCCAUX VCCAUX W11 VCCAUX VCCINT VCCINT J10 VCCINT VCCINT VCCINT J12 VCCINT VCCINT VCCINT K11 VCCINT VCCINT VCCINT K13 VCCINT VCCINT VCCINT K9 VCCINT VCCINT VCCINT L10 VCCINT VCCINT VCCINT L12 VCCINT VCCINT VCCINT L14 VCCINT VCCINT VCCINT M11 VCCINT VCCINT VCCINT M13 VCCINT VCCINT VCCINT M9 VCCINT VCCINT VCCINT N10 VCCINT VCCINT VCCINT N12 VCCINT VCCINT VCCINT N14 VCCINT VCCINT VCCINT P13 VCCINT DS529 (v2.1) December 18, 2018 www.xilinx.com 115

Pinout Descriptions User I/Os by Bank Table 83 and Table 84 indicate how the user-I/O pins are distributed between the four I/O banks on the FG484 package. The AWAKE pin is counted as a dual-purpose I/O. Table 83: User I/Os Per Bank for the XC3S700A in the FG484 Package All Possible I/O Pins by Type Package Edge I/O Bank Maximum I/O I/O INPUT DUAL VREF CLK Top 0 92 58 17 1 8 8 Right 1 94 33 15 30 8 8 Bottom 2 92 43 11 21 9 8 Left 3 94 61 17 0 8 8 TOTAL 372 195 60 52 33 32 Table 84: User I/Os Per Bank for the XC3S1400A in the FG484 Package All Possible I/O Pins by Type Package Edge I/O Bank Maximum I/O I/O INPUT DUAL VREF CLK Top 0 92 58 17 1 8 8 Right 1 94 33 15 30 8 8 Bottom 2 95 43 13 21 10 8 Left 3 94 61 17 0 8 8 TOTAL 375 195 62 52 34 32 Footprint Migration Differences Table 85 summarizes any footprint and functionality differences between the XC3S700A and the XC3S1400A FPGAs that might affect easy migration between devices available in the FG484 package. There are three such balls. All other pins not listed in Table 85 unconditionally migrate between Spartan-3A devices available in the FG484 package. The arrows indicate the direction for easy migration. Table 85: FG484 Footprint Migration Differences Pin Bank XC3S700A Migration XC3S1400A T8 2 N.C.  INPUT/VREF U7 2 N.C.  INPUT U16 2 N.C.  INPUT DIFFERENCES 3 Legend:  This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction is possible depending on how the pin is configured for the device on the right. 116 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions FG484 Footprint Bank 0 1 2 3 4 5 6 7 8 9 10 11 Left Half of FG484 I/O I/O Package (Top View) A GND L36N_0 I/O I/O I/O I/O I/O I/O I/O I/O L18N_0 L33P_0 L31P_0 L28N_0 L26N_0 L26P_0 L22N_0 L22P_0 L21P_0 PUDC_B GCLK7 I/O I/O B I/O L36P_0 I/O I/O VCCO_0 I/O GND I/O I/O VCCO_0 L19P_0 L02P_3 L33N_0 L31N_0 L28P_0 L25P_0 L24P_0 VREF_0 GCLK8 I/O: Unrestricted, 195 general-purpose user I/O C L0I1/OP_3 L0I2/ON_3 GND PROG_B L3I2/OP_0 L2I9/OP_0 L2I7/ON_0 L2I5/ON_0 VLR2I4E/ONF__00 L2I1/ON_0 LG1CI9/LONK_90 60- IgNePnUerTa:l- Upunrrpeosstreic itnepdu, t pin D I/O I/O I/O TMS I/O I/O I/O I/O GND I/O L2I0/OP_0 62 L06P_3 L01N_3 L03P_3 L32N_0 L29N_0 L27P_0 L30N_0 L23P_0 GCLK10 I/O 51 DUAL: Configuration pins, E L0I6/ON_3 VCCO_3 L0I7/ON_3 L0I3/ON_3 VCCAUX L3I5/ON_0 L3I4/OP_0 INPUT L3I0/OP_0 L2I3/ON_0 GL2C0LNK_101 then possible user I/O VREF: User I/O or input F L1I2/ON_3 L1I2/OP_3 L0I8/OP_3 L0I7/OP_3 TDI GND L3I5/OP_0 L3I4/ON_0 VCCO_0 INPUT GND 33- voltage reference for bank 34 G I/O GND I/O I/O I/O I/O INPUT INPUT INPUT INPUT INPUT L13N_3 L13P_3 L08N_3 L05N_3 L05P_3 VREF_0 CLK: User I/O, input, or 32 clock buffer input H I/O I/O I/O I/O I/O I/O ILN04PNU_T3 INPUT INPUT INPUT VCCAUX L16N_3 L16P_3 L14N_3 L14P_3 L09P_3 L09N_3 L04P_3 VREF_0 VREF_3 2 SSduUUaSSl-PPpEEurNNpDDos :a eDn Aedd WicAaKteEd J VLR1I7E/ONF__33 VCCO_3 L1I7/OP_3 GND L1I0/ON_3 VCCO_3 ILN1P1PU_T3 VINRPEFU_T3 GND VCCINT GND Power Management pins I/O K L22P_3 I/O I/O I/O I/O I/O INPUT INPUT VCCINT GND VCCINT L20N_3 L20P_3 L18N_3 L18P_3 L10P_3 L15P_3 L11N_3 CONFIG: Dedicated LHCLK2 2 configuration pins I/O I/O I/O INPUT JTAG: Dedicated JTAG port k 3 L LLIHR2C2DNLYK_233 GND LLH2C1NLK_31 VCCAUX LLH2C1PL_K30 GND ILN1P9PU_T3 VLR15ENF__33 GND VCCINT GND n 4 pins a I/O I/O I/O I/O B M L24P_3 L24N_3 LT2R5DPY_23 L25N_3 L3I0/OP_3 ILN2P3NU_T3 ILN2P3PU_T3 ILN1P9NU_T3 VCCINT GND VCCINT LHCLK4 LHCLK5 LHCLK6 LHCLK7 GND: Ground I/O 53 N L26P_3 VCCO_3 I/O I/O INPUT INPUT INPUT INPUT INPUT VCCINT GND L26N_3 L30N_3 L31N_3 L31P_3 L35P_3 L27P_3 L27N_3 VREF_3 VCCO: Output voltage P I/O I/O I/O GND I/O VCCO_3 INPUT INPUT GND GND VCCAUX L28P_3 L28N_3 L29P_3 L29N_3 L39P_3 L35N_3 24 supply for bank R I/O I/O I/O I/O I/O INPUT INPUT INPUT INPUT INPUT INPUT L32P_3 L32N_3 L33P_3 L33N_3 L34P_3 VREF_3 L46P_3 L39N_3 VCCINT: Internal core 15 supply voltage (+1.2V) I/O INPUT INPUT T L36P_3 GND I/O I/O I/O L46N_3 INPUT VREF_2 INPUT INPUT INPUT L36N_3 L34N_3 L40P_3 VREF_2 ◆ VREF_2 VREF_2 VREF_3 VREF_3 10 VvoCltCagAeUX: Auxiliary supply U L3I7/OP_3 L3I7/ON_3 L4I1/OP_3 L4I1/ON_3 L4I0/ON_3 GND INP◆UT INPUT VCCO_2 INPUT L1I7/OP_2 GCLK12 I/O I/O I/O N.C.: Not connected V L3I8/OP_3 VCCO_3 L3I8/ON_3 L4I3/OP_3 VCCAUX L01P_2 INPUT VINRPEFU_T2 L09P_2 L1I3/OP_2 L17N_2 3 (XC3S700A only) M1 RDWR_B GCLK13 ◆ I/O I/O I/O I/O W I/O I/O I/O L02P_2 L01N_2 I/O I/O L11P_2 L09N_2 GND VCCAUX L42P_3 L42N_3 L43N_3 L05P_2 L07P_2 M2 M0 VS1 VS2 I/O I/O I/O I/O Y I/O I/O GND L02N_2 I/O I/O I/O L11N_2 L14P_2 I/O L16P_2 L44P_3 L44N_3 L05N_2 L07N_2 L10P_2 L13N_2 CSO_B VS0 D7 D5 A I/O I/O I/O I/O I/O I/O I/O VCCO_2 GND VCCO_2 GND A L45P_3 L45N_3 L03N_2 L04N_2 L08P_2 L12P_2 L15P_2 A I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND L14N_2 L16N_2 B L03P_2 L04P_2 L06P_2 L06N_2 L08N_2 L10N_2 L12N_2 L15N_2 D6 D4 Bank 2 DS529-401101106 Figure 25: FG484 Package Footprint (Top View) DS529 (v2.1) December 18, 2018 www.xilinx.com 117

Pinout Descriptions Bank 0 12 13 14 15 16 17 18 19 20 21 22 Right Half of FG484 I/O I/O L18P_0 I/O I/O L12N_0 I/O I/O I/O I/O I/O TCK GND A Package (Top View) L16N_0 L13N_0 L12P_0 L10N_0 L05N_0 L06N_0 L03N_0 GCLK6 VREF_0 I/O I/O I/O GND I/O VCCO_0 I/O GND I/O VCCO_0 L06P_0 I/O L45N_1 L45P_1 B L16P_0 L13P_0 L10P_0 L03P_0 VREF_0 A23 A22 I/O I/O I/O L17P_0 I/O I/O I/O I/O I/O I/O I/O GND L44N_1 L44P_1 C L15N_0 L09P_0 L11N_0 L08N_0 L07N_0 L05P_0 L02N_0 GCLK4 A21 A20 I/O VCCAUX I/O GND I/O I/O I/O I/O L02P_0 I/O I/O I/O D L15P_0 L11P_0 L08P_0 L07P_0 L01N_0 L42N_1 L42P_1 L41N_1 VREF_0 I/O L17N_0 I/O I/O I/O INPUT I/O VCCAUX TDO I/O VCCO_1 I/O E L14N_0 L09N_0 L04P_0 L01P_0 L38P_1 L41P_1 GCLK5 I/O I/O INPUT I/O VCCO_0 I/O INPUT GND I/O I/O I/O L34N_1 L34P_1 F L14P_0 L04N_0 L40N_1 L40P_1 L38N_1 A19 A18 I/O I/O I/O INPUT INPUT INPUT INPUT INPUT L46N_1 L46P_1 I/O I/O GND L30N_1 G L36P_1 L36N_1 A25 A24 A15 INPUT I/O I/O I/O INPUT INPUT INPUT INPUT L47P_1 INPUT INPUT I/O L33N_1 L33P_1 L30P_1 H VREF_0 L47N_1 L39P_1 L39N_1 L37N_1 VREF_1 A17 A16 A14 INPUT I/O I/O I/O VCCINT GND GND L43N_1 INPUT VCCO_1 I/O GND L29N_1 L29P_1 L26N_1 J L43P_1 L37P_1 VREF_1 A13 A12 A11 INPUT I/O I/O I/O GND VCCINT L35P_1 ILN3P5NU_T1 ILN3P1NU_T1 L3I2/OP_1 L3I2/ON_1 L25N_1 LIR25DPY_11 VCCO_1 L26P_1 K VREF_1 RHCLK7 RHCLK6 A10 I/O I/O I/O VCCINT GND VCCINT ILN3P1PU_T1 ILN2P7NU_T1 GND L2I8/OP_1 L2I8/ON_1 RLTH2R2CDNLY_K113 RLH22CPL_K12 RLH21CNL_K11 L k 1 n INPUT I/O I/O I/O a GND VCCINT GND L27P_1 INPUT INPUT L24P_1 VCCAUX L24N_1 GND L21P_1 M B L23N_1 L23P_1 VREF_1 RHCLK4 RHCLK5 RHCLK0 INPUT I/O I/O I/O I/O I/O I/O VCCINT GND VCCINT INPUT L16N_1 L20N_1 L20P_1 L19N_1 L19P_1 L18N_1 L18P_1 N L16P_1 VREF_1 A9 A8 A7 A6 A5 A4 I/O I/O INPUT VCCINT GND INPUT INPUT VCCO_1 L17N_1 GND I/O VCCO_1 L15N_1 P L08P_1 L08N_1 L15P_1 A3 VREF_1 INPUT INPUT I/O INPUT INPUT INPUT INPUT L04N_1 INPUT L12N_1 L17P_1 I/O I/O I/O R VREF_2 VREF_2 VREF_2 L04P_1 L12P_1 L13P_1 L14P_1 L14N_1 VREF_1 VREF_1 A2 I/O I/O GND INPUT INPUT INPUT INPUT L03P_1 L03N_1 I/O I/O GND I/O T VREF_2 VREF_2 L13N_1 L11P_1 L11N_1 A0 A1 LG2CI0/LONK_32 L2ID6/ON3_2 VCCO_2 INPUT INP◆UT GND SUSPEND L1I0/ON_1 L1I0/OP_1 L0I9/ON_1 L0I9/OP_1 U I/O I/O L20P_2 L26P_2 I/O I/O I/O I/O VCCAUX I/O I/O VCCO_1 I/O V L30P_2 L30N_2 L31N_2 L33N_2 L06P_1 L06N_1 L07N_1 GCLK2 INIT_B I/O I/O I/O L18P_2 I/O GND I/O I/O I/O I/O L02P_1 L02N_1 I/O I/O W L23P_2 L25P_2 L31P_2 L34N_2 L33P_2 L05N_1 L07P_1 GCLK14 LDC1 LDC0 I/O I/O I/O L18N_2 I/O I/O I/O I/O L28N_2 I/O DONE GND L01N_1 I/O Y L21N_2 L23N_2 L25N_2 L27N_2 L34P_2 L05P_1 GCLK15 D1 LDC2 I/O I/O I/O I/O I/O I/O I/O I/O A L19P_2 VCCO_2 L24N_2 GND L28P_2 VCCO_2 L36N_2 L01P_1 L22P_2 L32N_2 L35N_2 A GCLK0 DOUT D2 CCLK HDC L1I9/ON_2 L2I1/OP_2 LM2I2O/ONS_I2 L2I4/OP_2 L2I7/OP_2 L2I9/OP_2 L2I9/ON_2 L3I2/OP_2 L3ID6/OP0_2 L3I5/OP_2 GND AB GCLK1 CSI_B AWAKE DIN/MISO Bank 2 DS529-4_02_012009 Figure 26: 118 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions FG676: 676-ball Fine-pitch Ball Grid Array The 676-ball fine-pitch ball grid array, FG676, supports the Table 86: Spartan-3A FG676 Pinout(Continued) XC3S1400A FPGA. FG676 Bank Pin Name Ball Type Table 86 lists all the FG676 package pins. They are sorted by bank number and then by pin name. Pairs of pins that 0 IO_L15N_0 A19 I/O form a differential I/O pair appear together in the table. The 0 IO_L15P_0 B19 I/O table also shows the pin number for each pin and the pin 0 IO_L16N_0 H15 I/O type, as defined earlier. 0 IO_L16P_0 G15 I/O The XC3S1400A has 17 unconnected balls, indicated as N.C. (No Connection) in Table 86 and with the black 0 IO_L17N_0 C18 I/O diamond character () in Table 86 and Figure 27. 0 IO_L17P_0 D18 I/O An electronic version of this package pinout table and 0 IO_L18N_0 A18 I/O footprint diagram is available for download from the Xilinx 0 IO_L18P_0 B18 I/O website at: 0 IO_L19N_0 B17 I/O www.xilinx.com/support/documentation/data_sheets/ 0 IO_L19P_0 C17 I/O s3a_pin.zip. 0 IO_L20N_0/VREF_0 E15 VREF Pinout Table 0 IO_L20P_0 F15 I/O Table 86: Spartan-3A FG676 Pinout 0 IO_L21N_0 C16 I/O 0 IO_L21P_0 D17 I/O FG676 Bank Pin Name Ball Type 0 IO_L22N_0 C15 I/O 0 IO_L01N_0 F20 I/O 0 IO_L22P_0 D16 I/O 0 IO_L01P_0 G20 I/O 0 IO_L23N_0 A15 I/O 0 IO_L02N_0 F19 I/O 0 IO_L23P_0 B15 I/O 0 IO_L02P_0/VREF_0 G19 VREF 0 IO_L24N_0 F14 I/O 0 IO_L05N_0 C22 I/O 0 IO_L24P_0 E14 I/O 0 IO_L05P_0 D22 I/O 0 IO_L25N_0/GCLK5 J14 GCLK 0 IO_L06N_0 C23 I/O 0 IO_L25P_0/GCLK4 K14 GCLK 0 IO_L06P_0 D23 I/O 0 IO_L26N_0/GCLK7 A14 GCLK 0 IO_L07N_0 A22 I/O 0 IO_L26P_0/GCLK6 B14 GCLK 0 IO_L07P_0 B23 I/O 0 IO_L27N_0/GCLK9 G13 GCLK 0 IO_L08N_0 G17 I/O 0 IO_L27P_0/GCLK8 F13 GCLK 0 IO_L08P_0 H17 I/O 0 IO_L28N_0/GCLK11 C13 GCLK 0 IO_L09N_0 B21 I/O 0 IO_L28P_0/GCLK10 B13 GCLK 0 IO_L09P_0 C21 I/O 0 IO_L29N_0 B12 I/O 0 IO_L10N_0 D21 I/O 0 IO_L29P_0 A12 I/O 0 IO_L10P_0 E21 I/O 0 IO_L30N_0 C12 I/O 0 IO_L11N_0 C20 I/O 0 IO_L30P_0 D13 I/O 0 IO_L11P_0 D20 I/O 0 IO_L31N_0 F12 I/O 0 IO_L12N_0 K16 I/O 0 IO_L31P_0 E12 I/O 0 IO_L12P_0 J16 I/O 0 IO_L32N_0/VREF_0 D11 VREF 0 IO_L13N_0 E17 I/O 0 IO_L32P_0 C11 I/O 0 IO_L13P_0 F17 I/O 0 IO_L33N_0 B10 I/O 0 IO_L14N_0 A20 I/O 0 IO_L33P_0 A10 I/O 0 IO_L14P_0/VREF_0 B20 VREF DS529 (v2.1) December 18, 2018 www.xilinx.com 119

Pinout Descriptions Table 86: Spartan-3A FG676 Pinout(Continued) Table 86: Spartan-3A FG676 Pinout(Continued) FG676 FG676 Bank Pin Name Ball Type Bank Pin Name Ball Type 0 IO_L34N_0 D10 I/O 0 IP_0 D12 INPUT 0 IO_L34P_0 C10 I/O 0 IP_0 D15 INPUT 0 IO_L35N_0 H12 I/O 0 IP_0 D19 INPUT 0 IO_L35P_0 G12 I/O 0 IP_0 E11 INPUT 0 IO_L36N_0 B9 I/O 0 IP_0 E18 INPUT 0 IO_L36P_0 A9 I/O 0 IP_0 E20 INPUT 0 IO_L37N_0 D9 I/O 0 IP_0 F10 INPUT 0 IO_L37P_0 E10 I/O 0 IP_0 G14 INPUT 0 IO_L38N_0 B8 I/O 0 IP_0 G16 INPUT 0 IO_L38P_0 A8 I/O 0 IP_0 H13 INPUT 0 IO_L39N_0 K12 I/O 0 IP_0 H18 INPUT 0 IO_L39P_0 J12 I/O 0 IP_0 J10 INPUT 0 IO_L40N_0 D8 I/O 0 IP_0 J13 INPUT 0 IO_L40P_0 C8 I/O 0 IP_0 J15 INPUT 0 IO_L41N_0 C6 I/O 0 IP_0/VREF_0 D7 VREF 0 IO_L41P_0 B6 I/O 0 IP_0/VREF_0 D14 VREF 0 IO_L42N_0 C7 I/O 0 IP_0/VREF_0 G11 VREF 0 IO_L42P_0 B7 I/O 0 IP_0/VREF_0 J17 VREF 0 IO_L43N_0 K11 I/O 0 N.C. (◆) A24 N.C. 0 IO_L43P_0 J11 I/O 0 N.C. (◆) B24 N.C. 0 IO_L44N_0 D6 I/O 0 N.C. (◆) D5 N.C. 0 IO_L44P_0 C5 I/O 0 N.C. (◆) E9 N.C. 0 IO_L45N_0 B4 I/O 0 N.C. (◆) F18 N.C. 0 IO_L45P_0 A4 I/O 0 N.C. (◆) E6 N.C. 0 IO_L46N_0 H10 I/O 0 N.C. (◆) F9 N.C. 0 IO_L46P_0 G10 I/O 0 N.C. (◆) G18 N.C. 0 IO_L47N_0 H9 I/O 0 VCCO_0 B5 VCCO 0 IO_L47P_0 G9 I/O 0 VCCO_0 B11 VCCO 0 IO_L48N_0 E7 I/O 0 VCCO_0 B16 VCCO 0 IO_L48P_0 F7 I/O 0 VCCO_0 B22 VCCO 0 IO_L51N_0 B3 I/O 0 VCCO_0 E8 VCCO 0 IO_L51P_0 A3 I/O 0 VCCO_0 E13 VCCO 0 IO_L52N_0/PUDC_B G8 DUAL 0 VCCO_0 E19 VCCO 0 IO_L52P_0/VREF_0 F8 VREF 0 VCCO_0 H11 VCCO 0 IP_0 A5 INPUT 0 VCCO_0 H16 VCCO 0 IP_0 A7 INPUT 1 IO_L01N_1/LDC2 Y21 DUAL 0 IP_0 A13 INPUT 1 IO_L01P_1/HDC Y20 DUAL 0 IP_0 A17 INPUT 1 IO_L02N_1/LDC0 AD25 DUAL 0 IP_0 A23 INPUT 1 IO_L02P_1/LDC1 AE26 DUAL 0 IP_0 C4 INPUT 1 IO_L03N_1/A1 AC24 DUAL 120 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions Table 86: Spartan-3A FG676 Pinout(Continued) Table 86: Spartan-3A FG676 Pinout(Continued) FG676 FG676 Bank Pin Name Ball Type Bank Pin Name Ball Type 1 IO_L03P_1/A0 AC23 DUAL 1 IO_L26P_1/A4 T23 DUAL 1 IO_L04N_1 W21 I/O 1 IO_L27N_1/A7 R17 DUAL 1 IO_L04P_1 W20 I/O 1 IO_L27P_1/A6 R18 DUAL 1 IO_L05N_1 AC25 I/O 1 IO_L29N_1/A9 R26 DUAL 1 IO_L05P_1 AD26 I/O 1 IO_L29P_1/A8 R25 DUAL 1 IO_L06N_1 AB26 I/O 1 IO_L30N_1/RHCLK1 P20 RHCLK 1 IO_L06P_1 AC26 I/O 1 IO_L30P_1/RHCLK0 P21 RHCLK 1 IO_L07N_1/VREF_1 AB24 VREF 1 IO_L31N_1/TRDY1/RHCLK3 P25 RHCLK 1 IO_L07P_1 AB23 I/O 1 IO_L31P_1/RHCLK2 P26 RHCLK 1 IO_L08N_1 V19 I/O 1 IO_L33N_1/RHCLK5 N24 RHCLK 1 IO_L08P_1 V18 I/O 1 IO_L33P_1/RHCLK4 P23 RHCLK 1 IO_L09N_1 AA23 I/O 1 IO_L34N_1/RHCLK7 N19 RHCLK 1 IO_L09P_1 AA22 I/O 1 IO_L34P_1/IRDY1/RHCLK6 P18 RHCLK 1 IO_L10N_1 U20 I/O 1 IO_L35N_1/A11 M25 DUAL 1 IO_L10P_1 V21 I/O 1 IO_L35P_1/A10 M26 DUAL 1 IO_L11N_1 AA25 I/O 1 IO_L37N_1 N21 I/O 1 IO_L11P_1 AA24 I/O 1 IO_L37P_1 P22 I/O 1 IO_L12N_1 U18 I/O 1 IO_L38N_1/A13 M23 DUAL 1 IO_L12P_1 U19 I/O 1 IO_L38P_1/A12 L24 DUAL 1 IO_L13N_1 Y23 I/O 1 IO_L39N_1/A15 N17 DUAL 1 IO_L13P_1 Y22 I/O 1 IO_L39P_1/A14 N18 DUAL 1 IO_L14N_1 T20 I/O 1 IO_L41N_1 K26 I/O 1 IO_L14P_1 U21 I/O 1 IO_L41P_1 K25 I/O 1 IO_L15N_1 Y25 I/O 1 IO_L42N_1/A17 M20 DUAL 1 IO_L15P_1 Y24 I/O 1 IO_L42P_1/A16 N20 DUAL 1 IO_L17N_1 T17 I/O 1 IO_L43N_1/A19 J25 DUAL 1 IO_L17P_1 T18 I/O 1 IO_L43P_1/A18 J26 DUAL 1 IO_L18N_1 V22 I/O 1 IO_L45N_1 M22 I/O 1 IO_L18P_1 W23 I/O 1 IO_L45P_1 M21 I/O 1 IO_L19N_1 V25 I/O 1 IO_L46N_1 K22 I/O 1 IO_L19P_1 V24 I/O 1 IO_L46P_1 K23 I/O 1 IO_L21N_1 U22 I/O 1 IO_L47N_1 M18 I/O 1 IO_L21P_1 V23 I/O 1 IO_L47P_1 M19 I/O 1 IO_L22N_1 R20 I/O 1 IO_L49N_1 J22 I/O 1 IO_L22P_1 R19 I/O 1 IO_L49P_1 J23 I/O 1 IO_L23N_1/VREF_1 U24 VREF 1 IO_L50N_1 K21 I/O 1 IO_L23P_1 U23 I/O 1 IO_L50P_1 L22 I/O 1 IO_L25N_1/A3 R22 DUAL 1 IO_L51N_1 G24 I/O 1 IO_L25P_1/A2 R21 DUAL 1 IO_L51P_1 G23 I/O 1 IO_L26N_1/A5 T24 DUAL 1 IO_L53N_1 K20 I/O DS529 (v2.1) December 18, 2018 www.xilinx.com 121

Pinout Descriptions Table 86: Spartan-3A FG676 Pinout(Continued) Table 86: Spartan-3A FG676 Pinout(Continued) FG676 FG676 Bank Pin Name Ball Type Bank Pin Name Ball Type 1 IO_L53P_1 L20 I/O 1 IP_L48P_1 H23 INPUT 1 IO_L54N_1 F24 I/O 1 IP_L52N_1/VREF_1 G25 VREF 1 IO_L54P_1 F25 I/O 1 IP_L52P_1 G26 INPUT 1 IO_L55N_1 L17 I/O 1 IP_L65N_1 B25 INPUT 1 IO_L55P_1 L18 I/O 1 IP_L65P_1/VREF_1 B26 VREF 1 IO_L56N_1 F23 I/O 1 VCCO_1 AB25 VCCO 1 IO_L56P_1 E24 I/O 1 VCCO_1 E25 VCCO 1 IO_L57N_1 K18 I/O 1 VCCO_1 H22 VCCO 1 IO_L57P_1 K19 I/O 1 VCCO_1 L19 VCCO 1 IO_L58N_1 G22 I/O 1 VCCO_1 L25 VCCO 1 IO_L58P_1/VREF_1 F22 VREF 1 VCCO_1 N22 VCCO 1 IO_L59N_1 J20 I/O 1 VCCO_1 T19 VCCO 1 IO_L59P_1 J19 I/O 1 VCCO_1 T25 VCCO 1 IO_L60N_1 D26 I/O 1 VCCO_1 W22 VCCO 1 IO_L60P_1 E26 I/O 2 IO_L01N_2/M0 AD4 DUAL 1 IO_L61N_1 D24 I/O 2 IO_L01P_2/M1 AC4 DUAL 1 IO_L61P_1 D25 I/O 2 IO_L02N_2/CSO_B AA7 DUAL 1 IO_L62N_1/A21 H21 DUAL 2 IO_L02P_2/M2 Y7 DUAL 1 IO_L62P_1/A20 J21 DUAL 2 IO_L05N_2 Y9 I/O 1 IO_L63N_1/A23 C25 DUAL 2 IO_L05P_2 W9 I/O 1 IO_L63P_1/A22 C26 DUAL 2 IO_L06N_2 AF3 I/O 1 IO_L64N_1/A25 G21 DUAL 2 IO_L06P_2 AE3 I/O 1 IO_L64P_1/A24 H20 DUAL 2 IO_L07N_2 AF4 I/O 1 IP_L16N_1 Y26 INPUT 2 IO_L07P_2 AE4 I/O 1 IP_L16P_1 W25 INPUT 2 IO_L08N_2 AD6 I/O 1 IP_L20N_1/VREF_1 V26 VREF 2 IO_L08P_2 AC6 I/O 1 IP_L20P_1 W26 INPUT 2 IO_L09N_2 W10 I/O 1 IP_L24N_1/VREF_1 U26 VREF 2 IO_L09P_2 V10 I/O 1 IP_L24P_1 U25 INPUT 2 IO_L10N_2 AE6 I/O 1 IP_L28N_1 R24 INPUT 2 IO_L10P_2 AF5 I/O 1 IP_L28P_1/VREF_1 R23 VREF 2 IO_L11N_2 AE7 I/O 1 IP_L32N_1 N25 INPUT 2 IO_L11P_2 AD7 I/O 1 IP_L32P_1 N26 INPUT 2 IO_L12N_2 AA10 I/O 1 IP_L36N_1 N23 INPUT 2 IO_L12P_2 Y10 I/O 1 IP_L36P_1/VREF_1 M24 VREF 2 IO_L13N_2 U11 I/O 1 IP_L40N_1 L23 INPUT 2 IO_L13P_2 V11 I/O 1 IP_L40P_1 K24 INPUT 2 IO_L14N_2 AB7 I/O 1 IP_L44N_1 H25 INPUT 2 IO_L14P_2 AC8 I/O 1 IP_L44P_1/VREF_1 H26 VREF 2 IO_L15N_2 AC9 I/O 1 IP_L48N_1 H24 INPUT 2 IO_L15P_2 AB9 I/O 122 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions Table 86: Spartan-3A FG676 Pinout(Continued) Table 86: Spartan-3A FG676 Pinout(Continued) FG676 FG676 Bank Pin Name Ball Type Bank Pin Name Ball Type 2 IO_L16N_2 W12 I/O 2 IO_L35P_2 V15 I/O 2 IO_L16P_2 V12 I/O 2 IO_L36N_2/D1 AE18 DUAL 2 IO_L17N_2/VS2 AA12 DUAL 2 IO_L36P_2/D2 AF18 DUAL 2 IO_L17P_2/RDWR_B Y12 DUAL 2 IO_L37N_2 AE19 I/O 2 IO_L18N_2 AF8 I/O 2 IO_L37P_2 AF19 I/O 2 IO_L18P_2 AE8 I/O 2 IO_L38N_2 AB16 I/O 2 IO_L19N_2/VS0 AF9 DUAL 2 IO_L38P_2 AC16 I/O 2 IO_L19P_2/VS1 AE9 DUAL 2 IO_L39N_2 AE20 I/O 2 IO_L20N_2 W13 I/O 2 IO_L39P_2 AF20 I/O 2 IO_L20P_2 V13 I/O 2 IO_L40N_2 AC19 I/O 2 IO_L21N_2 AC12 I/O 2 IO_L40P_2 AD19 I/O 2 IO_L21P_2 AB12 I/O 2 IO_L41N_2 AC20 I/O 2 IO_L22N_2/D6 AF10 DUAL 2 IO_L41P_2 AD20 I/O 2 IO_L22P_2/D7 AE10 DUAL 2 IO_L42N_2 U16 I/O 2 IO_L23N_2 AC11 I/O 2 IO_L42P_2 V16 I/O 2 IO_L23P_2 AD11 I/O 2 IO_L43N_2 Y17 I/O 2 IO_L24N_2/D4 AE12 DUAL 2 IO_L43P_2 AA17 I/O 2 IO_L24P_2/D5 AF12 DUAL 2 IO_L44N_2 AD21 I/O 2 IO_L25N_2/GCLK13 Y13 GCLK 2 IO_L44P_2 AE21 I/O 2 IO_L25P_2/GCLK12 AA13 GCLK 2 IO_L45N_2 AC21 I/O 2 IO_L26N_2/GCLK15 AE13 GCLK 2 IO_L45P_2 AD22 I/O 2 IO_L26P_2/GCLK14 AF13 GCLK 2 IO_L46N_2 V17 I/O 2 IO_L27N_2/GCLK1 AA14 GCLK 2 IO_L46P_2 W17 I/O 2 IO_L27P_2/GCLK0 Y14 GCLK 2 IO_L47N_2 AA18 I/O 2 IO_L28N_2/GCLK3 AE14 GCLK 2 IO_L47P_2 AB18 I/O 2 IO_L28P_2/GCLK2 AF14 GCLK 2 IO_L48N_2 AE23 I/O 2 IO_L29N_2 AC14 I/O 2 IO_L48P_2 AF23 I/O 2 IO_L29P_2 AD14 I/O 2 IO_L51N_2 AE25 I/O 2 IO_L30N_2/MOSI/CSI_B AB15 DUAL 2 IO_L51P_2 AF25 I/O 2 IO_L30P_2 AC15 I/O 2 IO_L52N_2/CCLK AE24 DUAL 2 IO_L31N_2 W15 I/O 2 IO_L52P_2/D0/DIN/MISO AF24 DUAL 2 IO_L31P_2 V14 I/O 2 IP_2 AA19 INPUT 2 IO_L32N_2/DOUT AE15 DUAL 2 IP_2 AB13 INPUT PWR 2 IP_2 AB17 INPUT 2 IO_L32P_2/AWAKE AD15 MGMT 2 IP_2 AB20 INPUT 2 IO_L33N_2 AD17 I/O 2 IP_2 AC7 INPUT 2 IO_L33P_2 AE17 I/O 2 IP_2 AC13 INPUT 2 IO_L34N_2/D3 Y15 DUAL 2 IP_2 AC17 INPUT 2 IO_L34P_2/INIT_B AA15 DUAL 2 IP_2 AC18 INPUT 2 IO_L35N_2 U15 I/O 2 IP_2 AD9 INPUT DS529 (v2.1) December 18, 2018 www.xilinx.com 123

Pinout Descriptions Table 86: Spartan-3A FG676 Pinout(Continued) Table 86: Spartan-3A FG676 Pinout(Continued) FG676 FG676 Bank Pin Name Ball Type Bank Pin Name Ball Type 2 IP_2 AD10 INPUT 3 IO_L05P_3 K9 I/O 2 IP_2 AD16 INPUT 3 IO_L06N_3 E4 I/O 2 IP_2 AF2 INPUT 3 IO_L06P_3 D3 I/O 2 IP_2 AF7 INPUT 3 IO_L07N_3 F4 I/O 2 IP_2 Y11 INPUT 3 IO_L07P_3 E3 I/O 2 IP_2/VREF_2 AA9 VREF 3 IO_L09N_3 G4 I/O 2 IP_2/VREF_2 AA20 VREF 3 IO_L09P_3 F5 I/O 2 IP_2/VREF_2 AB6 VREF 3 IO_L10N_3 H6 I/O 2 IP_2/VREF_2 AB10 VREF 3 IO_L10P_3 J7 I/O 2 IP_2/VREF_2 AC10 VREF 3 IO_L11N_3 F2 I/O 2 IP_2/VREF_2 AD12 VREF 3 IO_L11P_3 E1 I/O 2 IP_2/VREF_2 AF15 VREF 3 IO_L13N_3 J6 I/O 2 IP_2/VREF_2 AF17 VREF 3 IO_L13P_3 K7 I/O 2 IP_2/VREF_2 AF22 VREF 3 IO_L14N_3 F3 I/O 2 IP_2/VREF_2 Y16 VREF 3 IO_L14P_3 G3 I/O 2 N.C. (◆) AA8 N.C. 3 IO_L15N_3 L9 I/O 2 N.C. (◆) AC5 N.C. 3 IO_L15P_3 L10 I/O 2 N.C. (◆) AC22 N.C. 3 IO_L17N_3 H1 I/O 2 N.C. (◆) AD5 N.C. 3 IO_L17P_3 H2 I/O 2 N.C. (◆) Y18 N.C. 3 IO_L18N_3 L7 I/O 2 N.C. (◆) Y19 N.C. 3 IO_L18P_3 K6 I/O 2 N.C. (◆) AD23 N.C. 3 IO_L19N_3 J4 I/O 2 N.C. (◆) W18 N.C. 3 IO_L19P_3 J5 I/O 2 N.C. (◆) Y8 N.C. 3 IO_L21N_3 M9 I/O 2 VCCO_2 AB8 VCCO 3 IO_L21P_3 M10 I/O 2 VCCO_2 AB14 VCCO 3 IO_L22N_3 K4 I/O 2 VCCO_2 AB19 VCCO 3 IO_L22P_3 K5 I/O 2 VCCO_2 AE5 VCCO 3 IO_L23N_3 K2 I/O 2 VCCO_2 AE11 VCCO 3 IO_L23P_3 K3 I/O 2 VCCO_2 AE16 VCCO 3 IO_L25N_3 L3 I/O 2 VCCO_2 AE22 VCCO 3 IO_L25P_3 L4 I/O 2 VCCO_2 W11 VCCO 3 IO_L26N_3 M7 I/O 2 VCCO_2 W16 VCCO 3 IO_L26P_3 M8 I/O 3 IO_L01N_3 J9 I/O 3 IO_L27N_3 M3 I/O 3 IO_L01P_3 J8 I/O 3 IO_L27P_3 M4 I/O 3 IO_L02N_3 B1 I/O 3 IO_L28N_3 M6 I/O 3 IO_L02P_3 B2 I/O 3 IO_L28P_3 M5 I/O 3 IO_L03N_3 H7 I/O 3 IO_L29N_3/VREF_3 M1 VREF 3 IO_L03P_3 G6 I/O 3 IO_L29P_3 M2 I/O 3 IO_L05N_3 K8 I/O 3 IO_L30N_3 N4 I/O 124 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions Table 86: Spartan-3A FG676 Pinout(Continued) Table 86: Spartan-3A FG676 Pinout(Continued) FG676 FG676 Bank Pin Name Ball Type Bank Pin Name Ball Type 3 IO_L30P_3 N5 I/O 3 IO_L52P_3 W3 I/O 3 IO_L31N_3 N2 I/O 3 IO_L53N_3 Y2 I/O 3 IO_L31P_3 N1 I/O 3 IO_L53P_3 Y1 I/O 3 IO_L32N_3/LHCLK1 N7 LHCLK 3 IO_L55N_3 AA3 I/O 3 IO_L32P_3/LHCLK0 N6 LHCLK 3 IO_L55P_3 AA2 I/O 3 IO_L33N_3/IRDY2/LHCLK3 P2 LHCLK 3 IO_L56N_3 U8 I/O 3 IO_L33P_3/LHCLK2 P1 LHCLK 3 IO_L56P_3 U7 I/O 3 IO_L34N_3/LHCLK5 P3 LHCLK 3 IO_L57N_3 Y6 I/O 3 IO_L34P_3/LHCLK4 P4 LHCLK 3 IO_L57P_3 Y5 I/O 3 IO_L35N_3/LHCLK7 P10 LHCLK 3 IO_L59N_3 V6 I/O 3 IO_L35P_3/TRDY2/LHCLK6 N9 LHCLK 3 IO_L59P_3 V7 I/O 3 IO_L36N_3 R2 I/O 3 IO_L60N_3 AC1 I/O 3 IO_L36P_3/VREF_3 R1 VREF 3 IO_L60P_3 AB1 I/O 3 IO_L37N_3 R4 I/O 3 IO_L61N_3 V8 I/O 3 IO_L37P_3 R3 I/O 3 IO_L61P_3 U9 I/O 3 IO_L38N_3 T4 I/O 3 IO_L63N_3 W6 I/O 3 IO_L38P_3 T3 I/O 3 IO_L63P_3 W7 I/O 3 IO_L39N_3 P6 I/O 3 IO_L64N_3 AC3 I/O 3 IO_L39P_3 P7 I/O 3 IO_L64P_3 AC2 I/O 3 IO_L40N_3 R6 I/O 3 IO_L65N_3 AD2 I/O 3 IO_L40P_3 R5 I/O 3 IO_L65P_3 AD1 I/O 3 IO_L41N_3 P9 I/O 3 IP_L04N_3/VREF_3 C1 VREF 3 IO_L41P_3 P8 I/O 3 IP_L04P_3 C2 INPUT 3 IO_L42N_3 U4 I/O 3 IP_L08N_3 D1 INPUT 3 IO_L42P_3 T5 I/O 3 IP_L08P_3 D2 INPUT 3 IO_L43N_3 R9 I/O 3 IP_L12N_3/VREF_3 H4 VREF 3 IO_L43P_3/VREF_3 R10 VREF 3 IP_L12P_3 G5 INPUT 3 IO_L44N_3 U2 I/O 3 IP_L16N_3 G1 INPUT 3 IO_L44P_3 U1 I/O 3 IP_L16P_3 G2 INPUT 3 IO_L45N_3 R7 I/O 3 IP_L20N_3/VREF_3 J2 VREF 3 IO_L45P_3 R8 I/O 3 IP_L20P_3 J3 INPUT 3 IO_L47N_3 V2 I/O 3 IP_L24N_3 K1 INPUT 3 IO_L47P_3 V1 I/O 3 IP_L24P_3 J1 INPUT 3 IO_L48N_3 T9 I/O 3 IP_L46N_3 V4 INPUT 3 IO_L48P_3 T10 I/O 3 IP_L46P_3 U3 INPUT 3 IO_L49N_3 V5 I/O 3 IP_L50N_3/VREF_3 W2 VREF 3 IO_L49P_3 U5 I/O 3 IP_L50P_3 W1 INPUT 3 IO_L51N_3 U6 I/O 3 IP_L54N_3 Y4 INPUT 3 IO_L51P_3 T7 I/O 3 IP_L54P_3 Y3 INPUT 3 IO_L52N_3 W4 I/O 3 IP_L58N_3/VREF_3 AA5 VREF DS529 (v2.1) December 18, 2018 www.xilinx.com 125

Pinout Descriptions Table 86: Spartan-3A FG676 Pinout(Continued) Table 86: Spartan-3A FG676 Pinout(Continued) FG676 FG676 Bank Pin Name Ball Type Bank Pin Name Ball Type 3 IP_L58P_3 AA4 INPUT GND GND C19 GND 3 IP_L62N_3 AB4 INPUT GND GND C24 GND 3 IP_L62P_3 AB3 INPUT GND GND F1 GND 3 IP_L66N_3/VREF_3 AE2 VREF GND GND F6 GND 3 IP_L66P_3 AE1 INPUT GND GND F11 GND 3 VCCO_3 AB2 VCCO GND GND F16 GND 3 VCCO_3 E2 VCCO GND GND F21 GND 3 VCCO_3 H5 VCCO GND GND F26 GND 3 VCCO_3 L2 VCCO GND GND H3 GND 3 VCCO_3 L8 VCCO GND GND H8 GND 3 VCCO_3 P5 VCCO GND GND H14 GND 3 VCCO_3 T2 VCCO GND GND H19 GND 3 VCCO_3 T8 VCCO GND GND J24 GND 3 VCCO_3 W5 VCCO GND GND K10 GND GND GND A1 GND GND GND K17 GND GND GND A6 GND GND GND L1 GND GND GND A11 GND GND GND L6 GND GND GND A16 GND GND GND L11 GND GND GND A21 GND GND GND L13 GND GND GND A26 GND GND GND L15 GND GND GND AA1 GND GND GND L21 GND GND GND AA6 GND GND GND L26 GND GND GND AA11 GND GND GND M12 GND GND GND AA16 GND GND GND M14 GND GND GND AA21 GND GND GND M16 GND GND GND AA26 GND GND GND N3 GND GND GND AD3 GND GND GND N8 GND GND GND AD8 GND GND GND N11 GND GND GND AD13 GND GND GND N15 GND GND GND AD18 GND GND GND P12 GND GND GND AD24 GND GND GND P16 GND GND GND AF1 GND GND GND P19 GND GND GND AF6 GND GND GND P24 GND GND GND AF11 GND GND GND R11 GND GND GND AF16 GND GND GND R13 GND GND GND AF21 GND GND GND R15 GND GND GND AF26 GND GND GND T1 GND GND GND C3 GND GND GND T6 GND GND GND C9 GND GND GND T12 GND GND GND C14 GND GND GND T14 GND 126 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions Table 86: Spartan-3A FG676 Pinout(Continued) Table 86: Spartan-3A FG676 Pinout(Continued) FG676 FG676 Bank Pin Name Ball Type Bank Pin Name Ball Type GND GND T16 GND VCCINT VCCINT M17 VCCINT GND GND T21 GND VCCINT VCCINT N12 VCCINT GND GND T26 GND VCCINT VCCINT N13 VCCINT GND GND U10 GND VCCINT VCCINT N14 VCCINT GND GND U13 GND VCCINT VCCINT N16 VCCINT GND GND U17 GND VCCINT VCCINT P11 VCCINT GND GND V3 GND VCCINT VCCINT P13 VCCINT GND GND W8 GND VCCINT VCCINT P14 VCCINT GND GND W14 GND VCCINT VCCINT P15 VCCINT GND GND W19 GND VCCINT VCCINT R12 VCCINT GND GND W24 GND VCCINT VCCINT R14 VCCINT PWR VCCINT VCCINT R16 VCCINT VCCAUX SUSPEND V20 MGMT VCCINT VCCINT T11 VCCINT VCCAUX DONE AB21 CONFIG VCCINT VCCINT T13 VCCINT VCCAUX PROG_B A2 CONFIG VCCINT VCCINT T15 VCCINT VCCAUX TCK A25 JTAG VCCINT VCCINT U12 VCCINT VCCAUX TDI G7 JTAG VCCAUX TDO E23 JTAG VCCAUX TMS D4 JTAG VCCAUX VCCAUX AB5 VCCAUX VCCAUX VCCAUX AB11 VCCAUX VCCAUX VCCAUX AB22 VCCAUX VCCAUX VCCAUX E5 VCCAUX VCCAUX VCCAUX E16 VCCAUX VCCAUX VCCAUX E22 VCCAUX VCCAUX VCCAUX J18 VCCAUX VCCAUX VCCAUX K13 VCCAUX VCCAUX VCCAUX L5 VCCAUX VCCAUX VCCAUX N10 VCCAUX VCCAUX VCCAUX P17 VCCAUX VCCAUX VCCAUX T22 VCCAUX VCCAUX VCCAUX U14 VCCAUX VCCAUX VCCAUX V9 VCCAUX VCCINT VCCINT K15 VCCINT VCCINT VCCINT L12 VCCINT VCCINT VCCINT L14 VCCINT VCCINT VCCINT L16 VCCINT VCCINT VCCINT M11 VCCINT VCCINT VCCINT M13 VCCINT VCCINT VCCINT M15 VCCINT DS529 (v2.1) December 18, 2018 www.xilinx.com 127

Pinout Descriptions User I/Os by Bank Table 87 indicates how the 502 available user-I/O pins are distributed between the four I/O banks on the FG676 package. The AWAKE pin is counted as a dual-purpose I/O. Table 87: User I/Os Per Bank for the XC3S1400A in the FG676 Package All Possible I/O Pins by Type Package Edge I/O Bank Maximum I/O I/O INPUT DUAL VREF CLK Top 0 120 82 20 1 9 8 Right 1 130 67 15 30 10 8 Bottom 2 120 67 14 21 10 8 Left 3 132 97 18 0 9 8 TOTAL 502 313 67 52 38 32 Footprint Migration Differences The XC3S1400A FPGA is the only Spartan-3A device Table 88: FG676 Footprint Differences offered in the FG676 package. However, Table 88 Pin Bank XC3S1400A Migration XC3SD1800A summarizes footprint and functionality differences between the XC3S1400A and the XC3SD1800A in the Spartan-3A A24 0 N.C.  INPUT DSP family. There are 17 unconnected balls in the B24 0 N.C.  INPUT XC3S1400A that become 16 input-only pins and one I/O pin D5 0 N.C.  INPUT in the XC3SD1800A. All other pins not listed in Table 88 unconditionally migrate between the Spartan-3A devices E6 0 N.C.  VREF (INPUT) and the Spartan-3A DSP devices available in the FG676 E9 0 N.C.  INPUT package. The arrows indicate the direction for easy F9 0 N.C.  VREF (INPUT) migration. For more details on the Spartan-3A DSP family and pinouts, and additional differences in the FG676 pinout F18 0 N.C.  INPUT for the XC3SD3400A device, see DS610. G18 0 N.C.  VREF (INPUT) W18 2 N.C.  VREF (INPUT) Y8 2 N.C.  VREF (INPUT) Y18 2 N.C.  INPUT Y19 2 N.C.  INPUT AA8 2 N.C.  INPUT AC5 2 N.C.  INPUT AC22 2 N.C.  I/O AD5 2 N.C.  INPUT AD23 2 N.C.  VREF(INPUT) DIFFERENCES 17 Legend:  This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction is possible depending on how the pin is configured for the device on the right. 128 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions FG676 Footprint Bank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 LPeafctk Haaglef o(Tf oFpG V67ie6w ) A GND PROG_B L5I1/OP_0 L4I5/OP_0 INPUT GND INPUT L3I8/OP_0 L3I6/OP_0 L3I3/OP_0 GND L2I9/OP_0 INPUT I/O B L0I2/ON_3 L0I2/OP_3 L5I1/ON_0 L4I5/ON_0 VCCO_0 L4I1/OP_0 L4I2/OP_0 L3I8/ON_0 L3I6/ON_0 L3I3/ON_0 VCCO_0 L2I9/ON_0 L28P_0 GCLK10 INPUT I/O 313 I/O: Unrestricted, C L04N_3 INPUT GND INPUT I/O I/O I/O I/O GND I/O I/O I/O L28N_0 general-purpose user I/O VREF_3 L04P_3 L44P_0 L41N_0 L42N_0 L40P_0 L34P_0 L32P_0 L30N_0 GCLK11 INPUT: Unrestricted, D INPUT INPUT I/O TMS N.C. I/O INPUT I/O I/O I/O L3I2/ON_0 INPUT I/O 67 general-purpose input pin L08N_3 L08P_3 L06P_3 L44N_0 VREF_0 L40N_0 L37N_0 L34N_0 VREF_0 L30P_0 E I/O VCCO_3 I/O I/O VCCAUX NN..CC.. I/O VCCO_0 N.C. I/O INPUT I/O VCCO_0 DUAL: Configuration pins, L11P_3 L07P_3 L06N_3 L48N_0 L37P_0 L31P_0 51 then possible user I/O F GND I/O I/O I/O I/O GND I/O L5I2/OP_0 N.C. INPUT GND I/O L2I7/OP_0 L11N_3 L14N_3 L07N_3 L09P_3 L48P_0 L31N_0 SUSPEND: Dedicated VREF_0 GCLK8 2 SduUaSl-PpEurNpDos aen Ad WAKE G INPUT INPUT I/O I/O INPUT I/O TDI L5I2/ON_0 I/O I/O INPUT I/O L2I7/ON_0 L16N_3 L16P_3 L14P_3 L09N_3 L12P_3 L03P_3 L47P_0 L46P_0 VREF_0 L35P_0 Power Management pins PUDC_B GCLK9 INPUT H I/O I/O GND L12N_3 VCCO_3 I/O I/O GND I/O I/O VCCO_0 I/O INPUT 38 VREF: User I/O or input L17N_3 L17P_3 VREF_3 L10N_3 L03N_3 L47N_0 L46N_0 L35N_0 voltage reference for bank INPUT J INPUT L20N_3 INPUT I/O I/O I/O I/O I/O I/O INPUT I/O I/O INPUT L24P_3 L20P_3 L19N_3 L19P_3 L13N_3 L10P_3 L01P_3 L01N_3 L43P_0 L39P_0 CLK: User I/O, input, or VREF_3 32 clock buffer input K INPUT I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O VCCAUX L24N_3 L23N_3 L23P_3 L22N_3 L22P_3 L18P_3 L13P_3 L05N_3 L05P_3 L43N_0 L39N_0 CONFIG: Dedicated 2 configuration pins L GND VCCO_3 I/O I/O VCCAUX GND I/O VCCO_3 I/O I/O GND VCCINT GND L25N_3 L25P_3 L18N_3 L15N_3 L15P_3 4 JpoTrAt Gpi:n Dsedicated JTAG M L2I9/ON_3 I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCINT GND VCCINT L29P_3 L27N_3 L27P_3 L28P_3 L28N_3 L26N_3 L26P_3 L21N_3 L21P_3 VREF_3 77 GND: Ground nk 3 N L3I1/OP_3 L3I1/ON_3 GND L3I0/ON_3 L3I0/OP_3 LLH3IC2/OPL_K30 LLH3I2C/ONL_K31 GND LLTH3RIC5/DOPLY_K236 VCCAUX GND VCCINT VCCINT 36 VsuCpCpOly: f oOru btpauntk voltage Ba P LLH3IC3/OPL_K32 LLIHR3I3C/DONLY_K233 LLH3I4C/ONL_K35 LLH3IC4/OPL_K34 VCCO_3 L3I9/ON_3 L3I9/OP_3 L4I1/OP_3 L4I1/ON_3 LLH3I5C/ONL_K37 VCCINT GND VCCINT I/O I/O R L36P_3 I/O I/O I/O I/O I/O I/O I/O I/O L43P_3 GND VCCINT GND 23 VCCINT: Internal core VREF_3 L36N_3 L37P_3 L37N_3 L40P_3 L40N_3 L45N_3 L45P_3 L43N_3 VREF_3 supply voltage (+1.2V) T GND VCCO_3 I/O I/O I/O GND I/O VCCO_3 I/O I/O VCCINT GND VCCINT L38P_3 L38N_3 L42P_3 L51P_3 L48N_3 L48P_3 VCCAUX: Auxiliary supply 14 voltage U I/O I/O INPUT I/O I/O I/O I/O I/O I/O GND I/O VCCINT GND L44P_3 L44N_3 L46P_3 L42N_3 L49P_3 L51N_3 L56P_3 L56N_3 L61P_3 L13N_2 17 N.C.: Not connected ◆ V I/O I/O GND INPUT I/O I/O I/O I/O VCCAUX I/O I/O I/O I/O L47P_3 L47N_3 L46N_3 L49N_3 L59N_3 L59P_3 L61N_3 L09P_2 L13P_2 L16P_2 L20P_2 INPUT W INPUT L50N_3 I/O I/O VCCO_3 I/O I/O GND I/O I/O VCCO_2 I/O I/O L50P_3 L52P_3 L52N_3 L63N_3 L63P_3 L05P_2 L09N_2 L16N_2 L20N_2 VREF_3 Y I/O I/O INPUT INPUT I/O I/O L0I2/OP_2 N.C. I/O I/O INPUT L1I7/OP_2 L2I5/ON_2 L53P_3 L53N_3 L54P_3 L54N_3 L57P_3 L57N_3 L05N_2 L12P_2 M2 RDWR_B GCLK13 A I/O I/O INPUT INPUT I/O N.C. INPUT I/O I/O I/O A GND L55P_3 L55N_3 L58P_3 L58N_3 GND L02N_2 VREF_2 L12N_2 GND L17N_2 L25P_2 VREF_3 CSO_B VS2 GCLK12 A I/O INPUT INPUT INPUT I/O I/O INPUT I/O VCCO_3 VCCAUX VCCO_2 VCCAUX INPUT B L60P_3 L62P_3 L62N_3 VREF_2 L14N_2 L15P_2 VREF_2 L21P_2 A I/O I/O I/O I/O N.C. I/O I/O I/O INPUT I/O I/O C L60N_3 L64P_3 L64N_3 L01P_2 L08P_2 INPUT L14P_2 L15N_2 VREF_2 L23N_2 L21N_2 INPUT M1 A I/O I/O I/O N.C. I/O I/O I/O INPUT D L65P_3 L65N_3 GND L01N_2 L08N_2 L11P_2 GND INPUT INPUT L23P_2 VREF_2 GND M0 A INPUT INPUT I/O I/O I/O I/O I/O I/O I/O I/O I/O E L66P_3 L66N_3 L06P_2 L07P_2 VCCO_2 L10N_2 L11N_2 L18P_2 L19P_2 L22P_2 VCCO_2 L24N_2 L26N_2 VREF_3 VS1 D7 D4 GCLK15 A I/O I/O I/O I/O I/O I/O I/O I/O F GND INPUT L06N_2 L07N_2 L10P_2 GND INPUT L18N_2 L19N_2 L22N_2 GND L24P_2 L26P_2 VS0 D6 D5 GCLK14 Bank 2 DS529-4_07_102506 Figure 27: FG676 Package Footprint (Top View) DS529 (v2.1) December 18, 2018 www.xilinx.com 129

Pinout Descriptions Bank 0 14 15 16 17 18 19 20 21 22 23 24 25 26 L2I6/ON_0 I/O GND INPUT I/O I/O I/O GND I/O INPUT N.C. TCK GND A Right Half of FG676 GCLK7 L23N_0 L18N_0 L15N_0 L14N_0 L07N_0 Package (Top View) L2I6/OP_0 I/O VCCO_0 I/O I/O I/O L1I4/OP_0 I/O VCCO_0 I/O N.C. INPUT ILN6P5PU_T1 B L23P_0 L19N_0 L18P_0 L15P_0 L09N_0 L07P_0 L65N_1 GCLK6 VREF_0 VREF_1 I/O I/O GND I/O I/O I/O I/O GND I/O I/O I/O I/O GND L63N_1 L63P_1 C L22N_0 L21N_0 L19P_0 L17N_0 L11N_0 L09P_0 L05N_0 L06N_0 A23 A22 INPUT INPUT I/O I/O I/O INPUT I/O I/O I/O I/O I/O I/O I/O D VREF_0 L22P_0 L21P_0 L17P_0 L11P_0 L10N_0 L05P_0 L06P_0 L61N_1 L61P_1 L60N_1 I/O I/O L20N_0 VCCAUX I/O INPUT VCCO_0 INPUT I/O VCCAUX TDO I/O VCCO_1 I/O E L24P_0 L13N_0 L10P_0 L56P_1 L60P_1 VREF_0 I/O I/O GND I/O NN..CC.. I/O I/O GND L5I8/OP_1 I/O I/O I/O GND F L24N_0 L20P_0 L13P_0 L02N_0 L01N_0 L56N_1 L54N_1 L54P_1 VREF_1 INPUT I/O INPUT I/O N.C. L0I2/OP_0 I/O L6I4/ON_1 I/O I/O I/O ILN52PNU_T1 INPUT G L16P_0 L08N_0 L01P_0 L58N_1 L51P_1 L51N_1 L52P_1 VREF_0 A25 VREF_1 I/O I/O INPUT GND I/O VCCO_0 I/O INPUT GND L64P_1 L62N_1 VCCO_1 INPUT INPUT INPUT L44P_1 H L16N_0 L08P_0 L48P_1 L48N_1 L44N_1 A24 A21 VREF_1 I/O I/O I/O I/O L25N_0 INPUT I/O INPUT VCCAUX I/O I/O L62P_1 I/O I/O GND L43N_1 L43P_1 J L12P_0 VREF_0 L59P_1 L59N_1 L49N_1 L49P_1 GCLK5 A20 A19 A18 I/O L25P_0 VCCINT I/O GND I/O I/O I/O I/O I/O I/O INPUT I/O I/O K L12N_0 L57N_1 L57P_1 L53N_1 L50N_1 L46N_1 L46P_1 L40P_1 L41P_1 L41N_1 GCLK4 I/O VCCINT GND VCCINT I/O I/O VCCO_1 I/O GND I/O INPUT L38P_1 VCCO_1 GND L L55N_1 L55P_1 L53P_1 L50P_1 L40N_1 A12 I/O I/O INPUT I/O I/O GND VCCINT GND VCCINT I/O I/O L42N_1 I/O I/O L38N_1 L36P_1 L35N_1 L35P_1 M L47N_1 L47P_1 L45P_1 L45N_1 A17 A13 VREF_1 A11 A10 I/O I/O I/O I/O I/O VCCINT GND VCCINT L3A91N5_1 L3A91P4_1 RLH34CNL_K17 L4A21P6_1 L3I7/ON_1 VCCO_1 ILN36PNU_T1 RLH33CNL_K15 ILN32PNU_T1 ILN3P2PU_T1 N k 1 n VCCINT VCCINT GND VCCAUX LIR3I4/DOPY_11 GND L3I0/ON_1 L3I0/OP_1 L3I7/OP_1 L3I3/OP_1 GND LT3RI1/DONY_11 L3I1/OP_1 P Ba RHCLK6 RHCLK1 RHCLK0 RHCLK4 RHCLK3 RHCLK2 I/O I/O I/O I/O INPUT I/O I/O VCCINT GND VCCINT L27N_1 L27P_1 I/O I/O L25P_1 L25N_1 L28P_1 INPUT L29P_1 L29N_1 R L22P_1 L22N_1 L28N_1 A7 A6 A2 A3 VREF_1 A8 A9 I/O I/O GND VCCINT GND I/O I/O VCCO_1 I/O GND VCCAUX L26P_1 L26N_1 VCCO_1 GND T L17N_1 L17P_1 L14N_1 A4 A5 I/O INPUT VCCAUX I/O I/O GND I/O I/O I/O I/O I/O I/O L23N_1 INPUT L24N_1 U L35N_2 L42N_2 L12N_1 L12P_1 L10N_1 L14P_1 L21N_1 L23P_1 L24P_1 VREF_1 VREF_1 L3I1/OP_2 L3I5/OP_2 L4I2/OP_2 L4I6/ON_2 L0I8/OP_1 L0I8/ON_1 SUSPEND L1I0/OP_1 L1I8/ON_1 L2I1/OP_1 L1I9/OP_1 L1I9/ON_1 VILNR20PENFU__T11 V GND I/O VCCO_2 I/O N.C. GND I/O I/O VCCO_1 I/O GND INPUT INPUT W L31N_2 L46P_2 L04P_1 L04N_1 L18P_1 L16P_1 L20P_1 L2I7/OP_2 L3I4/ON_2 INP2UT I/O N.C. N.C. L0I1/OP_1 L0I1/ON_1 I/O I/O I/O I/O INPUT Y L43N_2 L13P_1 L13N_1 L15P_1 L15N_1 L16N_1 GCLK0 D3 VREF_2 HDC LDC2 I/O I/O I/O I/O INPUT I/O I/O I/O I/O A L27N_2 L34P_2 GND L43P_2 L47N_2 INPUT VREF_2 GND L09P_1 L09N_1 L11P_1 L11N_1 GND A GCLK1 INIT_B VCCO_2 LM3I0/OONS_I2 L3I8/ON_2 INPUT L4I7/OP_2 VCCO_2 INPUT DONE VCCAUX L0I7/OP_1 L0I7/ON_1 VCCO_1 L0I6/ON_1 AB CSI_B VREF_1 I/O I/O I/O I/O I/O I/O N.C. I/O I/O I/O I/O A L29N_2 L30P_2 L38P_2 INPUT INPUT L40N_2 L41N_2 L45N_2 L03P_1 L03N_1 L05N_1 L06P_1 C A0 A1 I/O I/O I/O I/O I/O I/O I/O N.C. I/O I/O A L29P_2 L32P_2 INPUT L33N_2 GND L40P_2 L41P_2 L44N_2 L45P_2 GND L02N_1 L05P_1 D AWAKE LDC0 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O A L28N_2 L32N_2 VCCO_2 L33P_2 L36N_2 L37N_2 L39N_2 L44P_2 VCCO_2 L48N_2 L52N_2 L51N_2 L02P_1 E GCLK3 DOUT D1 CCLK LDC1 L2I8/OP_2 VINRPEFU_T2 GND VINRPEFU_T2 L3I6/OP_2 L3I7/OP_2 L3I9/OP_2 GND VINRPEFU_T2 L4I8/OP_2 L5ID2/OP0_2 L5I1/OP_2 GND AF GCLK2 D2 DIN/MISO Bank 2 DS529-4_08_012009 130 www.xilinx.com DS529 (v2.1) December 18, 2018

Pinout Descriptions Revision History The following table shows the revision history for this document. Date Version Revision 12/05/06 1.0 Initial release. 02/02/07 1.1 Promoted to Preliminary status. Added DOUT pin to DUAL-type pins in Table 57. Corrected counts for DUAL pins and differential pairs in Table 59. Corrected minor typographical error on pin names for pin numbers P24 and P25 in Table 65. Highlighted the differences in differential I/O pairs between the XC3S50A and XC3S200A in the FT256 package, shown in Table 67 and added Table 73 and Table 74 to summarize the differences. 03/16/07 1.2 Corrected minor typographical error in Figure 19. 04/23/07 1.3 Added reference to compatible Spartan-3A DSP family. 05/08/07 1.4 Added note regarding banking rules. 07/10/07 1.5 Updated Thermal Characteristics in Table 61. 04/15/08 1.6 Added VQ100 for XC3S50A and XC3S200A and added FT256 for XC3S700A and XCS1400A to Table 58, Table 59, and Table 61. Updated Thermal Characteristics with latest data in Table 61. Corrected bank for T8 and type for U16 in Table 85. Removed VREF name on 6 unconnected N.C. pins for XC3S1400A FG676 in Table 86 and Figure 27. These pins are noted as VREF if migrating up to the XC3SD1800A in Table 88. 05/28/08 1.7 Added "Package Overview" section. 03/06/09 1.8 Corrected bank designation for SUSPEND to VCCAUX. Corrected bank designation for JTAG pins in XC3S700A and XC3S1400A FT256 to VCCAUX. 08/19/10 2.0 Corrected pin 36 number in Figure 17 and Figure 18. Noted difference in FT256 P10/T10 function between XC3S50A and larger devices in Table 67 and Table 73. 12/18/18 2.1 Updated for Lead-Frame Plating Composition Change For Legacy Eutectic Products (XCN18024). Updated Table 60 and Note 1. Removed Table 61. DS529 (v2.1) December 18, 2018 www.xilinx.com 131

Pinout Descriptions 132 www.xilinx.com DS529 (v2.1) December 18, 2018