图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: MKL15Z128VFM4
  • 制造商: Freescale Semiconductor
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

MKL15Z128VFM4产品简介:

ICGOO电子元器件商城为您提供MKL15Z128VFM4由Freescale Semiconductor设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 MKL15Z128VFM4价格参考。Freescale SemiconductorMKL15Z128VFM4封装/规格:嵌入式 - 微控制器, ARM® Cortex®-M0+ 微控制器 IC Kinetis KL1 32-位 48MHz 128KB(128K x 8) 闪存 32-QFN(5x5)。您可以下载MKL15Z128VFM4参考资料、Datasheet数据手册功能说明书,资料中有MKL15Z128VFM4 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC MCU ARM 128KB FLASH 32QFNARM微控制器 - MCU Kinetis L ARM M0+ 128k Flash

EEPROM容量

-

产品分类

嵌入式 - 微控制器

I/O数

28

品牌

Freescale Semiconductor

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

嵌入式处理器和控制器,微控制器 - MCU,ARM微控制器 - MCU,Freescale Semiconductor MKL15Z128VFM4Kinetis KL1

数据手册

点击此处下载产品Datasheet点击此处下载产品Datasheet点击此处下载产品Datasheet

产品型号

MKL15Z128VFM4

PCN组件/产地

http://cache.freescale.com/files/shared/doc/pcn/PCN15814.htm

PCN设计/规格

http://cache.freescale.com/files/shared/doc/pcn/PCN15823.htmhttp://cache.freescale.com/files/shared/doc/pcn/PCN16205.htm

RAM容量

16K x 8

产品种类

ARM微控制器 - MCU

供应商器件封装

32-QFN(5x5)

包装

托盘

单位重量

62.300 mg

商标

Freescale Semiconductor

商标名

Kinetis

处理器系列

Kinetis L

外设

欠压检测/复位,DMA,LVD,POR,PWM,WDT

安装风格

SMD/SMT

封装/外壳

32-VFQFN 裸露焊盘

封装/箱体

QFN-32

工作温度

-40°C ~ 105°C

工作电源电压

1.71 V to 3.6 V

工厂包装数量

490

振荡器类型

内部

数据RAM大小

16 kB

数据总线宽度

32 bit

数据转换器

A/D 9x16b, D/A 1x12b

最大工作温度

+ 105 C

最大时钟频率

48 MHz

最小工作温度

- 40 C

标准包装

490

核心

ARM Cortex M0

核心处理器

ARM® Cortex™-M0+

核心尺寸

32-位

片上ADC

Yes

电压-电源(Vcc/Vdd)

1.71 V ~ 3.6 V

程序存储器大小

128 kB

程序存储器类型

闪存

程序存储容量

128KB(128K x 8)

系列

KL1

连接性

I²C, LIN, SPI, UART/USART

速度

48MHz

推荐商品

型号:C8051F120-GQ

品牌:Silicon Labs

产品名称:集成电路(IC)

获取报价

型号:PIC16LF1829T-I/ML

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:PIC16LF1769-E/ML

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:R5F10MMEDFB#30

品牌:Renesas Electronics America

产品名称:集成电路(IC)

获取报价

型号:R5F1006CASP#X0

品牌:Renesas Electronics America

产品名称:集成电路(IC)

获取报价

型号:HD64F3694GFPIV

品牌:Renesas Electronics America

产品名称:集成电路(IC)

获取报价

型号:C8051F304-GM

品牌:Silicon Labs

产品名称:集成电路(IC)

获取报价

型号:MC56F8002VWL

品牌:NXP USA Inc.

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
MKL15Z128VFM4 相关产品

AT32UC3A0256-CTUT

品牌:Microchip Technology

价格:

DSPIC33EP512MU810T-I/PT

品牌:Microchip Technology

价格:

TM4C1231H6PZI

品牌:Texas Instruments

价格:¥42.72-¥78.98

MKE02Z64VLC4

品牌:NXP USA Inc.

价格:

PIC16F722-I/ML

品牌:Microchip Technology

价格:¥19.02-¥19.02

SX48BD-G

品牌:Parallax Inc.

价格:

DSPIC33EP128GP502-I/SP

品牌:Microchip Technology

价格:

PIC18LF46K22-I/PT

品牌:Microchip Technology

价格:

PDF Datasheet 数据手册内容提取

Freescale Semiconductor, Inc. Document Number: KL15P80M48SF0 Data Sheet: Technical Data Rev 5 08/2014 Kinetis KL15 Sub-Family MKL15ZxxVFM4 48 MHz Cortex-M0+ Based Microcontroller MKL15ZxxVFT4 MKL15ZxxVLH4 Designed with efficiency in mind. Compatible with all other MKL15ZxxVLK4 Kinetis L families as well as Kinetis K1x family. General purpose MCU featuring market leading ultra low-power to provide developers an appropriate entry-level 32-bit solution. This product offers: • Run power consumption down to 47 μA/MHz in very low 32-pin QFN (FM) 48-pin QFN (FT) power run mode 5 x 5 x 1 Pitch 0.5 mm 7 x 7 x 1 Pitch 0.5 mm • Static power consumption down to 2 μA with full state retention and 4 μs wakeup • Ultra-efficient Cortex-M0+ processor running up to 48MHz with industry leading throughput • Memory option is up to 128 KB flash and 16 KB RAM 64-pin LQFP (LH) 80-pin LQFP (LK) • Energy-saving architecture is optimized for low power with 10 x 10 x 1.4 Pitch 0.5 12 x 12 x 1.4 Pitch 0.5 90 nm TFS technology, clock and power gating techniques, mm mm and zero wait state flash memory controller Performance Human-machine interface • 48 MHz ARM® Cortex®-M0+ core • Low-power hardware touch sensor interface (TSI) • Up to 70 general-purpose input/output (GPIO) Memories and memory interfaces • Up to 128 KB program flash memory Communication interfaces • Up to 16 KB SRAM • Two 8-bit SPI modules • One low power UART module System peripherals • Two UART modules • Nine low-power modes to provide power optimization • Two I2C module based on application requirements • COP Software watchdog Analog Modules • 4-channel DMA controller, supporting up to 63 request • 16-bit SAR ADC sources • 12-bit DAC • Low-leakage wakeup unit • Analog comparator (CMP) containing a 6-bit DAC • SWD debug interface and Micro Trace Buffer and programmable reference input • Bit Manipulation Engine Timers Clocks • Six channel Timer/PWM (TPM) • 32 kHz to 40 kHz or 3 MHz to 32 MHz crystal oscillator • Two 2-channel Timer/PWM modules • Multi-purpose clock source • Periodic interrupt timers • 1 kHz LPO clock • 16-bit low-power timer (LPTMR) • Real time clock Operating Characteristics • Voltage range: 1.71 to 3.6 V Security and integrity modules • Flash write voltage range: 1.71 to 3.6 V • 80-bit unique identification number per chip • Temperature range (ambient): -40 to 105°C Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © 2012–2014 Freescale Semiconductor, Inc. All rights reserved.

Ordering Information Part Number Memory Maximum number of I\O's Flash (KB) SRAM (KB) MKL15Z32VFM4 32 4 28 MKL15Z64VFM4 64 8 28 MKL15Z128VFM4 128 16 28 MKL15Z32VFT4 32 4 40 MKL15Z64VFT4 64 8 40 MKL15Z128VFT4 128 16 40 MKL15Z32VLH4 32 4 54 MKL15Z64VLH4 64 8 54 MKL15Z128VLH4 128 16 54 MKL15Z32VLK4 32 4 70 MKL15Z64VLK4 64 8 70 MKL15Z128VLK4 128 16 70 Related Resources Type Description Resource Selector Guide The Freescale Solution Advisor is a web-based tool that features Solution Advisor interactive application wizards and a dynamic product selector. Product Brief The Product Brief contains concise overview/summary information to KL1 Family Product Brief1 enable quick evaluation of a device for design suitability. Reference The Reference Manual contains a comprehensive description of the KL15P80M48SF0RM1 Manual structure and function (operation) of a device. Data Sheet The Data Sheet includes electrical characteristics and signal KL15P80M48SF01 connections. Chip Errata The chip mask set Errata provides additional or corrective KINETIS_L_xN97F2 information for a particular device mask set. Package Package dimensions are provided in package drawings. QFN 32-pin: 98ASA00473D1 drawing QFN 48-pin: 98ASA00466D1 LQFP 64-pin: 98ASS23234W1 LQFP 80-pin: 98ASS23174W1 1. To find the associated resource, go to http://www.freescale.com and perform a search using this term. 2. To find the associated resource, go to http://www.freescale.com and perform a search using this term with the “x” replaced by the revision of the device you are using. Figure 1 shows the functional modules in the chip. 2 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Kinetis KL15 Family ARMCortex-M0+ System Memories and Clocks Core Memory Interfaces Internal Phase- watchdog locked loop Debug Program interfaces flash Frequency- locked loop DMA Interrupt controller RAM Low/high frequency oscillator BME MTB Internal reference clocks Security Analog Timers Communication Human-Machine and Integrity Interface (HMI) Interfaces Internal 16-bit ADC Timers watchdog x1 1x6ch+2x2ch I2C GPIOs with x2 interrupt Analog Low comparator power timer x1 x1 Low power UART TSI x1 Periodic 6-bit DAC interrupt timers SPI x2 12-bit DAC RTC UART x2 LEGEND Migration difference from KL05 family Figure 1. Functional block diagram Kinetis KL15 Sub-Family, Rev5 08/2014. 3 Freescale Semiconductor, Inc.

Table of Contents 1 Ratings....................................................................................5 3.6.2 CMP and 6-bit DAC electrical specifications.......31 1.1 Thermal handling ratings.................................................5 3.6.3 12-bit DAC electrical characteristics....................32 1.2 Moisture handling ratings................................................5 3.7 Timers..............................................................................35 1.3 ESD handling ratings.......................................................5 3.8 Communication interfaces...............................................35 1.4 Voltage and current operating ratings.............................5 3.8.1 SPI switching specifications................................35 2 General...................................................................................6 3.8.2 Inter-Integrated Circuit Interface (I2C) timing......40 2.1 AC electrical characteristics.............................................6 3.8.3 UART...................................................................41 2.2 Nonswitching electrical specifications..............................6 3.9 Human-machine interfaces (HMI)....................................41 2.2.1 Voltage and current operating requirements.......7 3.9.1 TSI electrical specifications.................................41 2.2.2 LVD and POR operating requirements................7 4 Dimensions.............................................................................42 2.2.3 Voltage and current operating behaviors.............8 4.1 Obtaining package dimensions.......................................42 2.2.4 Power mode transition operating behaviors........9 5 Pinout......................................................................................42 2.2.5 Power consumption operating behaviors............10 5.1 KL15 Signal Multiplexing and Pin Assignments...............42 2.2.6 EMC radiated emissions operating behaviors.....15 5.2 KL15 pinouts....................................................................45 2.2.7 Designing with radiated emissions in mind..........16 6 Ordering parts.........................................................................49 2.2.8 Capacitance attributes.........................................16 6.1 Determining valid orderable parts....................................49 2.3 Switching specifications...................................................16 7 Part identification.....................................................................49 2.3.1 Device clock specifications..................................16 7.1 Description.......................................................................50 2.3.2 General switching specifications.........................17 7.2 Format.............................................................................50 2.4 Thermal specifications.....................................................17 7.3 Fields...............................................................................50 2.4.1 Thermal operating requirements.........................17 7.4 Example...........................................................................50 2.4.2 Thermal attributes................................................18 8 Terminology and guidelines....................................................51 3 Peripheral operating requirements and behaviors..................18 8.1 Definition: Operating requirement....................................51 3.1 Core modules..................................................................18 8.2 Definition: Operating behavior.........................................51 3.1.1 SWD electricals ..................................................18 8.3 Definition: Attribute..........................................................52 3.2 System modules..............................................................20 8.4 Definition: Rating.............................................................52 3.3 Clock modules.................................................................20 8.5 Result of exceeding a rating............................................52 3.3.1 MCG specifications..............................................20 8.6 Relationship between ratings and operating 3.3.2 Oscillator electrical specifications........................22 requirements....................................................................53 3.4 Memories and memory interfaces...................................24 8.7 Guidelines for ratings and operating requirements..........53 3.4.1 Flash electrical specifications..............................24 8.8 Definition: Typical value...................................................54 3.5 Security and integrity modules........................................26 8.9 Typical value conditions..................................................55 3.6 Analog.............................................................................26 9 Revision history.......................................................................55 3.6.1 ADC electrical specifications...............................26 4 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Ratings 1 Ratings 1.1 Thermal handling ratings Table 1. Thermal handling ratings Symbol Description Min. Max. Unit Notes T Storage temperature –55 150 °C 1 STG T Solder temperature, lead-free — 260 °C 2 SDR 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 1.2 Moisture handling ratings Table 2. Moisture handling ratings Symbol Description Min. Max. Unit Notes MSL Moisture sensitivity level — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 1.3 ESD handling ratings Table 3. ESD handling ratings Symbol Description Min. Max. Unit Notes V Electrostatic discharge voltage, human body model –2000 +2000 V 1 HBM V Electrostatic discharge voltage, charged-device –500 +500 V 2 CDM model I Latch-up current at ambient temperature of 105 °C –100 +100 mA 3 LAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test. Kinetis KL15 Sub-Family, Rev5 08/2014. 5 Freescale Semiconductor, Inc.

General 1.4 Voltage and current operating ratings Table 4. Voltage and current operating ratings Symbol Description Min. Max. Unit V Digital supply voltage –0.3 3.8 V DD I Digital supply current — 120 mA DD V IO pin input voltage –0.3 V + 0.3 V IO DD I Instantaneous maximum current single pin limit (applies to –25 25 mA D all port pins) V Analog supply voltage V – 0.3 V + 0.3 V DDA DD DD 2 General 2.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. Low High V IH 80% Input Signal Midpoint1 50% 20% V IL Fall Time Rise Time The midpoint is V + (V - V ) / 2 IL IH IL Figure 2. Input signal measurement reference All digital I/O switching characteristics, unless otherwise specified, assume the output pins have the following characteristics. • C =30 pF loads L • Slew rate disabled • Normal drive strength 2.2 Nonswitching electrical specifications 6 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

General 2.2.1 Voltage and current operating requirements Table 5. Voltage and current operating requirements Symbol Description Min. Max. Unit Notes V Supply voltage 1.71 3.6 V DD V Analog supply voltage 1.71 3.6 V — DDA V – V V -to-V differential voltage –0.1 0.1 V — DD DDA DD DDA V – V V -to-V differential voltage –0.1 0.1 V — SS SSA SS SSA V Input high voltage — IH • 2.7 V ≤ V ≤ 3.6 V 0.7 × V — V DD DD • 1.7 V ≤ V ≤ 2.7 V 0.75 × V — V DD DD V Input low voltage — IL • 2.7 V ≤ V ≤ 3.6 V — 0.35 × V V DD DD • 1.7 V ≤ V ≤ 2.7 V — 0.3 × V V DD DD V Input hysteresis 0.06 × V — V — HYS DD I IO pin negative DC injection current—single pin 1 ICIO –3 — mA • V < V –0.3V IN SS I Contiguous pin DC injection current —regional limit, — ICcont includes sum of negative injection currents of 16 contiguous pins –25 — mA • Negative current injection V Open drain pullup voltage level V V V 2 ODPU DD DD V V voltage required to retain RAM 1.2 — V — RAM DD 1. All I/O pins are internally clamped to V through a ESD protection diode. There is no diode connection to V . If V SS DD IN greater than V (= V -0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If IO_MIN SS this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = (V - V )/|I |. IO_MIN IN ICIO 2. Open drain outputs must be pulled to V . DD 2.2.2 LVD and POR operating requirements Table 6. V supply LVD and POR operating requirements DD Symbol Description Min. Typ. Max. Unit Notes V Falling V POR detect voltage 0.8 1.1 1.5 V — POR DD V Falling low-voltage detect threshold — high 2.48 2.56 2.64 V — LVDH range (LVDV = 01) Low-voltage warning thresholds — high range 1 Table continues on the next page... Kinetis KL15 Sub-Family, Rev5 08/2014. 7 Freescale Semiconductor, Inc.

General Table 6. V supply LVD and POR operating requirements (continued) DD Symbol Description Min. Typ. Max. Unit Notes V • Level 1 falling (LVWV = 00) 2.62 2.70 2.78 V LVW1H V • Level 2 falling (LVWV = 01) 2.72 2.80 2.88 V LVW2H V • Level 3 falling (LVWV = 10) 2.82 2.90 2.98 V LVW3H V • Level 4 falling (LVWV = 11) 2.92 3.00 3.08 V LVW4H V Low-voltage inhibit reset/recover hysteresis — — ±60 — mV — HYSH high range V Falling low-voltage detect threshold — low 1.54 1.60 1.66 V — LVDL range (LVDV=00) Low-voltage warning thresholds — low range 1 V • Level 1 falling (LVWV = 00) LVW1L 1.74 1.80 1.86 V V • Level 2 falling (LVWV = 01) LVW2L 1.84 1.90 1.96 V V • Level 3 falling (LVWV = 10) LVW3L 1.94 2.00 2.06 V V • Level 4 falling (LVWV = 11) LVW4L 2.04 2.10 2.16 V V Low-voltage inhibit reset/recover hysteresis — — ±40 — mV — HYSL low range V Bandgap voltage reference 0.97 1.00 1.03 V — BG t Internal low power oscillator period — factory 900 1000 1100 μs — LPO trimmed 1. Rising thresholds are falling threshold + hysteresis voltage 2.2.3 Voltage and current operating behaviors Table 7. Voltage and current operating behaviors Symbol Description Min. Max. Unit Notes V Output high voltage — Normal drive pad (except 1, 2 OH RESET) V – 0.5 — V • 2.7 V ≤ V ≤ 3.6 V, I = –5 mA DD DD OH V – 0.5 — V • 1.71 V ≤ V ≤ 2.7 V, I = –1.5 mA DD DD OH V Output high voltage — High drive pad (except 1, 2 OH RESET) V – 0.5 — V • 2.7 V ≤ V ≤ 3.6 V, I = –18 mA DD DD OH V – 0.5 — V • 1.71 V ≤ V ≤ 2.7 V, I = –6 mA DD DD OH I Output high current total for all ports — 100 mA — OHT V Output low voltage — Normal drive pad 1 OL • 2.7 V ≤ V ≤ 3.6 V, I = 5 mA DD OL — 0.5 V • 1.71 V ≤ V ≤ 2.7 V, I = 1.5 mA DD OL — 0.5 V Table continues on the next page... 8 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

General Table 7. Voltage and current operating behaviors (continued) Symbol Description Min. Max. Unit Notes V Output low voltage — High drive pad 1 OL • 2.7 V ≤ V ≤ 3.6 V, I = 18 mA DD OL — 0.5 V • 1.71 V ≤ V ≤ 2.7 V, I = 6 mA DD OL — 0.5 V I Output low current total for all ports — 100 mA — OLT I Input leakage current (per pin) for full temperature — 1 μA 3 IN range I Input leakage current (per pin) at 25 °C — 0.025 μA 3 IN I Input leakage current (total all pins) for full — 65 μA 3 IN temperature range I Hi-Z (off-state) leakage current (per pin) — 1 μA — OZ R Internal pullup resistors 20 50 kΩ 4 PU R Internal pulldown resistors 20 50 kΩ 5 PD 1. PTB0, PTB1, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only. 2. The reset pin only contains an active pull down device when configured as the RESET signal or as a GPIO. When configured as a GPIO output, it acts as a pseudo open drain output. 3. Measured at V = 3.6 V DD 4. Measured at V supply voltage = V min and Vinput = V DD DD SS 5. Measured at VDD supply voltage = VDD min and Vinput = VDD 2.2.4 Power mode transition operating behaviors All specifications except t and VLLSx→RUN recovery times in the following POR table assume this clock configuration: • CPU and system clocks = 48 MHz • Bus and flash clock = 24 MHz • FEI clock mode POR and VLLSx→RUN recovery use FEI clock mode at the default CPU and system frequency of 21 MHz, and a bus and flash clock frequency of 10.5 MHz. Table 8. Power mode transition operating behaviors Symbol Description Min. Typ. Max. Unit t After a POR event, amount of time from the — — 300 μs 1 POR point V reaches 1.8 V to execution of the first DD instruction across the operating temperature range of the chip. • VLLS0 → RUN — 95 115 μs Table continues on the next page... Kinetis KL15 Sub-Family, Rev5 08/2014. 9 Freescale Semiconductor, Inc.

General Table 8. Power mode transition operating behaviors (continued) Symbol Description Min. Typ. Max. Unit • VLLS1 → RUN — 93 115 μs • VLLS3 → RUN — 42 53 μs • LLS → RUN — 4 4.6 μs • VLPS → RUN — 4 4.4 μs • STOP → RUN — 4 4.4 μs 1. Normal boot (FTFA_FOPT[LPBOOT]=11). 2.2.5 Power consumption operating behaviors The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma). Table 9. Power consumption operating behaviors Symbol Description Temp. Typ. Max Unit Note I Analog supply current — — See note mA 1 DDA I Run mode current in compute operation — 6.4 — mA 2 DD_RUNCO_ CM - 48 MHz core / 24 MHz flash/ bus disabled, LPTMR running using 4 MHz internal reference clock, CoreMark® benchmark code executing from flash, at 3.0 V I Run mode current in compute operation — 3.9 4.8 mA 3 DD_RUNCO - 48 MHz core / 24 MHz flash / bus clock disabled, code of while(1) loop executing from flash, at 3.0 V I Run mode current - 48 MHz core / 24 — 5 5.9 mA 3 DD_RUN MHz bus and flash, all peripheral clocks disabled, code executing from flash, at 3.0 V I Run mode current - 48 MHz core / 24 at 25 °C 6.2 6.5 mA 3, 4 DD_RUN MHz bus and flash, all peripheral clocks at 125 °C 6.8 7.1 mA enabled, code executing from flash, at 3.0 V Table continues on the next page... 10 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

General Table 9. Power consumption operating behaviors (continued) Symbol Description Temp. Typ. Max Unit Note I Wait mode current - core disabled / 48 — 3.1 3.8 mA 3 DD_WAIT MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V I Wait mode current - core disabled / 24 — 2.4 3.2 mA 3 DD_WAIT MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled • at 3.0 V I Stop mode current with partial stop 2 — 1.6 2 mA 3 DD_PSTOP2 clocking option - core and system disabled / 10.5 MHz bus, at 3.0 V I Very-low-power run mode current in — 777 — µA 5 DD_VLPRCO _CM compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, LPTMR running with 4 MHz internal reference clock, CoreMark benchmark code executing from flash, at 3.0 V I Very low power run mode current in — 171 420 µA 6 DD_VLPRCO compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, code executing from flash, at 3.0 V I Very low power run mode current - 4 — 204 449 µA 6 DD_VLPR MHz core / 0.8 MHz bus and flash, all peripheral clocks disabled, code executing from flash, at 3.0 V I Very low power run mode current - 4 — 262 509 µA 4, 6 DD_VLPR MHz core / 0.8 MHz bus and flash, all peripheral clocks enabled, code executing from flash, at 3.0 V I Very low power wait mode current - — 123 366 µA 6 DD_VLPW core disabled / 4 MHz system / 0.8 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V I Stop mode current at 3.0 V at 25 °C 319 343 µA — DD_STOP at 50 °C 333 365 µA at 70 °C 353 400 µA at 85 °C 380 450 µA at 105 °C 444 572 µA I Very-low-power stop mode current at at 25 °C 3.75 8.46 µA — DD_VLPS 3.0 V at 50 °C 6.66 13.41 µA at 70 °C 12.9 25.71 µA at 85 °C 22.7 44.06 µA at 105 °C 48.4 90.1 µA I Low leakage stop mode current at 3.0 at 25 °C 1.68 2.09 µA — DD_LLS V at 50 °C 3.05 4.04 µA Table continues on the next page... Kinetis KL15 Sub-Family, Rev5 08/2014. 11 Freescale Semiconductor, Inc.

General Table 9. Power consumption operating behaviors (continued) Symbol Description Temp. Typ. Max Unit Note at 70 °C 5.71 7.75 µA at 85 °C 10 13.54 µA at 105 °C 22.4 30.41 µA I Very low-leakage stop mode 3 current at 25 °C 1.22 1.6 µA — DD_VLLS3 at 3.0 V at 50 °C 2.25 2.31 µA at 70 °C 4.21 5.44 µA at 85 °C 7.37 9.44 µA at 105 °C 16.6 21.76 µA I Very low-leakage stop mode 1 current at 25 °C 0.58 0.94 µA — DD_VLLS1 at 3.0 V at 50 °C 1.26 1.31 µA at 70 °C 2.53 3.33 µA at 85 °C 4.74 6.1 µA at 105 °C 11.4 15.27 µA I Very low-leakage stop mode 0 current at 25 °C 0.31 0.65 µA — DD_VLLS0 (SMC_STOPCTRL[PORPO] = 0) at 3.0 at 50 °C 0.99 1.43 µA V at 70 °C 2.25 3.01 µA at 85 °C 4.46 5.83 µA at 105 °C 11.13 14.99 µA I Very low-leakage stop mode 0 current at 25 °C 0.12 0.47 µA 7 DD_VLLS0 (SMC_STOPCTRL[PORPO] = 1) at 3.0 at 50 °C 0.8 1.24 µA V at 70 °C 2.06 2.81 µA at 85 °C 4.27 5.62 µA at 105 °C 10.93 14.78 µA 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. MCG configured for PEE mode. CoreMark benchmark compiled using Keil 4.54 with optimization level 3, optimized for time. 3. MCG configured for FEI mode. 4. Incremental current consumption from peripheral activity is not included. 5. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for balanced. 6. MCG configured for BLPI mode. 7. No brownout. Table 10. Low power mode peripheral adders — typical value Symbol Description Temperature (°C) Unit -40 25 50 70 85 105 I 4 MHz internal reference clock (IRC) adder. 56 56 56 56 56 56 µA IREFSTEN4MHz Measured by entering STOP or VLPS mode with 4 MHz IRC enabled. Table continues on the next page... 12 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

General Table 10. Low power mode peripheral adders — typical value (continued) Symbol Description Temperature (°C) Unit -40 25 50 70 85 105 I 32 kHz internal reference clock (IRC) adder. 52 52 52 52 52 52 µA IREFSTEN32KHz Measured by entering STOP mode with the 32 kHz IRC enabled. I External 4 MHz crystal clock adder. 206 228 237 245 251 258 µA EREFSTEN4MHz Measured by entering STOP or VLPS mode with the crystal enabled. I External 32 kHz crystal clock VLLS1 440 490 540 560 570 580 nA EREFSTEN32KHz adder by means of the VLLS3 440 490 540 560 570 580 OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured LLS 490 490 540 560 570 680 by entering all modes with the VLPS 510 560 560 560 610 680 crystal enabled. STOP 510 560 560 560 610 680 I CMP peripheral adder measured by placing 22 22 22 22 22 22 µA CMP the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption. I RTC peripheral adder measured by placing 432 357 388 475 532 810 nA RTC the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption. I UART peripheral adder MCGIRCLK 66 66 66 66 66 66 µA UART measured by placing the (4 MHz device in STOP or VLPS internal mode with selected clock reference source waiting for RX data at clock) 115200 baud rate. Includes OSCERCLK 214 237 246 254 260 268 selected clock source power (4 MHz consumption. external crystal) I TPM peripheral adder MCGIRCLK 86 86 86 86 86 86 µA TPM measured by placing the (4 MHz device in STOP or VLPS internal mode with selected clock reference source configured for output clock) compare generating 100 Hz OSCERCLK 235 256 265 274 280 287 clock signal. No load is (4 MHz placed on the I/O generating external the clock signal. Includes crystal) selected clock source and I/O switching currents. I Bandgap adder when BGEN bit is set and 45 45 45 45 45 45 µA BG device is placed in VLPx, LLS, or VLLSx mode. I ADC peripheral adder combining the 366 366 366 366 366 366 µA ADC measured values at V and V by placing DD DDA Kinetis KL15 Sub-Family, Rev5 08/2014. 13 Freescale Semiconductor, Inc.

General Table 10. Low power mode peripheral adders — typical value Symbol Description Temperature (°C) Unit -40 25 50 70 85 105 the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions. 2.2.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • MCG in FBE for run mode, and BLPE for VLPR mode • No GPIOs toggled • Code execution from flash with cache enabled • For the ALLOFF curve, all peripheral clocks are disabled except FTFA Run Mode Current Vs Core Frequency Temperature = 25, V = 3, CACHE = Enable, Code Residence = Flash, Clocking Mode = FBE DD 8.00E-03 7.00E-03 6.00E-03 A) (D D 5.00E-03 V All Peripheral CLK Gates n o n o pti 4.00E-03 All Off m u s All On n o C 3.00E-03 nt e urr C 2.00E-03 1.00E-03 000.00E+00 '1-1 '1-1 '1-1 '1-1 '1-1 '1-1 '1-1 '1-2 CLK Ratio Flash-Core 1 2 3 4 6 12 24 48 Core Freq (MHz) Figure 3. Run mode supply current vs. core frequency 14 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

General VLPR Mode Current Vs Core Frequency Temperature = 25, V D D = 3, CACHE = Enable, Code Residence = Flash, Clocking Mode = BLPE 400.00E-06 350.00E-06 A) 300.00E-06 (D D V n n o 250.00E-06 o mpti All Peripheral CLK Gates u s 200.00E-06 n o All Off C nt All On e urr 150.00E-06 C 100.00E-06 50.00E-06 000.00E+00 CLK Ratio '1-1 '1-2 '1-2 '1-4 Flash-Core 1 2 4 Core Freq (MHz) Figure 4. VLPR mode current vs. core frequency 2.2.6 EMC radiated emissions operating behaviors Table 11. EMC radiated emissions operating behaviors for 64-pin LQFP package Symbol Description Frequency Typ. Unit Notes band (MHz) V Radiated emissions voltage, band 1 0.15–50 13 dBμV 1, 2 RE1 V Radiated emissions voltage, band 2 50–150 15 dBμV RE2 V Radiated emissions voltage, band 3 150–500 12 dBμV RE3 V Radiated emissions voltage, band 4 500–1000 7 dBμV RE4 V IEC level 0.15–1000 M — 2, 3 RE_IEC 1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic Kinetis KL15 Sub-Family, Rev5 08/2014. 15 Freescale Semiconductor, Inc.

General application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. 2. V = 3.3 V, T = 25 °C, f = 8 MHz (crystal), f = 48 MHz, f = 48 MHz DD A OSC SYS BUS 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method 2.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.freescale.com. 2. Perform a keyword search for “EMC design.” 2.2.8 Capacitance attributes Table 12. Capacitance attributes Symbol Description Min. Max. Unit C Input capacitance — 7 pF IN 2.3 Switching specifications 2.3.1 Device clock specifications Table 13. Device clock specifications Symbol Description Min. Max. Unit Normal run mode f System and core clock — 48 MHz SYS f Bus clock — 24 MHz BUS f Flash clock — 24 MHz FLASH f LPTMR clock — 24 MHz LPTMR VLPR and VLPS modes1 f System and core clock — 4 MHz SYS f Bus clock — 1 MHz BUS f Flash clock — 1 MHz FLASH f LPTMR clock2 — 24 MHz LPTMR f External reference clock — 16 MHz ERCLK Table continues on the next page... 16 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

General Table 13. Device clock specifications (continued) Symbol Description Min. Max. Unit f LPTMR external reference clock — 16 MHz LPTMR_ERCLK f Oscillator crystal or resonator frequency — high frequency — 16 MHz osc_hi_2 mode (high range) (MCG_C2[RANGE]=1x) f TPM asynchronous clock — 8 MHz TPM f UART0 asynchronous clock — 8 MHz UART0 1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR. 2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin. 2.3.2 General switching specifications These general-purpose specifications apply to all signals configured for GPIO and UART signals. Table 14. General switching specifications Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) 1.5 — Bus clock 1 — Synchronous path cycles External RESET and NMI pin interrupt pulse width — 100 — ns 2 Asynchronous path GPIO pin interrupt pulse width — Asynchronous path 16 — ns 2 Port rise and fall time — 36 ns 3 1. The greater synchronous and asynchronous timing must be met. 2. This is the shortest pulse that is guaranteed to be recognized. 3. 75 pF load 2.4 Thermal specifications 2.4.1 Thermal operating requirements Table 15. Thermal operating requirements Symbol Description Min. Max. Unit T Die junction temperature –40 125 °C J T Ambient temperature –40 105 °C A Kinetis KL15 Sub-Family, Rev5 08/2014. 17 Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors 2.4.2 Thermal attributes Table 16. Thermal attributes Board type Symbol Description 80 64 48 QFN 32 QFN Unit Notes LQFP LQFP Single-layer (1S) R Thermal resistance, junction 70 71 84 92 °C/W 1 θJA to ambient (natural convection) Four-layer (2s2p) R Thermal resistance, junction 53 52 28 33 °C/W θJA to ambient (natural convection) Single-layer (1S) R Thermal resistance, junction — 59 69 75 °C/W θJMA to ambient (200 ft./min. air speed) Four-layer (2s2p) R Thermal resistance, junction — 46 22 27 °C/W θJMA to ambient (200 ft./min. air speed) — R Thermal resistance, junction 34 34 10 12 °C/W 2 θJB to board — R Thermal resistance, junction 15 20 2.0 1.8 °C/W 3 θJC to case — Ψ Thermal characterization 0.6 5 5.0 8 °C/W 4 JT parameter, junction to package top outside center (natural convection) 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air). 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. 3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). 3 Peripheral operating requirements and behaviors 3.1 Core modules 18 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors 3.1.1 SWD electricals Table 17. SWD full voltage range electricals Symbol Description Min. Max. Unit Operating voltage 1.71 3.6 V J1 SWD_CLK frequency of operation • Serial wire debug 0 25 MHz J2 SWD_CLK cycle period 1/J1 — ns J3 SWD_CLK clock pulse width • Serial wire debug 20 — ns J4 SWD_CLK rise and fall times — 3 ns J9 SWD_DIO input data setup time to SWD_CLK rise 10 — ns J10 SWD_DIO input data hold time after SWD_CLK rise 0 — ns J11 SWD_CLK high to SWD_DIO data valid — 32 ns J12 SWD_CLK high to SWD_DIO high-Z 5 — ns J2 J3 J3 SWD_CLK (input) J4 J4 Figure 5. Serial wire clock input timing Kinetis KL15 Sub-Family, Rev5 08/2014. 19 Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors SWD_CLK J9 J10 SWD_DIO Input data valid J11 SWD_DIO Output data valid J12 SWD_DIO J11 SWD_DIO Output data valid Figure 6. Serial wire data timing 3.2 System modules There are no specifications necessary for the device's system modules. 3.3 Clock modules 3.3.1 MCG specifications Table 18. MCG specifications Symbol Description Min. Typ. Max. Unit Notes f Internal reference frequency (slow clock) — — 32.768 — kHz ints_ft factory trimmed at nominal V and 25 °C DD f Internal reference frequency (slow clock) — 31.25 — 39.0625 kHz ints_t user trimmed Δ Resolution of trimmed average DCO output — ± 0.3 ± 0.6 %f 1 fdco_res_t dco frequency at fixed voltage and temperature — using C3[SCTRIM] and C4[SCFTRIM] Table continues on the next page... 20 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors Table 18. MCG specifications (continued) Symbol Description Min. Typ. Max. Unit Notes Δf Total deviation of trimmed average DCO output — +0.5/-0.7 ± 3 %f 1, 2 dco_t dco frequency over voltage and temperature Δf Total deviation of trimmed average DCO output — ± 0.4 ± 1.5 %f 1, 2 dco_t dco frequency over fixed voltage and temperature range of 0–70 °C f Internal reference frequency (fast clock) — — 4 — MHz intf_ft factory trimmed at nominal V and 25 °C DD Δf Frequency deviation of internal reference clock — +1/-2 ± 3 %f 2 intf_ft intf_ft (fast clock) over temperature and voltage — factory trimmed at nominal V and 25 °C DD f Internal reference frequency (fast clock) — user 3 — 5 MHz intf_t trimmed at nominal V and 25 °C DD f Loss of external clock minimum frequency — (3/5) x — — kHz loc_low RANGE = 00 f ints_t f Loss of external clock minimum frequency — (16/5) x — — kHz loc_high RANGE = 01, 10, or 11 f ints_t FLL f FLL reference frequency range 31.25 — 39.0625 kHz fll_ref f DCO output Low range (DRS = 00) 20 20.97 25 MHz 3, 4 dco frequency range 640 × f fll_ref Mid range (DRS = 01) 40 41.94 48 MHz 1280 × f fll_ref f DCO output Low range (DRS = 00) — 23.99 — MHz 5, 6 dco_t_DMX3 frequency 2 732 × f fll_ref Mid range (DRS = 01) — 47.97 — MHz 1464 × f fll_ref J FLL period jitter — 180 — ps 7 cyc_fll • f = 48 MHz VCO t FLL target frequency acquisition time — — 1 ms 8 fll_acquire PLL f VCO operating frequency 48.0 — 100 MHz vco I PLL operating current 9 pll — 1060 — µA • PLL at 96 MHz (f = 8 MHz, f = osc_hi_1 pll_ref 2 MHz, VDIV multiplier = 48) I PLL operating current 9 pll — 600 — µA • PLL at 48 MHz (f = 8 MHz, f = osc_hi_1 pll_ref 2 MHz, VDIV multiplier = 24) f PLL reference frequency range 2.0 — 4.0 MHz pll_ref J PLL period jitter (RMS) 10 cyc_pll • f = 48 MHz — 120 — ps vco • f = 100 MHz — 50 — ps vco Table continues on the next page... Kinetis KL15 Sub-Family, Rev5 08/2014. 21 Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors Table 18. MCG specifications (continued) Symbol Description Min. Typ. Max. Unit Notes J PLL accumulated jitter over 1µs (RMS) 10 acc_pll • f = 48 MHz — 1350 — ps vco • f = 100 MHz — 600 — ps vco D Lock entry frequency tolerance ± 1.49 — ± 2.98 % lock D Lock exit frequency tolerance ± 4.47 — ± 5.97 % unl t Lock detector detection time — — 150 × 10-6 s 11 pll_lock + 1075(1/ f ) pll_ref 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. The deviation is relative to the factory trimmed frequency at nominal V and 25 °C, f . DD ints_ft 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0. 4. The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation (Δf ) over voltage and temperature must be considered. dco_t 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1. 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 7. This specification is based on standard deviation (RMS) of period or frequency. 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 9. Excludes any oscillator currents that are also consuming power while PLL is in operation. 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 3.3.2 Oscillator electrical specifications 3.3.2.1 Oscillator DC electrical specifications Table 19. Oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit Notes V Supply voltage 1.71 — 3.6 V DD I Supply current — low-power mode (HGO=0) 1 DDOSC • 32 kHz — 500 — nA • 4 MHz — 200 — μA • 8 MHz (RANGE=01) — 300 — μA • 16 MHz — 950 — μA — 1.2 — mA Table continues on the next page... 22 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors Table 19. Oscillator DC electrical specifications (continued) Symbol Description Min. Typ. Max. Unit Notes • 24 MHz — 1.5 — mA • 32 MHz I Supply current — high gain mode (HGO=1) 1 DDOSC • 32 kHz — 25 — μA • 4 MHz — 400 — μA • 8 MHz (RANGE=01) — 500 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA C EXTAL load capacitance — — — 2, 3 x C XTAL load capacitance — — — 2, 3 y R Feedback resistor — low-frequency, low-power — — — MΩ 2, 4 F mode (HGO=0) Feedback resistor — low-frequency, high-gain — 10 — MΩ mode (HGO=1) Feedback resistor — high-frequency, low-power — — — MΩ mode (HGO=0) Feedback resistor — high-frequency, high-gain — 1 — MΩ mode (HGO=1) R Series resistor — low-frequency, low-power — — — kΩ S mode (HGO=0) Series resistor — low-frequency, high-gain — 200 — kΩ mode (HGO=1) Series resistor — high-frequency, low-power — — — kΩ mode (HGO=0) Series resistor — high-frequency, high-gain mode (HGO=1) — 0 — kΩ V 5 Peak-to-peak amplitude of oscillation (oscillator — 0.6 — V pp mode) — low-frequency, low-power mode (HGO=0) Peak-to-peak amplitude of oscillation (oscillator — V — V DD mode) — low-frequency, high-gain mode (HGO=1) Peak-to-peak amplitude of oscillation (oscillator — 0.6 — V mode) — high-frequency, low-power mode (HGO=0) Peak-to-peak amplitude of oscillation (oscillator — V — V DD mode) — high-frequency, high-gain mode (HGO=1) 1. V =3.3 V, Temperature =25 °C DD 2. See crystal or resonator manufacturer's recommendation Kinetis KL15 Sub-Family, Rev5 08/2014. 23 Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors 3. C ,C can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For x y all other cases external capacitors must be used. 4. When low power mode is selected, R is integrated and must not be attached externally. F 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices. 3.3.2.2 Oscillator frequency specifications Table 20. Oscillator frequency specifications Symbol Description Min. Typ. Max. Unit Notes f Oscillator crystal or resonator frequency — low- 32 — 40 kHz osc_lo frequency mode (MCG_C2[RANGE]=00) f Oscillator crystal or resonator frequency — high- 3 — 8 MHz osc_hi_1 frequency mode (low range) (MCG_C2[RANGE]=01) f Oscillator crystal or resonator frequency — high 8 — 32 MHz osc_hi_2 frequency mode (high range) (MCG_C2[RANGE]=1x) f Input clock frequency (external clock mode) — — 48 MHz 1, 2 ec_extal t Input clock duty cycle (external clock mode) 40 50 60 % dc_extal t Crystal startup time — 32 kHz low-frequency, — 750 — ms 3, 4 cst low-power mode (HGO=0) Crystal startup time — 32 kHz low-frequency, — 250 — ms high-gain mode (HGO=1) Crystal startup time — 8 MHz high-frequency — 0.6 — ms (MCG_C2[RANGE]=01), low-power mode (HGO=0) Crystal startup time — 8 MHz high-frequency — 1 — ms (MCG_C2[RANGE]=01), high-gain mode (HGO=1) 1. Other frequency limits may apply when external clock is being used as a reference for the FLL 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency. 3. Proper PC board layout procedures must be followed to achieve specifications. 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. 3.4 Memories and memory interfaces 3.4.1 Flash electrical specifications This section describes the electrical characteristics of the flash memory module. 24 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors 3.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 21. NVM program/erase timing specifications Symbol Description Min. Typ. Max. Unit Notes t Longword Program high-voltage time — 7.5 18 μs — hvpgm4 t Sector Erase high-voltage time — 13 113 ms 1 hversscr t Erase All high-voltage time — 52 452 ms 1 hversall 1. Maximum time based on expectations at cycling end-of-life. 3.4.1.2 Flash timing specifications — commands Table 22. Flash command timing specifications Symbol Description Min. Typ. Max. Unit Notes t Read 1s Section execution time (flash sector) — — 60 μs 1 rd1sec1k t Program Check execution time — — 45 μs 1 pgmchk t Read Resource execution time — — 30 μs 1 rdrsrc t Program Longword execution time — 65 145 μs — pgm4 t Erase Flash Sector execution time — 14 114 ms 2 ersscr t Read 1s All Blocks execution time — — 1.8 ms — rd1all t Read Once execution time — — 25 μs 1 rdonce t Program Once execution time — 65 — μs — pgmonce t Erase All Blocks execution time — 88 650 ms 2 ersall t Verify Backdoor Access Key execution time — — 30 μs 1 vfykey 1. Assumes 25 MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 3.4.1.3 Flash high voltage current behaviors Table 23. Flash high voltage current behaviors Symbol Description Min. Typ. Max. Unit I Average current adder during high voltage — 2.5 6.0 mA DD_PGM flash programming operation I Average current adder during high voltage — 1.5 4.0 mA DD_ERS flash erase operation Kinetis KL15 Sub-Family, Rev5 08/2014. 25 Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors 3.4.1.4 Reliability specifications Table 24. NVM reliability specifications Symbol Description Min. Typ.1 Max. Unit Notes Program Flash t Data retention after up to 10 K cycles 5 50 — years — nvmretp10k t Data retention after up to 1 K cycles 20 100 — years — nvmretp1k n Cycling endurance 10 K 50 K — cycles 2 nvmcycp 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619. 2. Cycling endurance represents number of program/erase cycles at -40 °C ≤ T ≤ 125 °C. j 3.5 Security and integrity modules There are no specifications necessary for the device's security and integrity modules. 3.6 Analog 3.6.1 ADC electrical specifications The 16-bit accuracy specifications listed in Table 25 and Table 26 are achievable on the differential pins ADCx_DP0, ADCx_DM0. All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications. 3.6.1.1 16-bit ADC operating conditions Table 25. 16-bit ADC operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit Notes V Supply voltage Absolute 1.71 — 3.6 V — DDA ΔV Supply voltage Delta to V (V – V ) -100 0 +100 mV 2 DDA DD DD DDA ΔV Ground voltage Delta to V (V – V ) -100 0 +100 mV 2 SSA SS SS SSA V ADC reference 1.13 V V V 3 REFH DDA DDA voltage high V ADC reference V V V V 3 REFL SSA SSA SSA voltage low Table continues on the next page... 26 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors Table 25. 16-bit ADC operating conditions (continued) Symbol Description Conditions Min. Typ.1 Max. Unit Notes V Input voltage • 16-bit differential mode VREFL — 31/32 * V — ADIN VREFH • All other modes VREFL — VREFH C Input • 16-bit mode — 8 10 pF — ADIN capacitance • 8-bit / 10-bit / 12-bit — 4 5 modes R Input series — 2 5 kΩ — ADIN resistance R Analog source 13-bit / 12-bit modes 4 AS resistance f < 4 MHz — — 5 kΩ (external) ADCK f ADC conversion ≤ 13-bit mode 1.0 — 18.0 MHz 5 ADCK clock frequency f ADC conversion 16-bit mode 2.0 — 12.0 MHz 5 ADCK clock frequency C ADC conversion ≤ 13-bit modes 6 rate rate No ADC hardware averaging 20.000 — 818.330 Ksps Continuous conversions enabled, subsequent conversion time C ADC conversion 16-bit mode 6 rate rate No ADC hardware averaging 37.037 — 461.467 Ksps Continuous conversions enabled, subsequent conversion time 1. Typical values assume V = 3.0 V, Temp = 25 °C, f = 1.0 MHz, unless otherwise stated. Typical values are for DDA ADCK reference only, and are not tested in production. 2. DC potential difference. 3. For packages without dedicated VREFH and VREFL pins, V is internally tied to V , and V is internally tied REFH DDA REFL to V . SSA 4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R /C time constant should be kept to < 1 ns. AS AS 5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear. 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool. Kinetis KL15 Sub-Family, Rev5 08/2014. 27 Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT ZADIN SIMPLIFIED Pad ZAS leakage CHANNEL SELECT due to CIRCUIT ADC SAR RAS input RADIN ENGINE protection VADIN VAS CAS RADIN INPUT PIN RADIN INPUT PIN RADIN INPUT PIN CADIN Figure 7. ADC input impedance equivalency diagram 3.6.1.2 16-bit ADC electrical characteristics Table 26. 16-bit ADC characteristics (V = V , V = V ) REFH DDA REFL SSA Symbol Description Conditions1 Min. Typ.2 Max. Unit Notes I Supply current 0.215 — 1.7 mA 3 DDA_ADC ADC • ADLPC = 1, ADHSC = 1.2 2.4 3.9 MHz t = ADACK asynchronous 0 1/f 2.4 4.0 6.1 MHz ADACK clock source • ADLPC = 1, ADHSC = 3.0 5.2 7.3 MHz 1 f 4.4 6.2 9.5 MHz ADACK • ADLPC = 0, ADHSC = 0 • ADLPC = 0, ADHSC = 1 Sample Time See Reference Manual chapter for sample times TUE Total unadjusted • 12-bit modes — ±4 ±6.8 LSB4 5 error • <12-bit modes — ±1.4 ±2.1 DNL Differential non- • 12-bit modes — ±0.7 –1.1 to LSB4 5 linearity +1.9 • <12-bit modes — ±0.2 –0.3 to 0.5 Table continues on the next page... 28 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors Table 26. 16-bit ADC characteristics (V = V , V = V ) (continued) REFH DDA REFL SSA Symbol Description Conditions1 Min. Typ.2 Max. Unit Notes INL Integral non- • 12-bit modes — ±1.0 –2.7 to LSB4 5 linearity +1.9 • <12-bit modes — ±0.5 –0.7 to +0.5 E Full-scale error • 12-bit modes — –4 –5.4 LSB4 V = FS ADIN V 5 • <12-bit modes — –1.4 –1.8 DDA E Quantization • 16-bit modes — –1 to 0 — LSB4 Q error • ≤13-bit modes — — ±0.5 ENOB Effective number 16-bit differential mode 6 12.8 14.5 — bits of bits • Avg = 32 11.9 13.8 — bits • Avg = 4 12.2 13.9 — bits 16-bit single-ended mode 11.4 13.1 — bits • Avg = 32 • Avg = 4 Signal-to-noise See ENOB SINAD 6.02 × ENOB + 1.76 dB plus distortion THD Total harmonic 16-bit differential mode 7 — -94 — dB distortion • Avg = 32 — -85 — dB 16-bit single-ended mode • Avg = 32 SFDR Spurious free 16-bit differential mode 7 82 95 — dB dynamic range • Avg = 32 78 90 — dB 16-bit single-ended mode • Avg = 32 E Input leakage I × R mV I = IL In AS In error leakage current (refer to the MCU's voltage and current operating ratings) Temp sensor Across the full temperature 1.55 1.62 1.69 mV/°C 8 slope range of the device V Temp sensor 25 °C 706 716 726 mV 8 TEMP25 voltage Kinetis KL15 Sub-Family, Rev5 08/2014. 29 Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors 1. All accuracy numbers assume the ADC is calibrated with V = V REFH DDA 2. Typical values assume V = 3.0 V, Temp = 25 °C, f = 2.0 MHz unless otherwise stated. Typical values are for DDA ADCK reference only and are not tested in production. 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed. 4. 1 LSB = (V - V )/2N REFH REFL 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11) 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz. 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz. 8. ADC conversion clock < 3 MHz Typical ADC 16-bit Differential ENOB vs ADC Clock 100Hz, 90% FS Sine Input 15.00 14.70 14.40 14.10 13.80 B O 13.50 N E 13.20 12.90 12.60 Hardware Averaging Disabled 12.30 Averaging of 4 samples Averaging of 8 samples Averaging of 32 samples 12.00 1 2 3 4 5 6 7 8 9 10 11 12 ADC Clock Frequency (MHz) Figure 8. Typical ENOB vs. ADC_CLK for 16-bit differential mode Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input 14.00 13.75 13.50 13.25 13.00 12.75 B O 12.50 N E 12.25 12.00 11.75 11.50 11.25 Averaging of 4 samples Averaging of 32 samples 11.00 1 2 3 4 5 6 7 8 9 10 11 12 ADC Clock Frequency (MHz) Figure 9. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode 30 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors 3.6.2 CMP and 6-bit DAC electrical specifications Table 27. Comparator and 6-bit DAC electrical specifications Symbol Description Min. Typ. Max. Unit V Supply voltage 1.71 — 3.6 V DD I Supply current, high-speed mode (EN = 1, PMODE — — 200 μA DDHS = 1) I Supply current, low-speed mode (EN = 1, PMODE = — — 20 μA DDLS 0) V Analog input voltage V — V V AIN SS DD V Analog input offset voltage — — 20 mV AIO V Analog comparator hysteresis1 H • CR0[HYSTCTR] = 00 — 5 — mV • CR0[HYSTCTR] = 01 — 10 — mV • CR0[HYSTCTR] = 10 — 20 — mV • CR0[HYSTCTR] = 11 — 30 — mV V Output high V – 0.5 — — V CMPOh DD V Output low — — 0.5 V CMPOl t Propagation delay, high-speed mode (EN = 1, 20 50 200 ns DHS PMODE = 1) t Propagation delay, low-speed mode (EN = 1, 80 250 600 ns DLS PMODE = 0) Analog comparator initialization delay2 — — 40 μs I 6-bit DAC current adder (enabled) — 7 — μA DAC6b INL 6-bit DAC integral non-linearity –0.5 — 0.5 LSB3 DNL 6-bit DAC differential non-linearity –0.3 — 0.3 LSB 1. Typical hysteresis is measured with input voltage range limited to 0.7 to V – 0.7 V. DD 2. Comparator initialization delay is defined as the time between software writes to change control inputs (writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level. 3. 1 LSB = V /64 reference Kinetis KL15 Sub-Family, Rev5 08/2014. 31 Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors CMP Hysteresis vs Vinn 90.00E-03 80.00E-03 70.00E-03 V) 60.00E-03 s ( HYSTCTR esi 50.00E-03 Setting er st 0 y 40.00E-03 1 H 2 P 3 M 30.00E-03 C 20.00E-03 10.00E-03 000.00E+00 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 Vinn (V) Figure 1 0. Typical hysteresis vs. Vin level (V = 3.3 V, PMODE = 0) DD CMP Hysteresis vs Vinn 180.00E-03 160.00E-03 140.00E-03 120.00E-03 V) HYSTCTR sis ( 10 0.00E-03 Setting e ster 80.00E-03 01 Hy 2 P 60.00E-03 3 M C 40.00E-03 20.00E-03 000.00E+00 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 -20.00E-03 Vinn (V) Figure 11. Typical hysteresis vs. Vin level (V = 3.3 V, PMODE = 1) DD 3.6.3 12-bit DAC electrical characteristics 32 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors 3.6.3.1 12-bit DAC operating requirements Table 28. 12-bit DAC operating requirements Symbol Desciption Min. Max. Unit Notes V Supply voltage 1.71 3.6 V DDA V Reference voltage 1.13 3.6 V 1 DACR C Output load capacitance — 100 pF 2 L I Output load current — 1 mA L 1. The DAC reference can be selected to be V or V . DDA REFH 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC. 3.6.3.2 12-bit DAC operating behaviors Table 29. 12-bit DAC operating behaviors Symbol Description Min. Typ. Max. Unit Notes I Supply current — low-power mode — — 250 μA DDA_DACL P I Supply current — high-speed mode — — 900 μA DDA_DACH P t Full-scale settling time (0x080 to 0xF7F) — — 100 200 μs 1 DACLP low-power mode t Full-scale settling time (0x080 to 0xF7F) — — 15 30 μs 1 DACHP high-power mode t Code-to-code settling time (0xBF8 to — 0.7 1 μs 1 CCDACLP 0xC08) — low-power mode and high- speed mode V DAC output voltage range low — high- — — 100 mV dacoutl speed mode, no load, DAC set to 0x000 V DAC output voltage range high — high- V — V mV dacouth DACR DACR speed mode, no load, DAC set to 0xFFF −100 INL Integral non-linearity error — high speed — — ±8 LSB 2 mode DNL Differential non-linearity error — V > 2 — — ±1 LSB 3 DACR V DNL Differential non-linearity error — V = — — ±1 LSB 4 DACR VREF_OUT V Offset error — ±0.4 ±0.8 %FSR 5 OFFSET E Gain error — ±0.1 ±0.6 %FSR 5 G PSRR Power supply rejection ratio, V ≥ 2.4 V 60 — 90 dB DDA T Temperature coefficient offset voltage — 3.7 — μV/C 6 CO T Temperature coefficient gain error — 0.000421 — %FSR/C GE Rop Output resistance (load = 3 kΩ) — — 250 Ω SR Slew rate -80h→ F7Fh→ 80h V/μs 1.2 1.7 — Table continues on the next page... Kinetis KL15 Sub-Family, Rev5 08/2014. 33 Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors Table 29. 12-bit DAC operating behaviors (continued) Symbol Description Min. Typ. Max. Unit Notes • High power (SP ) 0.05 0.12 — HP • Low power (SP ) LP BW 3dB bandwidth kHz • High power (SP ) 550 — — HP • Low power (SP ) 40 — — LP 1. Settling within ±1 LSB 2. The INL is measured for 0 + 100 mV to V −100 mV DACR 3. The DNL is measured for 0 + 100 mV to V −100 mV DACR 4. The DNL is measured for 0 + 100 mV to V −100 mV with V > 2.4 V DACR DDA 5. Calculated by a best fit curve from V + 100 mV to V − 100 mV SS DACR 6. V = 3.0 V, reference select set for V (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set DDA DDA to 0x800, temperature range is across the full range of the device 8 6 4 2 B) S L L ( N 0 2 I 1 C A D -2 -4 -6 -8 0 500 1000 1500 2000 2500 3000 3500 4000 Digital Code Figure 12. Typical INL error vs. digital code 34 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors 1.499 1.4985 ge 1.498 a olt V e d o C vel 1.4975 e L d Mi 2 1 C A D 1.497 1.4965 1.496 -40 25 55 85 105 125 Temperature °C Figure 13. Offset at half scale vs. temperature 3.7 Timers See General switching specifications. 3.8 Communication interfaces Kinetis KL15 Sub-Family, Rev5 08/2014. 35 Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors 3.8.1 SPI switching specifications The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V and 80% V thresholds, unless noted, as DD DD well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins. Table 30. SPI master mode timing on slew rate disabled pads Num. Symbol Description Min. Max. Unit Note 1 f Frequency of operation f /2048 f /2 Hz 1 op periph periph 2 t SPSCK period 2 x t 2048 x ns 2 SPSCK periph t periph 3 t Enable lead time 1/2 — t — Lead SPSCK 4 t Enable lag time 1/2 — t — Lag SPSCK 5 t Clock (SPSCK) high or low time t – 30 1024 x ns — WSPSCK periph t periph 6 t Data setup time (inputs) 16 — ns — SU 7 t Data hold time (inputs) 0 — ns — HI 8 t Data valid (after SPSCK edge) — 10 ns — v 9 t Data hold time (outputs) 0 — ns — HO 10 t Rise time input — t – 25 ns — RI periph t Fall time input FI 11 t Rise time output — 25 ns — RO t Fall time output FO 1. For SPI0, f is the bus clock (f ). For SPI1 f is the system clock (f ). periph BUS periph SYS 2. t = 1/f periph periph Table 31. SPI master mode timing on slew rate enabled pads Num. Symbol Description Min. Max. Unit Note 1 f Frequency of operation f /2048 f /2 Hz 1 op periph periph 2 t SPSCK period 2 x t 2048 x ns 2 SPSCK periph t periph 3 t Enable lead time 1/2 — t — Lead SPSCK 4 t Enable lag time 1/2 — t — Lag SPSCK 5 t Clock (SPSCK) high or low time t – 30 1024 x ns — WSPSCK periph t periph 6 t Data setup time (inputs) 96 — ns — SU Table continues on the next page... 36 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors Table 31. SPI master mode timing on slew rate enabled pads (continued) Num. Symbol Description Min. Max. Unit Note 7 t Data hold time (inputs) 0 — ns — HI 8 t Data valid (after SPSCK edge) — 52 ns — v 9 t Data hold time (outputs) 0 — ns — HO 10 t Rise time input — t – 25 ns — RI periph t Fall time input FI 11 t Rise time output — 36 ns — RO t Fall time output FO 1. For SPI0, f is the bus clock (f ). For SPI1 f is the system clock (f ). periph BUS periph SYS 2. t = 1/f periph periph SS1 (OUTPUT) 3 2 10 11 4 SPSCK 5 (CPOL=0) (OUTPUT) 5 10 11 SPSCK (CPOL=1) (OUTPUT) 6 7 MISO MSB IN2 BIT 6 . . . 1 LSB IN (INPUT) 8 9 MOSI (OUTPUT) MSB OUT2 BIT 6 . . . 1 LSB OUT 1. If configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 14. SPI master mode timing (CPHA = 0) Kinetis KL15 Sub-Family, Rev5 08/2014. 37 Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors SS1 (OUTPUT) 2 3 10 11 4 SPSCK (CPOL=0) (OUTPUT) 5 5 10 11 SPSCK (CPOL=1) (OUTPUT) 6 7 MISO (INPUT) MSB IN2 BIT 6 . . . 1 LSB IN 8 9 MOSI (OUTPUT) PORT DATA MASTER MSB OUT2 BIT 6 . . . 1 MASTER LSB OUT PORT DATA 1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 15. SPI master mode timing (CPHA = 1) Table 32. SPI slave mode timing on slew rate disabled pads Num. Symbol Description Min. Max. Unit Note 1 f Frequency of operation 0 f /4 Hz 1 op periph 2 t SPSCK period 4 x t — ns 2 SPSCK periph 3 t Enable lead time 1 — t — Lead periph 4 t Enable lag time 1 — t — Lag periph 5 t Clock (SPSCK) high or low time t – 30 — ns — WSPSCK periph 6 t Data setup time (inputs) 2 — ns — SU 7 t Data hold time (inputs) 7 — ns — HI 8 t Slave access time — t ns 3 a periph 9 t Slave MISO disable time — t ns 4 dis periph 10 t Data valid (after SPSCK edge) — 22 ns — v 11 t Data hold time (outputs) 0 — ns — HO 12 t Rise time input — t – 25 ns — RI periph t Fall time input FI 13 t Rise time output — 25 ns — RO t Fall time output FO 1. For SPI0, f is the bus clock (f ). For SPI1 f is the system clock (f ). periph BUS periph SYS 2. t = 1/f periph periph 3. Time to data active from high-impedance state 4. Hold time to high-impedance state 38 <<CLASSIFICATION>> 38 Kinetis KL15 Sub-Family, Rev5 08/2014. <<NDA MESSAGE>> Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors Table 33. SPI slave mode timing on slew rate enabled pads Num. Symbol Description Min. Max. Unit Note 1 f Frequency of operation 0 f /4 Hz 1 op periph 2 t SPSCK period 4 x t — ns 2 SPSCK periph 3 t Enable lead time 1 — t — Lead periph 4 t Enable lag time 1 — t — Lag periph 5 t Clock (SPSCK) high or low time t – 30 — ns — WSPSCK periph 6 t Data setup time (inputs) 2 — ns — SU 7 t Data hold time (inputs) 7 — ns — HI 8 t Slave access time — t ns 3 a periph 9 t Slave MISO disable time — t ns 4 dis periph 10 t Data valid (after SPSCK edge) — 122 ns — v 11 t Data hold time (outputs) 0 — ns — HO 12 t Rise time input — t – 25 ns — RI periph t Fall time input FI 13 t Rise time output — 36 ns — RO t Fall time output FO 1. For SPI0, f is the bus clock (f ). For SPI1 f is the system clock (f ). periph BUS periph SYS 2. t = 1/f periph periph 3. Time to data active from high-impedance state 4. Hold time to high-impedance state SS (INPUT) 2 12 13 4 SPSCK (CPOL=0) (INPUT) 3 5 5 SPSCK 12 13 (CPOL=1) (INPUT) 9 8 10 11 11 MISO see SEE (OUTPUT) note SLAVE MSB BIT 6 . . . 1 SLAVE LSB OUT NOTE 6 7 MOSI (INPUT) MSB IN BIT 6 . . . 1 LSB IN NOTE: Not defined Figure 16. SPI slave mode timing (CPHA = 0) Kinetis KL15 Sub-Family, Rev5 08/2014. 39 Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors SS (INPUT) 2 4 3 12 13 SPSCK (CPOL=0) (INPUT) 5 5 12 13 SPSCK (CPOL=1) (INPUT) 10 11 9 MISO see SLAVE MSB OUT BIT 6 . . . 1 SLAVE LSB OUT (OUTPUT) note 8 6 7 MOSI (INPUT) MSB IN BIT 6 . . . 1 LSB IN NOTE: Not defined Figure 17. SPI slave mode timing (CPHA = 1) 3.8.2 Inter-Integrated Circuit Interface (I2C) timing Table 34. I2C timing Characteristic Symbol Standard Mode Fast Mode Unit Minimum Maximum Minimum Maximum SCL Clock Frequency f 0 100 0 4001 kHz SCL Hold time (repeated) START condition. t ; STA 4 — 0.6 — µs HD After this period, the first clock pulse is generated. LOW period of the SCL clock t 4.7 — 1.3 — µs LOW HIGH period of the SCL clock t 4 — 0.6 — µs HIGH Set-up time for a repeated START t ; STA 4.7 — 0.6 — µs SU condition Data hold time for I2C bus devices t ; DAT 02 3.453 04 0.92 µs HD Data set-up time t ; DAT 2505 — 1003, 6 — ns SU Rise time of SDA and SCL signals t — 1000 20 +0.1C 7 300 ns r b Fall time of SDA and SCL signals t — 300 20 +0.1C 6 300 ns f b Set-up time for STOP condition t ; STO 4 — 0.6 — µs SU Bus free time between STOP and t 4.7 — 1.3 — µs BUF START condition Pulse width of spikes that must be t N/A N/A 0 50 ns SP suppressed by the input filter 1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only achieved when using the High drive pins (see Voltage and current operating behaviors) or when using the Normal drive pins and VDD ≥ 2.7 V 40 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

  Peripheral operating requirements and behaviors 2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines. 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal. 4. Input signal Slew = 10 ns and Output Load = 50 pF 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty. 6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement t ≥ 250 ns SU; DAT must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t rmax + t = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is SU; DAT released. 7. C = total capacitance of the one bus line in pF. b SDA tSU; DAT tf tf tLOW tr tHD; STA tSP tr tBUF SCL HD; STA tSU; STA tSU; STO S t t SR P S HD; DAT HIGH Figure 18. Timing definition for fast and standard mode devices on the I2C bus 3.8.3 UART See General switching specifications. 3.9 Human-machine interfaces (HMI) 3.9.1 TSI electrical specifications Table 35. TSI electrical specifications Symbol Description Min. Typ. Max. Unit TSI_RUNF Fixed power consumption in run mode — 100 — µA TSI_RUNV Variable power consumption in run mode 1.0 — 128 µA (depends on oscillator's current selection) TSI_EN Power consumption in enable mode — 100 — µA TSI_DIS Power consumption in disable mode — 1.2 — µA TSI_TEN TSI analog enable time — 66 — µs TSI_CREF TSI reference capacitor — 1.0 — pF TSI_DVOLT Voltage variation of VP & VM around nominal 0.19 — 1.03 V values Kinetis KL15 Sub-Family, Rev5 08/2014. 41 Freescale Semiconductor, Inc.

Dimensions 4 Dimensions 4.1 Obtaining package dimensions Package dimensions are provided in package drawings. To find a package drawing, go to freescale.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package Then use this document number 32-pin QFN 98ASA00473D 48-pin QFN 98ASA00466D 64-pin LQFP 98ASS23234W 80-pin LQFP 98ASS23174W 5 Pinout 5.1 KL15 Signal Multiplexing and Pin Assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. 80 64 48 32 Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 LQFP LQFP QFN QFN 1 1 — 1 PTE0 DISABLED PTE0 UART1_TX RTC_ CMP0_OUT I2C1_SDA CLKOUT 2 2 — 2 PTE1 DISABLED PTE1 SPI1_MOSI UART1_RX SPI1_MISO I2C1_SCL 3 — — — PTE2 DISABLED PTE2 SPI1_SCK 4 — — — PTE3 DISABLED PTE3 SPI1_MISO SPI1_MOSI 5 — — — PTE4 DISABLED PTE4 SPI1_PCS0 6 — — — PTE5 DISABLED PTE5 7 3 1 — VDD VDD VDD 8 4 2 — VSS VSS VSS 9 5 3 3 PTE16 ADC0_DP1/ ADC0_DP1/ PTE16 SPI0_PCS0 UART2_TX TPM_ ADC0_SE1 ADC0_SE1 CLKIN0 42 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Pinout 80 64 48 32 Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 LQFP LQFP QFN QFN 10 6 4 4 PTE17 ADC0_DM1/ ADC0_DM1/ PTE17 SPI0_SCK UART2_RX TPM_ LPTMR0_ ADC0_SE5a ADC0_SE5a CLKIN1 ALT3 11 7 5 5 PTE18 ADC0_DP2/ ADC0_DP2/ PTE18 SPI0_MOSI I2C0_SDA SPI0_MISO ADC0_SE2 ADC0_SE2 12 8 6 6 PTE19 ADC0_DM2/ ADC0_DM2/ PTE19 SPI0_MISO I2C0_SCL SPI0_MOSI ADC0_SE6a ADC0_SE6a 13 9 7 — PTE20 ADC0_DP0/ ADC0_DP0/ PTE20 TPM1_CH0 UART0_TX ADC0_SE0 ADC0_SE0 14 10 8 — PTE21 ADC0_DM0/ ADC0_DM0/ PTE21 TPM1_CH1 UART0_RX ADC0_SE4a ADC0_SE4a 15 11 — — PTE22 ADC0_DP3/ ADC0_DP3/ PTE22 TPM2_CH0 UART2_TX ADC0_SE3 ADC0_SE3 16 12 — — PTE23 ADC0_DM3/ ADC0_DM3/ PTE23 TPM2_CH1 UART2_RX ADC0_SE7a ADC0_SE7a 17 13 9 7 VDDA VDDA VDDA 18 14 10 — VREFH VREFH VREFH 19 15 11 — VREFL VREFL VREFL 20 16 12 8 VSSA VSSA VSSA 21 17 13 — PTE29 CMP0_IN5/ CMP0_IN5/ PTE29 TPM0_CH2 TPM_ ADC0_SE4b ADC0_SE4b CLKIN0 22 18 14 9 PTE30 DAC0_OUT/ DAC0_OUT/ PTE30 TPM0_CH3 TPM_ ADC0_SE23/ ADC0_SE23/ CLKIN1 CMP0_IN4 CMP0_IN4 23 19 — — PTE31 DISABLED PTE31 TPM0_CH4 24 20 15 — PTE24 DISABLED PTE24 TPM0_CH0 I2C0_SCL 25 21 16 — PTE25 DISABLED PTE25 TPM0_CH1 I2C0_SDA 26 22 17 10 PTA0 SWD_CLK TSI0_CH1 PTA0 TPM0_CH5 SWD_CLK 27 23 18 11 PTA1 DISABLED TSI0_CH2 PTA1 UART0_RX TPM2_CH0 28 24 19 12 PTA2 DISABLED TSI0_CH3 PTA2 UART0_TX TPM2_CH1 29 25 20 13 PTA3 SWD_DIO TSI0_CH4 PTA3 I2C1_SCL TPM0_CH0 SWD_DIO 30 26 21 14 PTA4 NMI_b TSI0_CH5 PTA4 I2C1_SDA TPM0_CH1 NMI_b 31 27 — — PTA5 DISABLED PTA5 TPM0_CH2 32 28 — — PTA12 DISABLED PTA12 TPM1_CH0 33 29 — — PTA13 DISABLED PTA13 TPM1_CH1 34 — — — PTA14 DISABLED PTA14 SPI0_PCS0 UART0_TX 35 — — — PTA15 DISABLED PTA15 SPI0_SCK UART0_RX 36 — — — PTA16 DISABLED PTA16 SPI0_MOSI SPI0_MISO 37 — — — PTA17 DISABLED PTA17 SPI0_MISO SPI0_MOSI 38 30 22 15 VDD VDD VDD 39 31 23 16 VSS VSS VSS 40 32 24 17 PTA18 EXTAL0 EXTAL0 PTA18 UART1_RX TPM_ CLKIN0 Kinetis KL15 Sub-Family, Rev5 08/2014. 43 Freescale Semiconductor, Inc.

Pinout 80 64 48 32 Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 LQFP LQFP QFN QFN 41 33 25 18 PTA19 XTAL0 XTAL0 PTA19 UART1_TX TPM_ LPTMR0_ CLKIN1 ALT1 42 34 26 19 PTA20 RESET_b PTA20 RESET_b 43 35 27 20 PTB0/ ADC0_SE8/ ADC0_SE8/ PTB0/ I2C0_SCL TPM1_CH0 LLWU_P5 TSI0_CH0 TSI0_CH0 LLWU_P5 44 36 28 21 PTB1 ADC0_SE9/ ADC0_SE9/ PTB1 I2C0_SDA TPM1_CH1 TSI0_CH6 TSI0_CH6 45 37 29 — PTB2 ADC0_SE12/ ADC0_SE12/ PTB2 I2C0_SCL TPM2_CH0 TSI0_CH7 TSI0_CH7 46 38 30 — PTB3 ADC0_SE13/ ADC0_SE13/ PTB3 I2C0_SDA TPM2_CH1 TSI0_CH8 TSI0_CH8 47 — — — PTB8 DISABLED PTB8 EXTRG_IN 48 — — — PTB9 DISABLED PTB9 49 — — — PTB10 DISABLED PTB10 SPI1_PCS0 50 — — — PTB11 DISABLED PTB11 SPI1_SCK 51 39 31 — PTB16 TSI0_CH9 TSI0_CH9 PTB16 SPI1_MOSI UART0_RX TPM_ SPI1_MISO CLKIN0 52 40 32 — PTB17 TSI0_CH10 TSI0_CH10 PTB17 SPI1_MISO UART0_TX TPM_ SPI1_MOSI CLKIN1 53 41 — — PTB18 TSI0_CH11 TSI0_CH11 PTB18 TPM2_CH0 54 42 — — PTB19 TSI0_CH12 TSI0_CH12 PTB19 TPM2_CH1 55 43 33 — PTC0 ADC0_SE14/ ADC0_SE14/ PTC0 EXTRG_IN CMP0_OUT TSI0_CH13 TSI0_CH13 56 44 34 22 PTC1/ ADC0_SE15/ ADC0_SE15/ PTC1/ I2C1_SCL TPM0_CH0 LLWU_P6/ TSI0_CH14 TSI0_CH14 LLWU_P6/ RTC_CLKIN RTC_CLKIN 57 45 35 23 PTC2 ADC0_SE11/ ADC0_SE11/ PTC2 I2C1_SDA TPM0_CH1 TSI0_CH15 TSI0_CH15 58 46 36 24 PTC3/ DISABLED PTC3/ UART1_RX TPM0_CH2 CLKOUT LLWU_P7 LLWU_P7 59 47 — — VSS VSS VSS 60 48 — — VDD VDD VDD 61 49 37 25 PTC4/ DISABLED PTC4/ SPI0_PCS0 UART1_TX TPM0_CH3 LLWU_P8 LLWU_P8 62 50 38 26 PTC5/ DISABLED PTC5/ SPI0_SCK LPTMR0_ CMP0_OUT LLWU_P9 LLWU_P9 ALT2 63 51 39 27 PTC6/ CMP0_IN0 CMP0_IN0 PTC6/ SPI0_MOSI EXTRG_IN SPI0_MISO LLWU_P10 LLWU_P10 64 52 40 28 PTC7 CMP0_IN1 CMP0_IN1 PTC7 SPI0_MISO SPI0_MOSI 65 53 — — PTC8 CMP0_IN2 CMP0_IN2 PTC8 I2C0_SCL TPM0_CH4 66 54 — — PTC9 CMP0_IN3 CMP0_IN3 PTC9 I2C0_SDA TPM0_CH5 67 55 — — PTC10 DISABLED PTC10 I2C1_SCL 68 56 — — PTC11 DISABLED PTC11 I2C1_SDA 44 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Pinout 80 64 48 32 Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 LQFP LQFP QFN QFN 69 — — — PTC12 DISABLED PTC12 TPM_ CLKIN0 70 — — — PTC13 DISABLED PTC13 TPM_ CLKIN1 71 — — — PTC16 DISABLED PTC16 72 — — — PTC17 DISABLED PTC17 73 57 41 — PTD0 DISABLED PTD0 SPI0_PCS0 TPM0_CH0 74 58 42 — PTD1 ADC0_SE5b ADC0_SE5b PTD1 SPI0_SCK TPM0_CH1 75 59 43 — PTD2 DISABLED PTD2 SPI0_MOSI UART2_RX TPM0_CH2 SPI0_MISO 76 60 44 — PTD3 DISABLED PTD3 SPI0_MISO UART2_TX TPM0_CH3 SPI0_MOSI 77 61 45 29 PTD4/ DISABLED PTD4/ SPI1_PCS0 UART2_RX TPM0_CH4 LLWU_P14 LLWU_P14 78 62 46 30 PTD5 ADC0_SE6b ADC0_SE6b PTD5 SPI1_SCK UART2_TX TPM0_CH5 79 63 47 31 PTD6/ ADC0_SE7b ADC0_SE7b PTD6/ SPI1_MOSI UART0_RX SPI1_MISO LLWU_P15 LLWU_P15 80 64 48 32 PTD7 DISABLED PTD7 SPI1_MISO UART0_TX SPI1_MOSI 5.2 KL15 pinouts The following figures show the pinout diagrams for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see KL15 Signal Multiplexing and Pin Assignments. Kinetis KL15 Sub-Family, Rev5 08/2014. 45 Freescale Semiconductor, Inc.

Pinout P15 P14 P10 P9 P8 U_ U_ U_ U_ U_ W W W W W D7 D6/LL D5 D4/LL D3 D2 D1 D0 C17 C16 C13 C12 C11 C10 C9 C8 C7 C6/LL C5/LL C4/LL T T T T T T T T T T T T T T T T T T T T P P P P P P P P P P P P P P P P P P P P 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 PTE0 1 60 VDD PTE1 2 59 VSS PTE2 3 58 PTC3/LLWU_P7 PTE3 4 57 PTC2 PTE4 5 56 PTC1/LLWU_P6/RTC_CLKIN PTE5 6 55 PTC0 VDD 7 54 PTB19 VSS 8 53 PTB18 PTE16 9 52 PTB17 PTE17 10 51 PTB16 PTE18 11 50 PTB11 PTE19 12 49 PTB10 PTE20 13 48 PTB9 PTE21 14 47 PTB8 PTE22 15 46 PTB3 PTE23 16 45 PTB2 VDDA 17 44 PTB1 VREFH 18 43 PTB0/LLWU_P5 VREFL 19 42 PTA20 VSSA 20 41 PTA19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 PTE29 PTE30 PTE31 PTE24 PTE25 PTA0 PTA1 PTA2 PTA3 PTA4 PTA5 PTA12 PTA13 PTA14 PTA15 PTA16 PTA17 VDD VSS PTA18 Figure 19. KL15 80-pin LQFP pinout diagram 46 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Pinout P15 P14 P10 P9 P8 U_ U_ U_ U_ U_ W W W W W D7 D6/LL D5 D4/LL D3 D2 D1 D0 C11 C10 C9 C8 C7 C6/LL C5/LL C4/LL T T T T T T T T T T T T T T T T P P P P P P P P P P P P P P P P 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PTE0 1 48 VDD PTE1 2 47 VSS VDD 3 46 PTC3/LLWU_P7 VSS 4 45 PTC2 PTE16 5 44 PTC1/LLWU_P6/RTC_CLKIN PTE17 6 43 PTC0 PTE18 7 42 PTB19 PTE19 8 41 PTB18 PTE20 9 40 PTB17 PTE21 10 39 PTB16 PTE22 11 38 PTB3 PTE23 12 37 PTB2 VDDA 13 36 PTB1 VREFH 14 35 PTB0/LLWU_P5 VREFL 15 34 PTA20 VSSA 16 33 PTA19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 TE29 TE30 TE31 TE24 TE25 PTA0 PTA1 PTA2 PTA3 PTA4 PTA5 TA12 TA13 VDD VSS TA18 P P P P P P P P Figure 20. KL15 64-pin LQFP pinout diagram Kinetis KL15 Sub-Family, Rev5 08/2014. 47 Freescale Semiconductor, Inc.

Pinout 5 4 0 1 1 1 9 8 P P P P P _ _ _ _ _ U U U U U W W W W W L L L L L L L L L L 7 6/ 5 4/ 3 2 1 0 7 6/ 5/ 4/ D D D D D D D D C C C C T T T T T T T T T T T T P P P P P P P P P P P P 48 47 46 45 44 43 42 41 40 39 38 37 VDD 1 36 PTC3/LLWU_P7 VSS 2 35 PTC2 PTE16 3 34 PTC1/LLWU_P6/RTC_CLKIN PTE17 4 33 PTC0 PTE18 5 32 PTB17 PTE19 6 31 PTB16 PTE20 7 30 PTB3 PTE21 8 29 PTB2 VDDA 9 28 PTB1 VREFH 10 27 PTB0/LLWU_P5 VREFL 11 26 PTA20 VSSA 12 25 PTA19 13 14 15 16 17 18 19 20 21 22 23 24 TE29 TE30 TE24 TE25 PTA0 PTA1 PTA2 PTA3 PTA4 VDD VSS TA18 P P P P P Figure 21. KL15 48-pin QFN pinout diagram 48 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Ordering parts 5 4 0 1 1 1 9 8 P P P P P _ _ _ _ _ U U U U U W W W W W L L L L L L L L L L 7 6/ 5 4/ 7 6/ 5/ 4/ D D D D C C C C T T T T T T T T P P P P P P P P 32 31 30 29 28 27 26 25 PTE0 1 24 PTC3/LLWU_P7 PTE1 2 23 PTC2 PTE16 3 22 PTC1/LLWU_P6/RTC_CLKIN PTE17 4 21 PTB1 PTE18 5 20 PTB0/LLWU_P5 PTE19 6 19 PTA20 VDDA 7 18 PTA19 VSSA 8 17 PTA18 9 10 11 12 13 14 15 16 0 0 1 2 3 4 D S TE3 PTA PTA PTA PTA PTA VD VS P Figure 22. KL15 32-pin QFN pinout diagram 6 Ordering parts 6.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PKL15 and MKL15 7 Part identification Kinetis KL15 Sub-Family, Rev5 08/2014. 49 Freescale Semiconductor, Inc.

Part identification 7.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 7.2 Format Part numbers for this device have the following format: Q KL## A FFF R T PP CC N 7.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Table 36. Part number fields descriptions Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification KL## Kinetis family • KL15 A Key attribute • Z = Cortex-M0+ FFF Program flash memory size • 32 = 32 KB • 64 = 64 KB • 128 = 128 KB R Silicon revision • (Blank) = Main • A = Revision after main T Temperature range (°C) • V = –40 to 105 PP Package identifier • FM = 32 QFN (5 mm x 5 mm) • FT = 48 QFN (7 mm x 7 mm) • LH = 64 LQFP (10 mm x 10 mm) • LK = 80 LQFP (12 mm x 12 mm) CC Maximum CPU frequency (MHz) • 4 = 48 MHz N Packaging type • R = Tape and reel • (Blank) = Trays 50 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Terminology and guidelines 7.4 Example This is an example part number: MKL15Z32VFT4 8 Terminology and guidelines 8.1 Definition: Operating requirement An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip. 8.1.1 Example This is an example of an operating requirement: Symbol Description Min. Max. Unit V 1.0 V core supply 0.9 1.1 V DD voltage 8.2 Definition: Operating behavior Unless otherwise specified, an operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions. 8.2.1 Example This is an example of an operating behavior: Symbol Description Min. Max. Unit I Digital I/O weak pullup/ 10 130 µA WP pulldown current Kinetis KL15 Sub-Family, Rev5 08/2014. 51 Freescale Semiconductor, Inc.

Terminology and guidelines 8.3 Definition: Attribute An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements. 8.3.1 Example This is an example of an attribute: Symbol Description Min. Max. Unit CIN_D Input capacitance: — 7 pF digital pins 8.4 Definition: Rating A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. 8.4.1 Example This is an example of an operating rating: Symbol Description Min. Max. Unit V 1.0 V core supply –0.3 1.2 V DD voltage 52 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Terminology and guidelines 8.5 Result of exceeding a rating 40 m) 30 p p e ( m s in ti 20 Tsohoen l ikaesl iah ocohda roafc pteerrimstiacn beengt icnhsi pto f aeixlucreee idn corneea soef sit sra oppidelrya atins g ratings. e ur Fail 10 0 Operating rating Measured characteristic 8.6 Relationship between ratings and operating requirements Operating rating (min.) Operating requirement (min.) Operating requirement (max.) Operating rating (max.) Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - No permanent failure - No permanent failure Expected permanent failure - Possible decreased life - Correct operation - Possible decreased life - Possible incorrect operation - Possible incorrect operation –∞ ∞ Operating (power on) Handling rating (min.) Handling rating (max.) Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure –∞ ∞ Handling (power off) 8.7 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. Kinetis KL15 Sub-Family, Rev5 08/2014. 53 Freescale Semiconductor, Inc.

Terminology and guidelines 8.8 Definition: Typical value A typical value is a specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed. 8.8.1 Example 1 This is an example of an operating behavior that includes a typical value: Symbol Description Min. Typ. Max. Unit I Digital I/O weak 10 70 130 µA WP pullup/pulldown current 8.8.2 Example 2 This is an example of a chart that shows typical values for various voltage and temperature conditions: 54 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

Revision history 5000 4500 4000 T 3500 J 150 °C A) 3000 μ ( 105 °C P O 2500 T D_S 25 °C ID 2000 –40 °C 1500 1000 500 0 0.90 0.95 1.00 1.05 1.10 V (V) DD 8.9 Typical value conditions Typical values assume you meet the following conditions (or other conditions as specified): Table 37. Typical value conditions Symbol Description Value Unit T Ambient temperature 25 °C A V 3.3 V supply voltage 3.3 V DD 9 Revision history The following table provides a revision history for this document. Table 38. Revision history Rev. No. Date Substantial Changes 2 9/2012 Completed all the TBDs, initial public release. 3 9/2012 Updated Signal Multiplexing and Pin Assignments table to add UART2 signals. 4 3/2014 • Updated the front page and restructured the chapters Table continues on the next page... Kinetis KL15 Sub-Family, Rev5 08/2014. 55 Freescale Semiconductor, Inc.

Revision history Table 38. Revision history (continued) Rev. No. Date Substantial Changes • Added a note to the I in the ESD handling ratings LAT • Updated Voltage and current operating ratings • Updated Voltage and current operating requirements • Updated the Voltage and current operating behaviors • Updated Power mode transition operating behaviors • Updated Capacitance attributes • Updated footnote in the Device clock specifications • Updated t in the Flash timing specifications — commands ersall • Updated VADIN in the 16-bit ADC operating conditions • Updated Temp sensor slope and voltage and added a note to them in the 16-bit ADC electrical characteristics • Removed T in the 12-bit DAC operating requirements A • Added Inter-Integrated Circuit Interface (I2C) timing 5 08/2014 • Updated related source and added block diagram in the front page • Updated Power consumption operating behaviors 56 Kinetis KL15 Sub-Family, Rev5 08/2014. Freescale Semiconductor, Inc.

How to Reach Us: Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express Home Page: or implied copyright licenses granted hereunder to design or fabricate freescale.com any integrated circuits based on the information in this document. Web Support: Freescale reserves the right to make changes without further notice to freescale.com/support any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale, Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. © 2012-2014 Freescale Semiconductor, Inc. Document Number KL15P80M48SF0 Revision 5 08/2014

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: N XP: MKL15Z128VFM4 MKL15Z128VFT4 MKL15Z128VLH4 MKL15Z128VLK4 MKL15Z32VFM4 MKL15Z32VFT4 MKL15Z32VLH4 MKL15Z64VFM4 MKL15Z64VLH4 MKL15Z32VLK4 MKL15Z64VFT4 MKL15Z64VLK4 MKL15Z64VFM4R MKL15Z128VLH4R