图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: LM2756TM/NOPB
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

LM2756TM/NOPB产品简介:

ICGOO电子元器件商城为您提供LM2756TM/NOPB由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LM2756TM/NOPB价格参考¥11.67-¥23.79。Texas InstrumentsLM2756TM/NOPB封装/规格:PMIC - LED 驱动器, LED 驱动器 IC 8 输出 DC DC 稳压器 开关电容器(充电泵) I²C 调光 30mA 20-µSMD (1.65x2.06)。您可以下载LM2756TM/NOPB参考资料、Datasheet数据手册功能说明书,资料中有LM2756TM/NOPB 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)光电子产品

描述

IC LED DRVR WHT BCKLT 20MICROSMDLED照明驱动器 Multi-Display Inductorless LED Driver with 32 Exponential Dimming Steps in micro SMD 20-DSBGA -30 to 85

产品分类

PMIC - LED 驱动器

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

LED照明电子器件,LED照明驱动器,Texas Instruments LM2756TM/NOPBPowerWise®

数据手册

点击此处下载产品Datasheet

产品型号

LM2756TM/NOPB

产品种类

LED照明驱动器

供应商器件封装

20-uSMD

其它名称

LM2756TM/NOPBDKR
LM2756TMDKR
LM2756TMDKR-ND

内部驱动器

包装

Digi-Reel®

商标

Texas Instruments

安装类型

表面贴装

安装风格

SMD/SMT

宽度

1.61 mm

封装

Reel

封装/外壳

20-WFBGA

封装/箱体

uSMD

工作温度

-30°C ~ 85°C

工作频率

1 MHz to 1.6 MHz

工厂包装数量

250

恒压

-

恒流

拓扑

切换式电容器(充电泵)

拓扑结构

Boost

最大工作温度

+ 85 C

最大电源电流

2.5 mA

最小工作温度

- 30 C

标准包装

1

电压-电源

2.7 V ~ 5.5 V

电压-输出

2 V ~ 4 V

类型

Capacitive

类型-初级

背光

类型-次级

白色 LED

系列

LM2756

输入电压

2.7 V to 5.5 V

输出数

8

输出电流

180 mA

输出端数量

8 Output

输出类型

Constant Current

配用

/product-detail/zh/LM2756TMEV/LM2756TMEV-ND/1831560

频率

1MHz ~ 1.6MHz

推荐商品

型号:MP4030AGS

品牌:Monolithic Power Systems Inc.

产品名称:集成电路(IC)

获取报价

型号:TPS61161QDRVRQ1

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:AL8805W5-7

品牌:Diodes Incorporated

产品名称:集成电路(IC)

获取报价

型号:LT3795HFE#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LM3410XMFX/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LX27901ID-TR

品牌:Microsemi Corporation

产品名称:集成电路(IC)

获取报价

型号:ISL97678IRZ-TK

品牌:Renesas Electronics America Inc.

产品名称:集成电路(IC)

获取报价

型号:LT3491EDC#TRMPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
LM2756TM/NOPB 相关产品

LM3421Q0MHX/NOPB

品牌:Texas Instruments

价格:¥询价-¥询价

TPS61160DRVTG4

品牌:Texas Instruments

价格:

AL5811MP-13

品牌:Diodes Incorporated

价格:

TLC5945RHBR

品牌:Texas Instruments

价格:¥7.71-¥15.64

NCV3065MNTXG

品牌:ON Semiconductor

价格:

TPS61151DRCRG4

品牌:Texas Instruments

价格:

BD6583MUV-AE2

品牌:Rohm Semiconductor

价格:

TLC5948ADBQR

品牌:Texas Instruments

价格:¥5.56-¥11.28

PDF Datasheet 数据手册内容提取

LM2756 www.ti.com SNVS504C–JULY2007–REVISEDMAY2013 LM2756 Multi-Display Inductorless LED Driver with 32 Exponential Dimming Steps in DSBGA CheckforSamples:LM2756 FEATURES APPLICATIONS 1 • Drivesupto8LEDswithupto30mAofDiode • DualDisplayLCDBacklightingforPortable 2 CurrentEach Applications • 32ExponentialDimmingStepswith800:1 • LargeFormatLCDBacklighting DimmingRatioforGroupA(Upto6LEDs) • DisplayBacklightingwithIndicatorLight • 8LinearDimmingStatesforGroupsB(Upto3 LEDs)andD1C(1LED) DESCRIPTION • ProgrammableAuto-DimmingFunction The LM2756 is a highly integrated, switched- capacitor, multi-display LED driver that can drive up • 3IndependentlyControlledLEDGroupsVia to 8 LEDs in parallel with a total output current of I2CCompatibleInterface 180mA. Regulated internal current sources deliver • Upto90%Efficiency excellentcurrentandbrightnessmatchinginallLEDs. • TotalSolutionSize<21mm2 The LED driver current sinks are split into three • LowProfile20BumpDSBGAPackage independently controlled groups. The primary group (1.615mm×2.015mm× 0.6mm) (Group A) can be configured to drive four, five or six • 0.4%AccurateCurrentMatching LEDs for use in the main phone display, while the secondary group (Group B) can be configured to • InternalSoft-StartLimitsInrushCurrent drive one, two or three LEDs for driving secondary • TrueShutdownIsolationforLED’s displays, keypads and/or indicator LEDs. An • WideInputVoltageRange(2.7Vto5.5V) additional driver, D1C, is provided for additional indicatorlightingfunctions. • ActiveHighHardwareEnable Typical Application Circuit GROUP A GROUP B GROUP C D1A D2A D3AD4A D53 D62 D1B D1C VIN VOUT + C1+ -1 µF 1 µF LM2756 1 µF C1- C2+ 1 µF GND C2- HWEN SDIO SCL ISET 2 IC Control Signals Capacitors: Murata GNM1M2R61C105ME18D 1 µF dual capacitors, or 1 µF single capacitor equivalent 1 Pleasebeawarethatanimportantnoticeconcerningavailability,standardwarranty,anduseincriticalapplicationsof TexasInstrumentssemiconductorproductsanddisclaimerstheretoappearsattheendofthisdatasheet. Alltrademarksarethepropertyoftheirrespectiveowners. 2 PRODUCTIONDATAinformationiscurrentasofpublicationdate. Copyright©2007–2013,TexasInstrumentsIncorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarilyincludetestingofallparameters.

LM2756 SNVS504C–JULY2007–REVISEDMAY2013 www.ti.com DESCRIPTION (CONTINUED) The device provides excellent efficiency without the use of an inductor by operating the charge pump in a gain of 3/2 or in Pass-Mode. The proper gain for maintaining current regulation is chosen, based on LED forward voltage,sothatefficiencyismaximizedovertheinputvoltagerange. TheLM2756isavailableinTI'stiny20-bump,0.4mmpitch,thinDSBGApackage. Figure1. MinimumLayout Connection Diagram 4 4 3 3 2 2 1 1 A B C D E E D C B A Top View Bottom View Figure2. 20BumpDSBGAPackage PackageNumberYFQ0020AAA PINDESCRIPTIONS Bump#s PinNames PinDescriptions YFQ0020AAA A3 V Inputvoltage.Inputrange:2.7Vto5.5V. IN A2 V ChargePumpOutputVoltage OUT A1,C1,B1,B2 C1+,C1-,C2+,C2- FlyingCapacitorConnections D3,E3,E4,D4 D1A-D4A LEDDrivers-GroupA C4,B4 D53,D62 LEDDrivers-ConfigurableCurrentSinks.CanbeassignedtoGroupAorGroupB B3 D1B LEDDrivers-GroupB C3 D1C LEDDriver-IndicatorLED D2 I Placingaresistor(R )betweenthispinandGNDsetsthefull-scaleLEDcurrentfor SET SET DxA,DxB,D53,D62andD1CLEDs. Full-ScaleLEDCurrent=189×(1.25V÷R ) SET E1 HWEN HardwareEnablePin.High=NormalOperation,Low=RESET C2 SDIO SerialDataInput/OutputPin E2 SCL SerialClockPin A4,D1 GND Ground 2 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM2756

LM2756 www.ti.com SNVS504C–JULY2007–REVISEDMAY2013 Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. Absolute Maximum Ratings (1)(2)(3) V pinvoltage -0.3Vto6.0V IN SCL,SDIO,HWENpinvoltages -0.3Vto(V +0.3V) IN w/6.0Vmax I PinVoltages -0.3Vto(V +0.3V) Dxx VOUT w/6.0Vmax ContinuousPowerDissipation InternallyLimited (4) JunctionTemperature(T ) 150°C J-MAX StorageTemperatureRange -65°Cto+150°C MaximumLeadTemperature(Soldering) (5) ESDRating(6) HumanBodyModel 2.0kV (1) AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagetothecomponentmayoccur.OperatingRatingsareconditionsunder whichoperationofthedeviceisensured.OperatingRatingsdonotimplyspecifiedperformancelimits.Forensuredperformancelimits andassociatedtestconditions,seetheElectricalCharacteristicstables. (2) IfMilitary/Aerospacespecifieddevicesarerequired,pleasecontacttheTexasInstrumentsSalesOffice/Distributorsforavailabilityand specifications. (3) AllvoltagesarewithrespecttothepotentialattheGNDpins. (4) Internalthermalshutdowncircuitryprotectsthedevicefrompermanentdamage.ThermalshutdownengagesatT =160°C(typ.)and J disengagesatT =155°C(typ.). J (5) Fordetailedsolderingspecificationsandinformation,pleaserefertoTIApplicationNote1112:MicroSMDWaferLevelChipScale Package(AN-1112)SNVA009. (6) Thehumanbodymodelisa100pFcapacitordischargedthrougha1.5kΩresistorintoeachpin.(MIL-STD-8833015.7) Operating Rating (1)(2) InputVoltageRange 2.7Vto5.5V LEDVoltageRange 2.0Vto4.0V JunctionTemperature(T)Range -30°Cto+105°C J AmbientTemperature(T )Range(3) -30°Cto+85°C A (1) AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagetothecomponentmayoccur.OperatingRatingsareconditionsunder whichoperationofthedeviceisensured.OperatingRatingsdonotimplyspecifiedperformancelimits.Forensuredperformancelimits andassociatedtestconditions,seetheElectricalCharacteristicstables. (2) AllvoltagesarewithrespecttothepotentialattheGNDpins. (3) Inapplicationswherehighpowerdissipationand/orpoorpackagethermalresistanceispresent,themaximumambienttemperaturemay havetobederated.Maximumambienttemperature(T )isdependentonthemaximumoperatingjunctiontemperature(T = A-MAX J-MAX-OP 105°C),themaximumpowerdissipationofthedeviceintheapplication(P ),andthejunction-toambientthermalresistanceofthe D-MAX part/packageintheapplication(θ ),asgivenbythefollowingequation:T =T –(θ ×P ). JA A-MAX J-MAX-OP JA D-MAX Thermal Properties Junction-to-AmbientThermal Resistance(θ ), JA 40°C/W YFQ0020Package (1) (1) Junction-to-ambientthermalresistanceishighlydependentonapplicationandboardlayout.Inapplicationswherehighmaximumpower dissipationexists,specialcaremustbepaidtothermaldissipationissuesinboarddesign.Formoreinformation,pleaserefertoTI ApplicationNote1112:MicroSMDWaferLevelChipScalePackage(AN-1112)SNVA009. Electrical Characteristics(1)(2) LimitsinstandardtypefaceareforT =25°C,andlimitsinboldfacetypeapplyoverthefulloperatingtemperaturerange. J Unlessotherwisespecified:V =3.6V;V =V ;V =V =V =0.4V;R =11.8kΩ;GroupA=GroupB=GroupC IN HWEN IN DxA DxB DxC SET =FullscaleCurrent;ENA,ENB,ENCBits=“1”;SD53,SD62,53A,62ABits="0";C1=C2=C =C =1.0µF; IN OUT (1) AllvoltagesarewithrespecttothepotentialattheGNDpins. (2) MinandMaxlimitsareguaranteedbydesign,test,orstatisticalanalysis.Typicalnumbersarenotguaranteed,butdorepresentthe mostlikelynorm. Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LM2756

LM2756 SNVS504C–JULY2007–REVISEDMAY2013 www.ti.com Electrical Characteristics(1)(2) (continued) LimitsinstandardtypefaceareforT =25°C,andlimitsinboldfacetypeapplyoverthefulloperatingtemperaturerange. J Unlessotherwisespecified:V =3.6V;V =V ;V =V =V =0.4V;R =11.8kΩ;GroupA=GroupB=GroupC IN HWEN IN DxA DxB DxC SET =FullscaleCurrent;ENA,ENB,ENCBits=“1”;SD53,SD62,53A,62ABits="0";C1=C2=C =C =1.0µF; IN OUT Specificationsrelatedtooutputcurrent(s)andcurrentsettingpins(I andI )applytoGroupAandGroupB.(3) Dxx SET Specificationsrelatedtooutputcurrent(s)andcurrentsettingpins(I andI )applytoGroupAandGroupB. (3) Dxx SET Symbol Parameter Condition Min Typ Max Units 2.7V≤V ≤5.5V IN 18.65 21.90 mA ENA='1',53A=62A='0'',ENB=ENC='0' 20.28 (-8%) (+8%) (%) OutputCurrentRegulation 4LEDsinGroupA GroupA 2.7V≤V ≤5.5V IN 18.70 22.10 mA ENA='1',53A=62A='1',ENB=ENC='0' 20.40 (-8.5%) (+8.5%) (%) 6LEDsinGroupA 2.7V≤V ≤5.5V OutputCurrentRegulation IN 18.40 21.60 mA ENB='1',53A=62A='0',ENA=ENC='0' 20.00 GroupB (-8%) (+8%) (%) 3LEDsinGroupB IDxx OutputCurrentRegulation 2.7V≤VIN≤5.5V 18.20 19.70 21.20 mA IDC ENC='1',ENA=ENB='0' (-7.5%) (+7.5%) (%) MaximumDiodeCurrentperDxx Output(4) RSET=8.33kΩ 30 mA 22.5 DxA OutputCurrentRegulation 3.2V≤V ≤5.5V IN 22.5 GroupA,GroupB,andGroupCEnabled V =3.6V mA (4) RLED=10.5kΩ DxB SET 22.5 DxC GroupA(4LEDs) 0.4 1.8 IDxx- LEDCurrentMatching(5) 2.7V≤V ≤5.5V GroupA(6LEDs) 1.0 2.7 % IN MATCH GroupB(3LEDs) 0.7 2.5 V 1xto3/2xGainTransition V Dxx V and/orV Falling 150 mV DxTH Threshold DxA DxB CurrentsinkHeadroomVoltage I =95%×I (nom.) V Requirement Dxx Dxx 65 mV HR (6) (IDxx(nom)≈20mA) Open-LoopChargePumpOutput Gain=3/2 2.4 R Ω OUT Resistance Gain=1 0.9 I QuiescentSupplyCurrent Gain=1.5x,NoLoad 2.1 2.5 mA Q I ShutdownSupplyCurrent AllENxbits="0" 3.7 5.5 µA SD V I PinVoltage 2.7V≤V ≤5.5V 1.25 V SET SET IN I OutputCurrenttoCurrentSetRatio DxA-B-C/ 189 I GroupA,GroupB,GroupC SET f SwitchingFrequency 1.0 1.3 1.6 MHz SW t Start-upTime V =90%steadystate 250 µs START OUT Reset 0 0.580 V HWENVoltageThresholds 2.7V≤V ≤5.5V V HWEN IN NormalOperation 1.075 V IN I2CCompatibleInterfaceVoltageSpecifications(SCL,SDIO) (3) C ,C ,C ,andC :Low-ESRSurface-MountCeramicCapacitors(MLCCs)usedinsettingelectricalcharacteristics IN VOUT 1 2 (4) ThemaximumtotaloutputcurrentfortheLM2756shouldbelimitedto180mA.Thetotaloutputcurrentcanbesplitamonganyofthe threeGroups(I =I =I =30mAMax.).Undermaximumoutputcurrentconditions,specialattentionmustbegiventoinput DxA DxB DxC voltageandLEDforwardvoltagetoensurepropercurrentregulation.SeetheMaximumOutputCurrentsectionofthedatasheetfor moreinformation. (5) Forthetwogroupsofcurrentsinksonapart(GroupAandGroupB),thefollowingaredetermined:themaximumsinkcurrentinthe group(MAX),theminimumsinkcurrentinthegroup(MIN),andtheaveragesinkcurrentofthegroup(AVG).Foreachgroup,two matchingnumbersarecalculated:(MAX-AVG)/AVGand(AVG-MIN)/AVG.Thelargestnumberofthetwo(worstcase)isconsideredthe matchingfigurefortheGroup.ThematchingfigureforagivenpartisconsideredtobethehighestmatchingfigureofthetwoGroups. Thetypicalspecificationprovidedisthemostlikelynormofthematchingfigureforallparts. (6) ForeachDxxpin,headroomvoltageisthevoltageacrosstheinternalcurrentsinkconnectedtothatpin.ForGroupA,B,andCcurrent sinks,V =V -V .Ifheadroomvoltagerequirementisnotmet,LEDcurrentregulationwillbecompromised. HRx OUT LED 4 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM2756

LM2756 www.ti.com SNVS504C–JULY2007–REVISEDMAY2013 Electrical Characteristics(1)(2) (continued) LimitsinstandardtypefaceareforT =25°C,andlimitsinboldfacetypeapplyoverthefulloperatingtemperaturerange. J Unlessotherwisespecified:V =3.6V;V =V ;V =V =V =0.4V;R =11.8kΩ;GroupA=GroupB=GroupC IN HWEN IN DxA DxB DxC SET =FullscaleCurrent;ENA,ENB,ENCBits=“1”;SD53,SD62,53A,62ABits="0";C1=C2=C =C =1.0µF; IN OUT Specificationsrelatedtooutputcurrent(s)andcurrentsettingpins(I andI )applytoGroupAandGroupB.(3) Dxx SET Symbol Parameter Condition Min Typ Max Units V InputLogicLow"0" 2.7V≤V ≤5.5V 0 0.710 V IL IN V InputLogicHigh"1" 2.7V≤V ≤5.5V 1.225 V V IH IN IN V OutputLogicLow"0" I =3.5mA 400 mV OL LOAD I2CCompatibleInterfaceTimingSpecifications(SCL,SDIO)(7) t SCL(ClockPeriod) (8) 294 ns 1 t DataInSetupTimetoSCLHigh 100 ns 2 t DataOutstableAfterSCLLow 0 ns 3 SDIOLowSetupTimetoSCLLow t 100 ns 4 (Start) SDIOHighHoldTimeAfterSCLHigh t 100 ns 5 (Stop) (7) SCLandSDIOshouldbeglitch-freeinorderforproperbrightnesscontroltoberealized. (8) SCListestedwitha50%duty-cycleclock. Figure3. Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LM2756

LM2756 SNVS504C–JULY2007–REVISEDMAY2013 www.ti.com BLOCK DIAGRAM 1 PF 1 PF C1 OPUFT C1+ C1- C2+ C2- VOUT D1A D2A D3A D4A D53 D62 D1B D1C VIN 2.7V to 5.5V 3/2X and 1X Regulated Charge Pump CIN GroupB D1C Current 1 PF GroupA Current Sinks GAIN Current Sinks Sink CONTROL 1.3 MHz. Switch Soft- 1.25V Brightness Brightness Brightness Frequency Start Ref. Control Control Control SCL General Purpose Register SDIO I2C Interface Brightness Control Registers Block Group A and Group B HWEN Brightness Control Register D1C LM2756 GND ISET RSET 6 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM2756

LM2756 www.ti.com SNVS504C–JULY2007–REVISEDMAY2013 Typical Performance Characteristics Unlessotherwisespecified:T =25°C;V =3.6V;V =V ;V =V =V =3.6V;R =11.8kΩ;C =C =C = A IN HWEN IN LEDxA LEDxB LED1C SET 1 2 IN C =1µF;ENA=ENB=ENC='1'. VOUT LEDDriveEfficiency LEDDriveEfficiency vs vs InputVoltage InputVoltage 100 100 VLED = 3.0V BankA = 6 LEDs 4 LEDs VLED = 3.3V 90 90 VLED = 3.6V %) 80 %) 80 (D (D E E (cid:228)L 70 (cid:228)L 70 5 LEDs 60 60 VLED = 3.3V 6 LEDs 50 50 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 VIN (V) VIN (V) Figure4. Figure5. InputCurrent GroupADiodeCurrent vs vs InputVoltage InputVoltage 200 21.50 BankA = 6 LEDs TA = +85°C 21.00 175 VLED = 3.6V TA = +25°C 20.50 I (mA)IN 150 VVLLEEDD == 33..03VV I (mA)DxA 20.00 19.50 125 TA = -30°C 19.00 100 18.50 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 VIN (V) VIN (V) Figure6. Figure7. GroupBDiodeCurrent GroupCDiodeCurrent vs vs InputVoltage InputVoltage 21.00 20.50 20.50 TA = +25°C 20.00 TA = +25°C TA = +85°C TA = +85°C A) 20.00 A) m m (B (C19.50 IDx 19.50 ID1 TA = -30°C 19.00 TA = -30°C 19.00 18.50 18.50 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 VIN (V) VIN (V) Figure8. Figure9. Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LM2756

LM2756 SNVS504C–JULY2007–REVISEDMAY2013 www.ti.com Typical Performance Characteristics (continued) Unlessotherwisespecified:T =25°C;V =3.6V;V =V ;V =V =V =3.6V;R =11.8kΩ;C =C =C = A IN HWEN IN LEDxA LEDxB LED1C SET 1 2 IN C =1µF;ENA=ENB=ENC='1'. VOUT GroupACurrentMatching GroupACurrentMatching vs vs InputVoltage InputVoltage 6LEDs 4LEDs 21.6 22.10 21.1 D2A 21.25 D62 D3A D2A D1A 20.6 D3A I (mA)Dx 20.40 I(mA)DxA 20.1 19.55 D53 19.6 D4A D1A D4A 19.1 18.70 18.6 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 VIN (V) VIN(V) Figure10. Figure11. GroupBCurrentMatching vs GroupADiodeCurrent InputVoltage vs 3LEDs GroupABrightnessCode 21.6 20.8 A) D62 D1B m 20.0 (Dx I 19.2 D53 18.4 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 VIN (V) Figure12. Figure13. GroupBDiodeCurrent GroupCDiodeCurrent vs vs GroupBBrightnessCode GroupCBrightnessCode Figure14. Figure15. 8 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM2756

LM2756 www.ti.com SNVS504C–JULY2007–REVISEDMAY2013 Typical Performance Characteristics (continued) Unlessotherwisespecified:T =25°C;V =3.6V;V =V ;V =V =V =3.6V;R =11.8kΩ;C =C =C = A IN HWEN IN LEDxA LEDxB LED1C SET 1 2 IN C =1µF;ENA=ENB=ENC='1'. VOUT QuiescentCurrentinGain1.5× ShutdownCurrent vs vs InputVoltage InputVoltage 3.00 10 GAIN=3/2 2.80 RSET=11.8kΩ 9 TA= +85°C TA= +85°C 8 2.60 7 TA= +25°C TA= +25°C 6 A) 2.40 A)μ m ( 5 I(Q 2.20 ISD 4 TA=-30°C 2.00 3 2 TA=-30°C 1.80 1 1.60 0 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 VIN(V) VIN(V) Figure16. Figure17. Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LM2756

LM2756 SNVS504C–JULY2007–REVISEDMAY2013 www.ti.com CIRCUIT DESCRIPTION Overview The LM2756 is a white LED driver system based upon an adaptive 3/2× - 1× CMOS charge pump capable of supplying up to 180mA of total output current. With three separately controlled Groups of constant current sinks, the LM2756 is an ideal solution for platforms requiring a single white LED driver for main display, sub display, and indicator lighting. The tightly matched current sinks ensure uniform brightness from the LEDs across the entiresmall-formatdisplay. Each LED is configured in a common anode configuration, with the peak drive current being programmed through the use of an external R resistor. An I2C compatible interface is used to enable the device and vary SET the brightness within the individual current sink Groups. For GroupA , 32 exponentially-spaced analog brightness controllevelsareavailable.GroupBandGroupChave8linearly-spacedanalogbrightnesslevels. Circuit Components ChargePump The input to the 3/2× - 1× charge pump is connected to the V pin, and the regulated output of the charge pump IN is connected to the V pin. The recommended input voltage range of the LM2756 is 2.7V to 5.5V. The device’s OUT regulated charge pump has both open loop and closed loop modes of operation. When the device is in open loop, the voltage at V is equal to the gain times the voltage at the input. When the device is in closed loop, OUT the voltage at V is regulated to 4.6V (typ.). The charge pump gain transitions are actively selected to maintain OUT regulationbasedonLEDforwardvoltageandloadrequirements. LEDForwardVoltageMonitoring TheLM2756hastheabilitytoswitchgains(1xor3/2x)basedontheforwardvoltageoftheLEDload.Thisability to switch gains maximizes efficiency for a given load. Forward voltage monitoring occurs on all diode pins. At higherinputvoltages,theLM2756willoperateinpassmode,allowingtheV voltagetotracktheinputvoltage. OUT As the input voltage drops, the voltage on the Dxx pins will also drop (V = V – V ). Once any of the DXX VOUT LEDx active Dxx pins reaches a voltage approximately equal to 150mV, the charge pump will switch to the gain of 3/2. This switch-over ensures that the current through the LEDs never becomes pinched off due to a lack of headroom across the current sinks. Once a gain transition occurs, the LM2756 will remain in the gain of 3/2 until an I2C write to the part occurs. At that time, the LM2756 will re-evaluate the LED conditions and selecttheappropriategain. Only active Dxx pins will be monitored. For example, if only GroupA is enabled, the LEDs in GroupB or GroupC will not affect the gain transition point. If all 3 Groups are enabled, all diodes will be monitored, and the gain transitionwillbebaseduponthediodewiththehighestforwardvoltage. ConfigurableGainTransitionDelay To optimize efficiency, the LM2756 has a user selectable gain transition delay that allows the part to ignore short duration input voltage drops. By default, the LM2756 will not change gains if the input voltage dip is shorter than 3 to 6 milliseconds. There are four selectable gain transition delay ranges available on the LM2756. All delay ranges are set within the VF Monitor Delay Register . Please refer to the Internal Registers of LM2756 section of thisdatasheetformoreinformationregardingthedelayranges. HWENPin The LM2756 has a hardware enable/reset pin (HWEN) that allows the device to be disabled by an external controller without requiring an I2C write command. Under normal operation, the HWEN pin should be held high (logic '1') to prevent an unwanted reset. When the HWEN is driven low (logic '0'), all internal control registers reset to the default states and the part becomes disabled. Please see the Electrical Characteristicssection of the datasheetforrequiredvoltagethresholds. 10 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM2756

LM2756 www.ti.com SNVS504C–JULY2007–REVISEDMAY2013 I2CCompatibleInterface DataValidity The data on SDIO line must be stable during the HIGH period of the clock signal (SCL). In other words, state of thedatalinecanonlybechangedwhenSCLisLOW. SCL SDIO data data data data data change valid change valid change allowed allowed allowed Figure18. DataValidityDiagram A pull-up resistor between the controller's VIO line and SDIO must be greater than [(VIO-V ) / 3.5mA] to meet OL the V requirement on SDIO. Using a larger pull-up resistor results in lower switching current with slower edges, OL whileusingasmallerpull-upresultsinhigherswitchingcurrentswithfasteredges. StartandStopConditions START and STOP conditions classify the beginning and the end of the I2C session. A START condition is defined as SDIO signal transitioning from HIGH to LOW while SCL line is HIGH. A STOP condition is defined as the SDIO transitioning from LOW to HIGH while SCL is HIGH. The I2C master always generates START and STOPconditions.TheI2CbusisconsideredtobebusyafteraSTARTconditionandfreeafteraSTOPcondition. During data transmission, the I2C master can generate repeated START conditions. First START and repeated STARTconditionsareequivalent,function-wise. SDIO SCL S P START condition STOPcondition Figure19. StartandStopConditions TransferingData Every byte put on the SDIO line must be eight bits long, with the most significant bit (MSB) transferred first. Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the master. The master releases the SDIO line (HIGH) during the acknowledge clock pulse. The LM2756 pulls down the SDIO line during the 9th clock pulse, signifying an acknowledge. The LM2756 generates an acknowledge aftereachbyteisreceived. After the START condition, the I2C master sends a chip address. This address is seven bits long followed by an eighth bit which is a data direction bit (R/W). The LM2756 address is 36h. For the eighth bit, a “0” indicates a WRITE and a “1” indicates a READ. The second byte selects the register to which the data will be written. The thirdbytecontainsdatatowritetotheselectedregister. Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LM2756

LM2756 SNVS504C–JULY2007–REVISEDMAY2013 www.ti.com ack from slave ack from slave ack from slave start msb Chip Address lsb w ack msb Register Add lsb ack msb DATA lsb ack stop SCL SDIO start Id = 36h w ack addr = 10h ack DGGUHVV(cid:3)K¶06 data ack stop w=write(SDIO="0") r=read(SDIO="1") ack=acknowledge(SDIOpulleddownbyeithermasterorslave) id=chipaddress,36hforLM2756 Figure20. WriteCycle I2CCompatibleChipAddress ThechipaddressforLM2756is0110110,or36h. MSB LSB ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0 R/W bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 0 1 1 0 1 1 0 2 I C Slave Address (chip address) Figure21. ChipAddress InternalRegistersofLM2756 Register InternalHexAddress PowerOnValue GeneralPurposeRegister 10h 00000000 GroupABrightnessControlRegister A0h 11100000 GroupBBrightnessControlRegister B0h 11111000 GroupCBrightnessControlRegister C0h 11111000 RampStepTimeRegister 20h 11110000 VFMonitorDelayRagister 60h 11111100 MSB LSB 0 62A 53A SD62 SD53 ENC ENB ENA bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 Figure22. GeneralPurposeRegisterDescription InternalHexAddress:10h 12 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM2756

LM2756 www.ti.com SNVS504C–JULY2007–REVISEDMAY2013 NOTE ENA:EnablesDxALEDdrivers(MainDisplay) ENB:EnablesDxBLEDdrivers(AuxLighting) ENC:EnablesD1CLEDdriver(IndicatorLighting) SD53:ShutsdowndriverD53 SD62:ShutsdowndriverD62 53A:ConfiguresD53toGroupA 62A:ConfiguresD62toGroupA DxA Brightness Control MSB Register Address: 0xA0 LSB 1 1 1 DxA4 DxA3 DxA2 DxA1 DxA0 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 DxB Brightness Control MSB Register Address: 0xB0 LSB 1 1 1 1 1 DxB2 DxB1 DxB0 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 DxC Brightness Control MSB Register Address: 0xC0 LSB 1 1 1 1 1 D1C2 D1C1 D1C0 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 Figure23. BrightnessControlRegisterDescription InternalHexAddress:0xA0(GroupA),0xB0(GroupB),0xC0(GroupC) NOTE DxA4-DxA0,D53,D62:SetsBrightnessforDxApins(GroupA).11111=Fullscale DxB2-DxB0:SetsBrightnessforDxBpins(GroupB).111=Fullscale DxC2-DxC0:SetsBrightnessforD1Cpin.111=Fullscale Full-ScaleCurrentsetexternallybythefollowingequation: I =189×1.25V/R Dxx SET Table1.BrightnessLevelControlTable(GroupA) BrightnessCode(hex) PerceivedBrightnessLevel(%) 00 0.125 01 0.313 02 0.625 03 1 04 1.125 05 1.313 06 1.688 07 2.063 08 2.438 09 2.813 0A 3.125 Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LM2756

LM2756 SNVS504C–JULY2007–REVISEDMAY2013 www.ti.com Table1.BrightnessLevelControlTable(GroupA)(continued) BrightnessCode(hex) PerceivedBrightnessLevel(%) 0B 3.75 0C 4.375 0D 5.25 0E 6.25 0F 7.5 10 8.75 11 10 12 12.5 13 15 14 16.875 15 18.75 16 22.5 17 26.25 18 31.25 19 37.5 1A 43.75 1B 52.5 1C 61.25 1D 70 1E 87.5 1F 100 GroupBandGroupCBrightnessLevels(%ofFull-Scale)=10%,20%,30%,40%,50%,60%,70%,100% Ramp Step Time Register MSB Register Address: 0x20 LSB 1 1 1 1 0 0 RS1 RS0 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 Figure24. RampStepTimeRegisterDescription InternalHexAddress:20h NOTE RS1-RS0: Sets Brightness Ramp Step Time. The Brightness ramp settings only affect GroupAcurrentsinks.('00'=100µs,'01'=25ms,'10'=50ms,'11'=100ms). VF Monitor Delay Register MSB Register Address: 0x60 LSB 1 1 1 1 1 1 VF1 VF0 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 Figure25. VFMonitorDelayRegisterDescription InternalHexAddress:60h NOTE VF1-VF0: Sets the Gain Transition Delay Time. The VF Monitor Delay can be set to four different delay times. ('00' (Default) = 3-6msec., '01' = 1.5-3msec., '10' = 0.4-0.8msec., '11' =60-90µsec.). 14 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM2756

LM2756 www.ti.com SNVS504C–JULY2007–REVISEDMAY2013 Application Information Ledconfigurations The LM2756 has a total of 8 current sinks capable of sinking 180mA of total diode current. These 8 current sinks are configured to operate in three independently controlled lighting regions. GroupA has four dedicated current sinks, while GroupB and GroupC each have one. To add greater lighting flexibility, the LM2756 has two additional drivers (D53 and D62) that can be assigned to either GroupA or GroupB through a setting in the generalpurposeregister. At start-up, the default condition is four LEDs in GroupA, three LEDs in GroupB and a single LED in GroupC (NOTE: GroupC only consists of a single current sink (D1C) under any configuration). Bits 53A and 62A in the general purpose register control where current sinks D53 and D62 are assigned. By writing a '1' to the 53A or 62A bits, D53 and D62 become assigned to the GroupA lighting region. Writing a '0' to these bits assigns D53 and D62 to the GroupB lighting region. With this added flexibility, the LM2756 is capable of supporting applications requiring 4, 5, or 6 LEDs for main display lighting, while still providing additional current sinks that canbeusedforawidevarietyoflightingfunctions. SettingLEDCurrent The current through the LEDs connected to DxA and DxB can be set to a desired level simply by connecting an appropriately sized resistor (R ) between the I pin of the LM2756 and GND. The DxA, DxB and D1C LED SET SET currentsareproportionaltothecurrentthatflowsoutoftheI pinandareafactorof189timesgreaterthanthe SET I current. The feedback loops of the internal amplifiers set the voltage of the I pin to 1.25V (typ.). The SET SET statementsabovearesimplifiedintheequationsbelow: I (A)=189×(V /R ) (1) DxA/B/C ISET SET R (Ω)=189×(1.25V/I ) (2) SET DxA/B/C Once the desired R value has been chosen, the LM2756 has the ability to internally dim the LEDs using SET analog current scaling. The analog current level is set through the I2C compatible interface. LEDs connected to GroupAcanbedimmedto32differentlevels.GroupBandGroupC(D1C)have8analogcurrentlevels. Please refer to the I2C Compatible Interface section of this datasheet for detailed instructions on how to adjust thebrightnesscontrolregisters. LEDCurrentRamping The LM2756 provides an internal LED current ramping function that allows the GroupA LEDs to turn on and turn offgraduallyovertime.ThetargetcurrentlevelissetintheGroupABrightnessControlRegister(0xA0).Thetotal ramp-up/ramp-down time is determind by the GroupA brightness level (0-31) and the user configurable ramp steptime. Bits RS1 and RS2 in the Ramp Step Time Register (0x20) set the ramp step time to the following four times: '00' =100µsec.,'01'=25msec.,'10'=50msec.,'11'=100msec. The LM2756 will always ramp-up (upon enable) and ramp-down (upon disable) through the brightness levels until the target level is reached. At the default setting of '00', the LM2756's current ramping feature looks more like a current step rather than a current ramp. Table 2 gives the approximate ramp-up/ramp-down times if the GroupAbrightnessregisterissettofull-scale,orbrightnesscode31. Table2.BrightnessRamp-Up/Ramp-DownTimes RampCode RampStep TotalRamp RS1-RS0 Time Time 00 100µs 3.2ms 01 25ms 0.8s 10 50ms 1.6s 11 100ms 3.2s Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LM2756

LM2756 SNVS504C–JULY2007–REVISEDMAY2013 www.ti.com MaximumOutputCurrent,MaximumLEDVoltage,MinimumInputVoltage The LM2756 can drive 8 LEDs at 22.5mA each (GroupA , GroupB, GroupC) from an input voltage as low as 3.2V,solongastheLEDshaveaforwardvoltageof3.6Vorless(roomtemperature). The statement above is a simple example of the LED drive capability of the LM2756. The statement contains the key application parameters that are required to validate an LED-drive design using the LM2756: LED current (I ),numberofactiveLEDs(N ),LEDforwardvoltage(V ),andminimuminputvoltage(V ). LEDx x LED IN-MIN TheequationbelowcanbeusedtoestimatethemaximumoutputcurrentcapabilityoftheLM2756: I =[(1.5xV )-V -(I ×R )]/[(N xR )+k ] (3) LED_MAX IN LED ADDITIONAL OUT x OUT HRx I =[(1.5xV )-V -(I ×2.4Ω)]/[(N x2.4Ω)+k ] (4) LED_MAX IN LED ADDITIONAL x HRx I istheadditionalcurrentthatcouldbedeliveredtotheotherLEDGroups. ADDITIONAL R – Output resistance. This parameter models the internal losses of the charge pump that result in voltage OUT droop at the pump output V . Since the magnitude of the voltage droop is proportional to the total output OUT current of the charge pump, the loss parameter is modeled as a resistance. The output resistance of the LM2756 istypically2.4Ω (V =3.6V,T =25°C).Inequationform: IN A V =(1.5×V )–[(N ×I +N ×I +N ×I )×R ] (5) VOUT IN A LEDA B LEDB C LEDC OUT k –Headroomconstant.Thisparametermodelstheminimumvoltagerequiredtobepresentacrossthecurrent HR sinks for them to regulate properly. This minimum voltage is proportional to the programmed LED current, so the constanthasunitsofmV/mA.Thetypicalk oftheLM2756is3.25mV/mA.Inequationform: HR (V –V )>k ×I (6) VOUT LEDx HRx LEDx TypicalHeadroomConstantValuesk =k =k =3.25mV/mA (7) HRA HRB HRC The "I " equation (Equation 3) is obtained from combining the R equation (Equation 5) with the k LED-MAX OUT HRx equation (Equation 6) and solving for I . Maximum LED current is highly dependent on minimum input voltage LEDx and LED forward voltage. Output current capability can be increased by raising the minimum input voltage of the application, or by selecting an LED with a lower forward voltage. Excessive power dissipation may also limit outputcurrentcapabilityofanapplication. TotalOutputCurrentCapability The maximum output current that can be drawn from the LM2756 is 180mA. Each driver Group has a maximum allottedcurrentperDxxsinkthatmustnotbeexceeded. DRIVERTYPE MAXIMUMDxxCURRENT DxA 30mAperDxAPin DxB 30mAperDxBPin D1C 30mA The 180mA load can be distributed in many different configurations. Special care must be taken when running theLM2756atthemaximumoutputcurrenttoensureproperfunctionality. ParallelConnectedandUnusedOutputs Connecting the outputs in parallel does not affect internal operation of the LM2756 and has no impact on the Electrical Characteristics and limits previously presented. The available diode output current, maximum diode voltage, and all other specifications provided in the Electrical Characteristics table apply to this parallel output configuration,justastheydotothestandardLEDapplicationcircuit. All Dx current sinks utilize LED forward voltage sensing circuitry to optimize the charge-pump gain for maximum efficiency. Due to the nature of the sensing circuitry, it is not recommended to leave any of the DxA (D1A-D4A, D53, D62) pins open if diode GroupA is going to be used during normal operation. Leaving DxA pins unconnected will force the charge-pump into 3/2× mode over the entire V range negating any efficiency gain IN thatcouldhavebeenachievedbyswitchingto1×modeathigherinputvoltages. IftheD1BorD1Cdriversarenotgoingtobeused,makesurethattheENBandENCbitsinthegeneralpurpose registeraresetto'0'toensureoptimalefficiency. The D53 and D62 pins can be completely shutdown through the general purpose register by writing a '1' to the SD53orSD62bits. 16 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM2756

LM2756 www.ti.com SNVS504C–JULY2007–REVISEDMAY2013 Care must be taken when selecting the proper R value. The current on any DxX pin must not exceed the SET maximumcurrentratingforanygivencurrentsinkpin. PowerEfficiency Efficiency of LED drivers is commonly taken to be the ratio of power consumed by the LEDs (P ) to the power LED drawn at the input of the part (P ). With a 3/2× - 1× charge pump, the input current is equal to the charge pump IN gaintimestheoutputcurrent(totalLEDcurrent).TheefficiencyoftheLM2756canbepredictedasfollow: P =(V ×N ×I )+(V ×N ×I )+(V ×I ) (8) LEDTOTAL LEDA A LEDA LEDB B LEDB LEDC LEDC P =V ×I (9) IN IN IN P =V ×(GAIN×I +I ) (10) IN IN LEDTOTAL Q E=(P ÷P ) (11) LEDTOTAL IN The LED voltage is the main contributor to the charge-pump gain selection process. Use of low forward-voltage LEDs (3.0V- to 3.5V) will allow the LM2756 to stay in the gain of 1× for a higher percentage of the lithium-ion battery voltage range when compared to the use of higher forward voltage LEDs (3.5V to 4.0V). See the LED Forward Voltage Monitoring section of this datasheet for a more detailed description of the gain selection and transitionprocess. For an advanced analysis, it is recommended that power consumed by the circuit (V x I ) for a given load be IN IN evaluatedratherthanpowerefficiency. PowerDissipation Thepowerdissipation(P )andjunctiontemperature(T )canbeapproximatedwiththeequationsbelow.P is DISS J IN the power generated by the 3/2× - 1× charge pump, P is the power consumed by the LEDs, T is the ambient LED A temperature, and θ is the junction-to-ambient thermal resistance for the DSBGA 20-bump package. V is the JA IN input voltage to the LM2756, V is the nominal LED forward voltage, N is the number of LEDs and I is the LED LED programmedLEDcurrent. P =P -P -P -P (12) DISS IN LEDA LEDB LEDC P =(GAIN×V ×I )-(V ×N ×I )-(V ×N ×I )-(V ×I ) (13) DISS IN GroupA+GroupB+GroupC LEDA A LEDA LEDB B LEDB LEDC LEDC T =T +(P xθ ) (14) J A DISS JA The junction temperature rating takes precedence over the ambient temperature rating. The LM2756 may be operated outside the ambient temperature rating, so long as the junction temperature of the device does not exceed the maximum operating rating of 105°C. The maximum ambient temperature rating must be derated in applications where high power dissipation and/or poor thermal resistance causes the junction temperature to exceed105°C. ThermalProtection Internal thermal protection circuitry disables the LM2756 when the junction temperature exceeds 160°C (typ.). This feature protects the device from being damaged by high die temperatures that might otherwise result from excessive power dissipation. The device will recover and operate normally when the junction temperature falls below 155°C (typ.). It is important that the board layout provide good thermal conduction to keep the junction temperaturewithinthespecifiedoperatingratings. Capacitorselection The LM2756 requires 4 external capacitors for proper operation (C = C = C = C = 1µF). Surface-mount 1 2 IN OUT multi-layer ceramic capacitors are recommended. These capacitors are small, inexpensive and have very low equivalent series resistance (ESR <20mΩ typ.). Tantalum capacitors, OS-CON capacitors, and aluminum electrolytic capacitors are not recommended for use with the LM2756 due to their high ESR, as compared to ceramiccapacitors. For most applications, ceramic capacitors with X7R or X5R temperature characteristic are preferred for use with the LM2756. These capacitors have tight capacitance tolerance (as good as ±10%) and hold their value over temperature(X7R:±15%over-55°Cto125°C;X5R:±15%over-55°Cto85°C). Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LM2756

LM2756 SNVS504C–JULY2007–REVISEDMAY2013 www.ti.com Capacitors with Y5V or Z5U temperature characteristic are generally not recommended for use with the LM2756. Capacitors with these temperature characteristics typically have wide capacitance tolerance (+80%, -20%) and vary significantly over temperature (Y5V: +22%, -82% over -30°C to +85°C range; Z5U: +22%, -56% over +10°C to +85°C range). Under some conditions, a nominal 1µF Y5V or Z5U capacitor could have a capacitance of only 0.1µF. Such detrimental deviation is likely to cause Y5V and Z5U capacitors to fail to meet the minimum capacitancerequirementsoftheLM2756. Therecommendedvoltageratingforthecapacitorsis10VtoaccountforDCbiascapacitancelosses. 18 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM2756

LM2756 www.ti.com SNVS504C–JULY2007–REVISEDMAY2013 REVISION HISTORY ChangesfromRevisionB(May2013)toRevisionC Page • ChangedlayoutofNationalDataSheettoTIformat.......................................................................................................... 18 Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:LM2756

PACKAGE OPTION ADDENDUM www.ti.com 3-May-2013 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Top-Side Markings Samples (1) Drawing Qty (2) (3) (4) LM2756TM/NOPB ACTIVE DSBGA YFQ 20 250 Green (RoHS SNAGCU Level-1-260C-UNLIM -30 to 85 DK & no Sb/Br) LM2756TMX/NOPB ACTIVE DSBGA YFQ 20 3000 Green (RoHS SNAGCU Level-1-260C-UNLIM -30 to 85 DK & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1

PACKAGE MATERIALS INFORMATION www.ti.com 3-Aug-2017 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LM2756TM/NOPB DSBGA YFQ 20 250 178.0 8.4 1.89 2.2 0.76 4.0 8.0 Q1 LM2756TMX/NOPB DSBGA YFQ 20 3000 178.0 8.4 1.89 2.2 0.76 4.0 8.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 3-Aug-2017 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LM2756TM/NOPB DSBGA YFQ 20 250 210.0 185.0 35.0 LM2756TMX/NOPB DSBGA YFQ 20 3000 210.0 185.0 35.0 PackMaterials-Page2

MECHANICALDATA YFQ0020xxx D 0.600±0.075 E TMD20XXX(RevD) D: Max = 2.048 mm, Min =1 .987 mm E: Max = 1.641 mm, Min =1 .581 mm 4215083/A 12/12 NOTES: A.Alllineardimensionsareinmillimeters.DimensioningandtolerancingperASMEY14.5M-1994. B.Thisdrawingissubjecttochangewithoutnotice. www.ti.com

IMPORTANTNOTICE TexasInstrumentsIncorporated(TI)reservestherighttomakecorrections,enhancements,improvementsandotherchangestoits semiconductorproductsandservicesperJESD46,latestissue,andtodiscontinueanyproductorserviceperJESD48,latestissue.Buyers shouldobtainthelatestrelevantinformationbeforeplacingordersandshouldverifythatsuchinformationiscurrentandcomplete. TI’spublishedtermsofsaleforsemiconductorproducts(http://www.ti.com/sc/docs/stdterms.htm)applytothesaleofpackagedintegrated circuitproductsthatTIhasqualifiedandreleasedtomarket.AdditionaltermsmayapplytotheuseorsaleofothertypesofTIproductsand services. ReproductionofsignificantportionsofTIinformationinTIdatasheetsispermissibleonlyifreproductioniswithoutalterationandis accompaniedbyallassociatedwarranties,conditions,limitations,andnotices.TIisnotresponsibleorliableforsuchreproduced documentation.Informationofthirdpartiesmaybesubjecttoadditionalrestrictions.ResaleofTIproductsorserviceswithstatements differentfromorbeyondtheparametersstatedbyTIforthatproductorservicevoidsallexpressandanyimpliedwarrantiesforthe associatedTIproductorserviceandisanunfairanddeceptivebusinesspractice.TIisnotresponsibleorliableforanysuchstatements. BuyersandotherswhoaredevelopingsystemsthatincorporateTIproducts(collectively,“Designers”)understandandagreethatDesigners remainresponsibleforusingtheirindependentanalysis,evaluationandjudgmentindesigningtheirapplicationsandthatDesignershave fullandexclusiveresponsibilitytoassurethesafetyofDesigners'applicationsandcomplianceoftheirapplications(andofallTIproducts usedinorforDesigners’applications)withallapplicableregulations,lawsandotherapplicablerequirements.Designerrepresentsthat,with respecttotheirapplications,Designerhasallthenecessaryexpertisetocreateandimplementsafeguardsthat(1)anticipatedangerous consequencesoffailures,(2)monitorfailuresandtheirconsequences,and(3)lessenthelikelihoodoffailuresthatmightcauseharmand takeappropriateactions.DesigneragreesthatpriortousingordistributinganyapplicationsthatincludeTIproducts,Designerwill thoroughlytestsuchapplicationsandthefunctionalityofsuchTIproductsasusedinsuchapplications. TI’sprovisionoftechnical,applicationorotherdesignadvice,qualitycharacterization,reliabilitydataorotherservicesorinformation, including,butnotlimitedto,referencedesignsandmaterialsrelatingtoevaluationmodules,(collectively,“TIResources”)areintendedto assistdesignerswhoaredevelopingapplicationsthatincorporateTIproducts;bydownloading,accessingorusingTIResourcesinany way,Designer(individuallyor,ifDesignerisactingonbehalfofacompany,Designer’scompany)agreestouseanyparticularTIResource solelyforthispurposeandsubjecttothetermsofthisNotice. TI’sprovisionofTIResourcesdoesnotexpandorotherwisealterTI’sapplicablepublishedwarrantiesorwarrantydisclaimersforTI products,andnoadditionalobligationsorliabilitiesarisefromTIprovidingsuchTIResources.TIreservestherighttomakecorrections, enhancements,improvementsandotherchangestoitsTIResources.TIhasnotconductedanytestingotherthanthatspecifically describedinthepublisheddocumentationforaparticularTIResource. Designerisauthorizedtouse,copyandmodifyanyindividualTIResourceonlyinconnectionwiththedevelopmentofapplicationsthat includetheTIproduct(s)identifiedinsuchTIResource.NOOTHERLICENSE,EXPRESSORIMPLIED,BYESTOPPELOROTHERWISE TOANYOTHERTIINTELLECTUALPROPERTYRIGHT,ANDNOLICENSETOANYTECHNOLOGYORINTELLECTUALPROPERTY RIGHTOFTIORANYTHIRDPARTYISGRANTEDHEREIN,includingbutnotlimitedtoanypatentright,copyright,maskworkright,or otherintellectualpropertyrightrelatingtoanycombination,machine,orprocessinwhichTIproductsorservicesareused.Information regardingorreferencingthird-partyproductsorservicesdoesnotconstitutealicensetousesuchproductsorservices,orawarrantyor endorsementthereof.UseofTIResourcesmayrequirealicensefromathirdpartyunderthepatentsorotherintellectualpropertyofthe thirdparty,oralicensefromTIunderthepatentsorotherintellectualpropertyofTI. TIRESOURCESAREPROVIDED“ASIS”ANDWITHALLFAULTS.TIDISCLAIMSALLOTHERWARRANTIESOR REPRESENTATIONS,EXPRESSORIMPLIED,REGARDINGRESOURCESORUSETHEREOF,INCLUDINGBUTNOTLIMITEDTO ACCURACYORCOMPLETENESS,TITLE,ANYEPIDEMICFAILUREWARRANTYANDANYIMPLIEDWARRANTIESOF MERCHANTABILITY,FITNESSFORAPARTICULARPURPOSE,ANDNON-INFRINGEMENTOFANYTHIRDPARTYINTELLECTUAL PROPERTYRIGHTS.TISHALLNOTBELIABLEFORANDSHALLNOTDEFENDORINDEMNIFYDESIGNERAGAINSTANYCLAIM, INCLUDINGBUTNOTLIMITEDTOANYINFRINGEMENTCLAIMTHATRELATESTOORISBASEDONANYCOMBINATIONOF PRODUCTSEVENIFDESCRIBEDINTIRESOURCESOROTHERWISE.INNOEVENTSHALLTIBELIABLEFORANYACTUAL, DIRECT,SPECIAL,COLLATERAL,INDIRECT,PUNITIVE,INCIDENTAL,CONSEQUENTIALOREXEMPLARYDAMAGESIN CONNECTIONWITHORARISINGOUTOFTIRESOURCESORUSETHEREOF,ANDREGARDLESSOFWHETHERTIHASBEEN ADVISEDOFTHEPOSSIBILITYOFSUCHDAMAGES. UnlessTIhasexplicitlydesignatedanindividualproductasmeetingtherequirementsofaparticularindustrystandard(e.g.,ISO/TS16949 andISO26262),TIisnotresponsibleforanyfailuretomeetsuchindustrystandardrequirements. WhereTIspecificallypromotesproductsasfacilitatingfunctionalsafetyorascompliantwithindustryfunctionalsafetystandards,such productsareintendedtohelpenablecustomerstodesignandcreatetheirownapplicationsthatmeetapplicablefunctionalsafetystandards andrequirements.Usingproductsinanapplicationdoesnotbyitselfestablishanysafetyfeaturesintheapplication.Designersmust ensurecompliancewithsafety-relatedrequirementsandstandardsapplicabletotheirapplications.DesignermaynotuseanyTIproductsin life-criticalmedicalequipmentunlessauthorizedofficersofthepartieshaveexecutedaspecialcontractspecificallygoverningsuchuse. Life-criticalmedicalequipmentismedicalequipmentwherefailureofsuchequipmentwouldcauseseriousbodilyinjuryordeath(e.g.,life support,pacemakers,defibrillators,heartpumps,neurostimulators,andimplantables).Suchequipmentincludes,withoutlimitation,all medicaldevicesidentifiedbytheU.S.FoodandDrugAdministrationasClassIIIdevicesandequivalentclassificationsoutsidetheU.S. TImayexpresslydesignatecertainproductsascompletingaparticularqualification(e.g.,Q100,MilitaryGrade,orEnhancedProduct). Designersagreethatithasthenecessaryexpertisetoselecttheproductwiththeappropriatequalificationdesignationfortheirapplications andthatproperproductselectionisatDesigners’ownrisk.Designersaresolelyresponsibleforcompliancewithalllegalandregulatory requirementsinconnectionwithsuchselection. DesignerwillfullyindemnifyTIanditsrepresentativesagainstanydamages,costs,losses,and/orliabilitiesarisingoutofDesigner’snon- compliancewiththetermsandprovisionsofthisNotice. MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265 Copyright©2018,TexasInstrumentsIncorporated