图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: BU28UA3WNVX-TL
  • 制造商: ROHM Semiconductor
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

BU28UA3WNVX-TL产品简介:

ICGOO电子元器件商城为您提供BU28UA3WNVX-TL由ROHM Semiconductor设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 BU28UA3WNVX-TL价格参考¥0.85-¥3.35。ROHM SemiconductorBU28UA3WNVX-TL封装/规格:PMIC - 稳压器 - 线性, Linear Voltage Regulator IC Positive Fixed 1 Output 300mA SSON004X1010。您可以下载BU28UA3WNVX-TL参考资料、Datasheet数据手册功能说明书,资料中有BU28UA3WNVX-TL 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)

描述

IC REG LDO 2.8V 0.3A 4SSON

产品分类

PMIC - 稳压器 - 线性

品牌

Rohm Semiconductor

数据手册

点击此处下载产品Datasheet

产品图片

产品型号

BU28UA3WNVX-TL

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

-

供应商器件封装

SSON004X1010

其它名称

BU28UA3WNVX-TLTR

包装

带卷 (TR)

安装类型

表面贴装

封装/外壳

4-UDFN 裸露焊盘

工作温度

-40°C ~ 85°C

标准包装

5,000

电压-跌落(典型值)

0.2V @ 300mA

电压-输入

最高 5.5V

电压-输出

2.8V

电流-输出

300mA

电流-限制(最小值)

370mA

稳压器拓扑

正,固定式

稳压器数

1

推荐商品

型号:BA7815FP-E2

品牌:Rohm Semiconductor

产品名称:集成电路(IC)

获取报价

型号:MC78L15ABP

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:LP2950ACZ-3.3

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:ADP1706ARDZ-0.95R7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:MC78L12ACPRM

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:AP7331-WG-7

品牌:Diodes Incorporated

产品名称:集成电路(IC)

获取报价

型号:PQ6RD083J00H

品牌:Sharp Microelectronics

产品名称:集成电路(IC)

获取报价

型号:IRU1207-25CSTR

品牌:Infineon Technologies

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
BU28UA3WNVX-TL 相关产品

RT9030A-12GB

品牌:Richtek USA Inc.

价格:

UA78L12ACLP

品牌:Texas Instruments

价格:¥1.00-¥1.00

NCV8752BMX28TCG

品牌:ON Semiconductor

价格:

TPS77833D

品牌:Texas Instruments

价格:¥11.28-¥23.01

LM317H

品牌:Texas Instruments

价格:¥70.55-¥131.05

L7812ACV

品牌:STMicroelectronics

价格:¥1.64-¥2.89

AP7312-1233FM-7

品牌:Diodes Incorporated

价格:

MC33275DT-2.5RKG

品牌:ON Semiconductor

价格:¥3.56-¥7.91

PDF Datasheet 数据手册内容提取

Datasheet CMOS LDO Regulator Series for Portable Equipments Versatile Package FULL CMOS LDO Regulator BUxxUA3WNVX series ●General Description ●Key Specifications BUxxUA3WNVX series is high-performance FULL  Output voltage: 1.0V to 3.7V CMOS regulator with 300-mA output, which is mounted  Accuracy output voltage: ±1.0% (±25mV) on versatile package SSON004X1010 (1.00mm  1.00  Low current consumption: 50μA mm  0.60mm). It has excellent noise characteristics and  Operating temperature range: -40°C to +85°C load responsiveness characteristics despite its low circuit current consumption of 50A. It is most appropriate for ●Applications various applications such as power supplies for logic IC, Battery-powered portable equipment, etc. RF, and camera modules. ●Package ●Features SSON004X1010 : 1.00mm x 1.00mm x 0.60mm  High accuracy detection  low current consumption  Compatible with small ceramic capacitor (Cin=Co=1.0uF)  With built-in output discharge circuit  High ripple rejection  ON/OFF control of output voltage  With built-in over current protection circuit and thermal shutdown circuit  Low dropout voltage ●Typical Application Circuit STBY STBY VOUT VOUT VIN VIN GND GND GND Figure 1. Application Circuit ○Product structure:Silicon monolithic integrated circuit ○This product is not designed for protection against radioactive rays www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. 1/27 30.Oct.2015 Rev.008 TSZ22111・14・001

BUxxUA3WNVX series Datasheet ●Connection Diagram SSON004X1010 TOP VIEW BOTTOM VIEW 4 VIN 3 STBY 1 VOUT 2 GND LOT Number reverse FIN 1 2 Part Number Marking 1 VOUT 2 GND 4 VIN 3 STBY 1PIN MARK ●Pin Descriptions SSON004X1010 PIN No. Symbol Function 1 VOUT Output Voltage 2 GND Grouding ON/OFF control of output voltage 3 STBY (High: ON, Low: OFF) 4 VIN Power Supply Voltage reverse FIN Substrate (Connect to GND) ● Ordering Information B U x x U A 3 W N V X - T L Part Output Voltage Low Dropout Voltage with Package Packageing and forming specification Number 10 : 1.0V Maximum Output Current output discharge NVX : SSON004X1010 Embossed tape and reel 300mA TL : The pin number 1 is the lower left 37 : 3.7V SSON004X1010 1.0±0.1 <Tape and Reel information> 1PIN MARK Tape Embossed carrier tape ±1.00.1 Quantity 5000pcs X TL ±0.320.1 00..40.6MA08±5405.0º510.65±0.025 +0.03R3−-0.0200.02C.005.(0.12)18 S Dofi rfeecetdion (Treheel odnir ethcteio lne fits h tahned 1 apnind oyfo pur opduull cot uist tahte t htaep leo woenr t hleeft lewfht ehna nydou hold ) 0.480±0..20554±0.05 3 ±0.070.1±0.250.1 (Unit : mm) Reel ∗ O1rpdienr quantity needs to be muDltiiprelec otifo tnh eo mf fineiemdum quantity. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 2/27 30.Oct.2015 Rev.008

BUxxUA3WNVX series Datasheet ●Lineup Marking e ml nl Ul Yl al ql Bi f g bl Output 1.0V 1.05V 1.1V 1.15V 1.2V 1.25V 1.3V 1.35V 1.5V 1.8V 1.85V Voltage Part Number BU10 BU1A BU11 BU1B BU12 BU1C BU13 BU1D BU15 BU18 BU1J dl el fl gl rl hl h m ul yl n 1.9V 2.0V 2.05V 2.1V 2.2V 2.3V 2.5V 2.6V 2.7V 2.75V 2.8V BU19 BU20 BU2A BU21 BU22 BU23 BU25 BU26 BU27 BU2H BU28 z u 0i k 1i 2i y 3i 9 2.85V 2.9V 2.95V 3.0V 3.1V 3.2V 3.3V 3.4V 3.7V BU2J BU29 BU2K BU30 BU31 BU32 BU33 BU34 BU37 ●Absolute Maximum Ratings (Ta=25°C) PARAMETER Symbol Limit Unit Power Supply Voltage VMAX -0.3 ~ +6.0 V Power Dissipation Pd 560(*1) mW Maximum junction temperature TjMAX +125 ℃ Operating Temperature Range Topr -40 ~ +85 ℃ Storage Temperature Range Tstg -55 ~ +125 ℃ (*1) Pd deleted at 5.6mW/℃ at temperatures above Ta=25℃, mounted on 70×70×1.6 mm glass-epoxy PCB. ● RECOMMENDED OPERATING RANGE (not to exceed Pd) PARAMETER Symbol Limit Unit Power Supply Voltage VIN 1.7~5.5 V Maximum Output Current IMAX 300 mA ●OPERATING CONDITIONS PARAMETER Symbol MIN. TYP. MAX. Unit CONDITION Input Capacitor Cin 0.47(*2) 1.0 - μF Ceramic capacitor recommended Output Capacitor Co 0.47(*2) 1.0 - μF (*2) Make sure that the output capacitor value is not kept lower than this specified level across a variety of temperature, DC bias, characteristic. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 3/27 30.Oct.2015 Rev.008

BUxxUA3WNVX series Datasheet ●Electrical Characteristics (Ta=25℃, VIN=VOUT+1.0V (*3), STBY=VIN, Cin=1.0μF, Co=1.0μF, unless otherwise noted.) Limit PARAMETER Symbol Unit Conditions MIN. TYP. MAX. Overall Device VOUT×0.99 VOUT×1.01 IOUT=10μA,VOUT≧2.5V Output Voltage VOUT VOUT V VOUT-25mV VOUT+25mV IOUT=10μA,VOUT<2.5V Operating Current IIN - 50 90 μA IOUT=0mA Operating Current (STBY) ISTBY - - 1.0 μA STBY=0V VRR=-20dBv,fRR=1kHz,IOUT=150mA, Ripple Rejection Ratio RR 45 70 - dB VIN=3.6V - 470 700 mV 1.0V≦VOUT<1.2V(IOUT=300mA) - 350 500 mV 1.2V≦VOUT<1.5V(IOUT=300mA) - 280 380 mV 1.5V≦VOUT<1.7V(IOUT=300mA) Dropout Voltage VSAT - 250 320 mV 1.7V≦VOUT<2.1V(IOUT=300mA) - 220 260 mV 2.1V≦VOUT<2.5V(IOUT=300mA) - 200 220 mV 2.5V≦VOUT(IOUT=300mA) Line Regulation VDL - 2 20 mV VIN=VOUT+1.0V to 5.5V(*4), IOUT=10μA Load Regulation VDLO - 25 45 mV IOUT=0.01mA to 300mA Over-current Protection (OCP) Limit Current ILMAX 370 550 - mA Vo=VOUT*0.95 Short Current ISHORT 50 150 300 mA Vo=0V Standby Block Discharge Resistor RDSC 20 50 80 Ω VIN=5.5V, STBY=0V, VOUT=2.6V STBY Pin Pull-down ISTB 0.1 0.9 8.0 μA STBY=1.5V Current STBY Control ON VSTBH 1.2 - 5.5 V Voltage OFF VSTBL -0.3 - 0.3 V ○This product is not designed for protection against radioactive rays. (*3) VIN=2.5V for VOUT≦1.5V (*4) VIN=2.5V to 5.5V for VOUT≦1.5V ●Block Diagrams VIN VIN 4 VREF Cin VOUT VOUT 1 GND 2 OCP Co TSD STBY STBY STBY Discharge Cin・・・1.0μF (Ceramic) 3 Co ・・・1.0μF (Ceramic) Figure 2. Block Diagrams www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 4/27 30.Oct.2015 Rev.008

BUxxUA3WNVX series Datasheet BU10UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) LINE REGULATION LINE REGULATION 1.10 1.10 Vout=1.0V Vout=1.0V 1.08 Iout=10mA 1.08 Iout=300mA 1.06 1.06 1.04 1.04 V]1.02 V]1.02 UT[1.00 UT[1.00 O O V0.98 V0.98 0.96 0.96 0.94 0.94 85℃ 85℃ 0.92 25℃ 0.92 25℃ -40℃ -40℃ 0.90 0.90 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 VIN[V] VIN[V] Figure 3. Figure 4. 1.10 LOAD REGULATION Vout=1.0V 1.10 OUTPUT VOLTAGE vs TEMPERATURE Vout=1.0V 1.08 1.06 1.05 1.04 OUT[V]11..0002 OUT[V]1.00 V0.98 V 0.96 0.95 0.94 85℃ 10mA 0.92 25℃ 150mA -40℃ 300mA 0.90 0.90 0 50 100 150 200 250 300 -40 -20 0 20 40 60 80 IOUT[mA] Temperature[℃] Figure 5. Figure 6. GROUND PIN CURRENT vs INPUT VOLTAGE GROUND PIN CURRENT vs LOAD 70 450 Vout=1.0V Vout=1.0V 65 400 60 55 350 50 45 300 uA]40 uA]250 D[35 D[ GN30 GN200 I I 25 150 20 15 100 10 85℃ 85℃ 25℃ 50 25℃ 5 -40℃ -40℃ 0 0 2.3 2.5 2.7 2.9 3.1 3.3 3.5 0 50 100 150 200 250 300 VIN[V] IOUT[mA] Figure 7. Figure 8. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 5/27 30.Oct.2015 Rev.008

BUxxUA3WNVX series Datasheet BU10UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) GROUND PIN CURRENT vs TEMPERATURE SHUTDOWN CURRENT vs INPUT VOLTAGE 70 100 Vout=1.0V Vout=1.0V 90 60 80 85℃ 50 70 25℃ A] 60 -40℃ D[uA]40 DN[n 50 N H G30 S 40 I I 30 20 20 10 10 0 0 2.3 2.5 2.7 2.9 3.1 3.3 3.5 -40 -20 0 Tempe2r0ature[℃]40 60 80 VIN[V] Figure 9. Figure 10. CURRENT LIMIT vs INPUT VOLTAGE POWER-SUPPLY RIPPLE REJECTION vs FREQUENCY 700 100 Vout=1.0V 90 600 10mA 80 150mA 500 70 M[mA]400 RR[dB] 5600 ILI300 PS 40 200 30 20 85℃ 100 25℃ 10 -40℃ 0 0 2.3 2.5 2.7 2.9 3.1 3.3 3.5 10 100 1000 10000 100000 1000000 VIN[V] Frequency[Hz] Figure 11. Figure 12. LOAD TRANSIENT RESPONSE LOAD TRANSIENT RESPONSE Trise=Tfall=1us Trise=Tfall=1us 200mA 0mA/div mA/div 10mA 10 IOUT 0mA 20 IOUT 0mA /div VOUT /div VOUT V V m m 0 0 0 0 1 1 Vout=1.0V Vout=1.0V 10µs/div 10µs/div Figure 13. Figure 14. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 6/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet BU10UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) LOAD TRANSIENT RESPONSE LOAD TRANSIENT RESPONSE Trise=Tfall=1us Trise=Tfall=1us mA/div 50mA mA/div 300mA 50 IOUT 0mA 200 IOUT 0mA V/div VOUT V/div VOUT m m 100 100 Vout=1.0V Vout=1.0V 10µs/div 10µs/div Figure 15. Figure 16. LINE TRANSIENT RESPONSE LINE TRANSIENT RESPONSE Slew Rate = 0.5V/µs Slew Rate = 0.5V/µs V/div 2.9V V/div 2.9V 1 VIN 1 VIN 2.3V 2.3V mV/div VOUT mV/div VOUT 100 Vout=1.0V 100 Vout=1.0V Iout=300mA Iout=1mA 1ms/div 1ms/div Figure 17. Figure 18. LINE TRANSIENT RESPONSE VIN RAMP UP, RAMP DOWN RESPONSE Slew Rate = 0.5V/µs Vout=1.0V Iout=1mA 3.6V div / V 1 VIN VIN 2.1V div / V 1 div / VOUT V m 00 VOUT 1 Vout=1.0V Iout=300mA 1ms/div 200ms/div Figure 19. Figure 20. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 7/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet BU10UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) START UP TIME DISCHARGE TIME 1.5V 1.5V V/div V/div 1 1 STBY 0V STBY 0V V/div VOUT V/div VOUT 1 Vout=1.0V 1 Vout=1.0V Iout=0mA Iout=0mA Cout=1.0uF Cout=1.0uF 20µs/div 40µs/div Figure 21. Figure 22. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 8/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet BU11UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) LINE REGULATION LINE REGULATION 1.20 1.20 Vout=1.1V Vout=1.1V 1.18 Iout=10mA 1.18 Iout=300mA 1.16 1.16 1.14 1.14 V]1.12 V]1.12 UT[1.10 UT[1.10 O O V1.08 V1.08 1.06 1.06 1.04 1.04 85℃ 85℃ 1.02 25℃ 1.02 25℃ -40℃ -40℃ 1.00 1.00 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 VIN[V] VIN[V] Figure 23. Figure 24. 1.20 LOAD REGULATION Vout=1.1V 1.20 OUTPUT VOLTAGE vs TEMPERATURE Vout=1.1V 1.18 1.18 1.16 1.16 1.14 1.14 OUT[V]11..1102 OUT[V]11..1102 V1.08 V1.08 1.06 1.06 1.04 1.04 85℃ 10mA 1.02 25℃ 1.02 150mA -40℃ 300mA 1.00 1.00 0 50 100 150 200 250 300 -40 -20 0 20 40 60 80 IOUT[mA] Temperature[℃] Figure 25. Figure 26. GROUND PIN CURRENT vs INPUT VOLTAGE GROUND PIN CURRENT vs LOAD 70 450 Vout=1.1V Vout=1.1V 65 400 60 55 350 50 45 300 uA]40 uA]250 D[35 D[ GN30 GN200 I I 25 150 20 15 100 10 8255℃℃ 50 8255℃℃ 5 -40℃ -40℃ 0 0 2.3 2.5 2.7 2.9 3.1 3.3 3.5 0 50 100 150 200 250 300 VIN[V] IOUT[mA] Figure 27. Figure 28. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 9/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet BU11UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) GROUND PIN CURRENT vs TEMPERATURE SHUTDOWN CURRENT vs INPUT VOLTAGE 70 100 Vout=1.1V Vout=1.1V 90 60 80 85℃ 50 70 25℃ A]40 nA] 60 -40℃ D[u DN[ 50 N H IG30 IS 40 30 20 20 10 10 0 0 -40 -20 0 Tempe2r0ature[℃]40 60 80 2.3 2.5 2.7 2.9VIN[V]3.1 3.3 3.5 Figure 29. Figure 30. CURRENT LIMIT vs INPUT VOLTAGE POWER-SUPPLY RIPPLE REJECTION vs FREQUENCY 700 Vout=1.1V 100 90 600 10mA 80 150mA 500 70 M[mA]400 RR[dB] 5600 ILI300 PS 40 200 30 20 85℃ 100 25℃ 10 -40℃ 0 0 2.3 2.5 2.7 2.9 3.1 3.3 3.5 10 100 1000 10000 100000 1000000 VIN[V] Frequency[Hz] Figure 31. Figure 32. LOAD TRANSIENT RESPONSE LOAD TRANSIENT RESPONSE Trise=Tfall=1us Trise=Tfall=1us 200mA 0mA/div mA/div 10mA 10 IOUT 0mA 20 IOUT 0mA V/div VOUT V/div VOUT m m 100 100 Vout=1.1V Vout=1.1V 10µs/div 10µs/div Figure 33. Figure 34. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 10/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet BU11UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) LOAD TRANSIENT RESPONSE LOAD TRANSIENT RESPONSE Trise=Tfall=1us Trise=Tfall=1us mA/div 50mA mA/div 300mA 50 IOUT 0mA 200 IOUT 0mA V/div VOUT V/div VOUT m m 100 100 Vout=1.1V Vout=1.1V 10µs/div 10µs/div Figure 35. Figure 36. LINE TRANSIENT RESPONSE LINE TRANSIENT RESPONSE Slew Rate = 0.5V/µs Slew Rate = 0.5V/µs V/div 2.9V V/div 2.9V 1 VIN 1 VIN 2.3V 2.3V mV/div VOUT mV/div VOUT 100 Vout=1.1V 100 Vout=1.1V Iout=300mA Iout=1mA 1ms/div 1ms/div Figure 37. Figure 38. LINE TRANSIENT RESPONSE VIN RAMP UP, RAMP DOWN RESPONSE Slew Rate = 0.5V/µs Vout=1.1V Iout=1mA 3.6V div / V 1 VIN VIN 2.1V div / V 1 div / VOUT V m 00 VOUT 1 Vout=1.1V Iout=300mA 1ms/div 200ms/div Figure 39. Figure 40. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 11/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet BU11UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) START UP TIME DISCHARGE TIME 1.5V 1.5V V/div V/div 1 1 STBY 0V STBY 0V V/div VOUT V/div VOUT 1 Vout=1.1V 1 Vout=1.1V Iout=0mA Iout=0mA Cout=1.0uF Cout=1.0uF 20µs/div 40µs/div Figure 41. Figure 42. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 12/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet BU12UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) LINE REGULATION LINE REGULATION 1.30 1.30 Vout=1.2V Vout=1.2V 1.28 Iout=10mA 1.28 Iout=300mA 1.26 1.26 1.24 1.24 V]1.22 V]1.22 UT[1.20 UT[1.20 O O V1.18 V1.18 1.16 1.16 1.14 1.14 85℃ 85℃ 1.12 25℃ 1.12 25℃ -40℃ -40℃ 1.10 1.10 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 VIN[V] VIN[V] Figure 43. Figure 44. 1.30 LOAD REGULATION Vout=1.2V 1.30 OUTPUT VOLTAGE vs TEMPERATURE Vout=1.2V 1.28 1.28 1.26 1.26 1.24 1.24 OUT[V]11..2202 OUT[V]11..2202 V1.18 V1.18 1.16 1.16 1.14 1.14 85℃ 10mA 1.12 25℃ 1.12 150mA -40℃ 300mA 1.10 1.10 0 50 100 150 200 250 300 -40 -20 0 20 40 60 80 IOUT[mA] Temperature[℃] Figure 45. Figure 46. GROUND PIN CURRENT vs INPUT VOLTAGE GROUND PIN CURRENT vs LOAD 70 450 Vout=1.2V Vout=1.2V 65 400 60 55 350 50 45 300 uA]40 uA]250 D[35 D[ GN30 GN200 I I 25 150 20 15 100 10 8255℃℃ 50 8255℃℃ 5 -40℃ -40℃ 0 0 2.3 2.5 2.7 2.9 3.1 3.3 3.5 0 50 100 150 200 250 300 VIN[V] IOUT[mA] Figure 47. Figure 48. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 13/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet BU12UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) GROUND PIN CURRENT vs TEMPERATURE SHUTDOWN CURRENT vs INPUT VOLTAGE 70 100 Vout=1.2V Vout=1.2V 90 60 80 85℃ 50 70 25℃ A]40 nA] 60 -40℃ D[u DN[ 50 IGN30 ISH 40 30 20 20 10 10 0 0 -40 -20 0 Tempe2r0ature[℃]40 60 80 2.3 2.5 2.7 2.9VIN[V]3.1 3.3 3.5 Figure 49. Figure 50. CURRENT LIMIT vs INPUT VOLTAGE POWER-SUPPLY RIPPLE REJECTION vs FREQUENCY 700 Vout=1.2V 100 90 600 10mA 80 150mA 500 70 M[mA]400 RR[dB] 5600 ILI300 PS 40 200 30 20 85℃ 100 25℃ 10 -40℃ 0 0 2.3 2.5 2.7 2.9 3.1 3.3 3.5 10 100 1000 10000 100000 1000000 VIN[V] Frequency[Hz] Figure 51. Figure 52. LOAD TRANSIENT RESPONSE LOAD TRANSIENT RESPONSE Trise=Tfall=1us Trise=Tfall=1us 200mA 0mA/div mA/div 10mA 10 IOUT 0mA 20 IOUT 0mA V/div VOUT V/div VOUT m m 100 100 Vout=1.2V Vout=1.2V 10µs/div 10µs/div Figure 53. Figure 54. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 14/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet BU12UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) LOAD TRANSIENT RESPONSE LOAD TRANSIENT RESPONSE Trise=Tfall=1us Trise=Tfall=1us mA/div 50mA mA/div 300mA 50 IOUT 0mA 200 IOUT 0mA V/div VOUT V/div VOUT m m 100 100 Vout=1.2V Vout=1.2V 10µs/div 10µs/div Figure 55. Figure 56. LINE TRANSIENT RESPONSE LINE TRANSIENT RESPONSE Slew Rate = 0.5V/µs Slew Rate = 0.5V/µs V/div 2.9V V/div 2.9V 1 VIN 1 VIN 2.3V 2.3V mV/div VOUT mV/div VOUT 100 Vout=1.2V 100 Vout=1.2V Iout=300mA Iout=1mA 1ms/div 1ms/div Figure 57. Figure 58. LINE TRANSIENT RESPONSE VIN RAMP UP, RAMP DOWN RESPONSE Slew Rate = 0.5V/µs Vout=1.2V Iout=1mA 3.6V div / V 1 VIN VIN 2.1V div / V 1 div / VOUT V m 00 VOUT 1 Vout=1.2V Iout=300mA 1ms/div 200ms/div Figure 59. Figure 60. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 15/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet BU12UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) START UP TIME DISCHARGE TIME 1.5V 1.5V V/div V/div 1 1 STBY 0V STBY 0V V/div VOUT V/div VOUT 1 Vout=1.2V 1 Vout=1.2V Iout=0mA Iout=0mA Cout=1.0uF Cout=1.0uF 20µs/div 40µs/div Figure 61. Figure 62. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 16/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet BU18UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) LINE REGULATION LINE REGULATION 1.90 1.90 Vout=1.8V Vout=1.8V 1.88 Iout=10mA 1.88 Iout=300mA 1.86 1.86 1.84 1.84 V]1.82 V]1.82 UT[1.80 UT[1.80 O O V1.78 V1.78 1.76 1.76 1.74 1.74 85℃ 85℃ 1.72 25℃ 1.72 25℃ -40℃ -40℃ 1.70 1.70 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 VIN[V] VIN[V] Figure 64. Figure 63. LOAD REGULATION OUTPUT VOLTAGE vs TEMPERATURE 1.90 Vout=1.8V 1.90 Vout=1.8V 1.88 1.88 1.86 1.86 1.84 1.84 V]1.82 V]1.82 UT[1.80 UT[1.80 O O V1.78 V1.78 1.76 1.76 1.74 1.74 85℃ 10mA 1.72 25℃ 1.72 150mA -40℃ 300mA 1.70 1.70 0 50 100 150 200 250 300 -40 -20 0 20 40 60 80 IOUT[mA] Temperature[℃] Figure 65. Figure 66. GROUND PIN CURRENT vs INPUT VOLTAGE GROUND PIN CURRENT vs LOAD 70 450 Vout=1.8V Vout=1.8V 65 400 60 55 350 50 45 300 uA]40 uA]250 D[35 D[ GN30 GN200 I I 25 150 20 15 100 10 8255℃℃ 50 8255℃℃ 5 -40℃ -40℃ 0 0 2.3 2.5 2.7 2.9 3.1 3.3 3.5 0 50 100 150 200 250 300 VIN[V] IOUT[mA] Figure 67. Figure 68. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 17/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet BU18UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) GROUND PIN CURRENT vs TEMPERATURE SHUTDOWN CURRENT vs INPUT VOLTAGE 70 100 Vout=1.8V Vout=1.8V 90 60 80 85℃ 50 70 25℃ A]40 nA] 60 -40℃ D[u DN[ 50 N H G30 S 40 I I 30 20 20 10 10 0 0 -40 -20 0 Tempe2r0ature[℃]40 60 80 2.3 2.5 2.7 2.9VIN[V]3.1 3.3 3.5 Figure 69. Figure 70. CURRENT LIMIT vs INPUT VOLTAGE POWER-SUPPLY RIPPLE REJECTION vs FREQUENCY 700 100 Vout=1.8V 90 600 10mA 80 150mA 500 70 M[mA]400 RR[dB] 5600 ILI300 PS 40 200 30 20 85℃ 100 25℃ 10 -40℃ 0 0 2.3 2.5 2.7 2.9 3.1 3.3 3.5 10 100 1000 10000 100000 1000000 VIN[V] Frequency[Hz] Figure 71. Figure 72. LOAD TRANSIENT RESPONSE LOAD TRANSIENT RESPONSE Trise=Tfall=1us Trise=Tfall=1us 200mA 0mA/div mA/div 10mA 10 IOUT 0mA 20 IOUT 0mA V/div VOUT V/div VOUT m m 100 100 Vout=1.8V Vout=1.8V 10µs/div 10µs/div Figure 73. Figure 74. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 18/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet BU18UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) LOAD TRANSIENT RESPONSE LOAD TRANSIENT RESPONSE Trise=Tfall=1us Trise=Tfall=1us mA/div 50mA mA/div 300mA 50 IOUT 0mA 200 IOUT 0mA V/div VOUT V/div VOUT m m 100 100 Vout=1.8V Vout=1.8V 10µs/div 10µs/div Figure 75. Figure 76. LINE TRANSIENT RESPONSE LINE TRANSIENT RESPONSE Slew Rate = 0.5V/µs Slew Rate = 0.5V/µs V/div 2.9V V/div 2.9V 1 VIN 1 VIN 2.3V 2.3V mV/div VOUT mV/div VOUT 100 Vout=1.8V 100 Vout=1.8V Iout=300mA Iout=1mA 1ms/div 1ms/div Figure 77. Figure 78. LINE TRANSIENT RESPONSE VIN RAMP UP, RAMP DOWN RESPONSE Slew Rate = 0.5V/µs Vout=1.8V Iout=1mA 3.6V div / V 1 VIN VIN 2.1V div / V 1 div / VOUT V m 00 VOUT 1 Vout=1.8V Iout=300mA 1ms/div 200ms/div Figure 79. Figure 80. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 19/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet BU18UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) START UP TIME DISCHARGE TIME 1.5V 1.5V V/div V/div 1 1 STBY 0V STBY 0V V/div VOUT V/div VOUT 1 Vout=1.8V 1 Vout=1.8V Iout=0mA Iout=0mA Cout=1.0uF Cout=1.0uF 20µs/div 40µs/div Figure 81. Figure 82. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 20/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet BU31UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) LINE REGULATION LINE REGULATION 3.20 3.20 Vout=3.1V Vout=3.1V 3.18 Iout=10mA 3.18 Iout=300mA 3.16 3.16 85℃ 25℃ 3.14 3.14 -40℃ V]3.12 V]3.12 UT[3.10 UT[3.10 O O V3.08 V3.08 3.06 3.06 3.04 3.04 85℃ 3.02 25℃ 3.02 -40℃ 3.00 3.00 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 VIN[V] VIN[V] Figure 84. Figure 83. 3.20 LOAD REGULATION Vout=3.1V 3.20 OUTPUT VOLTAGE vs TEMPERATURE Vout=3.1V 3.18 85℃ 3.18 10mA 25℃ 3.16 -40℃ 3.16 150mA 300mA 3.14 3.14 OUT[V]33..1102 OUT[V]33..1102 V3.08 V3.08 3.06 3.06 3.04 3.04 3.02 3.02 3.00 3.00 0 50 100 150 200 250 300 -40 -20 0 20 40 60 80 IOUT[mA] Temperature[℃] Figure 85. Figure 86. GROUND PIN CURRENT vs INPUT VOLTAGE GROUND PIN CURRENT vs LOAD 70 450 Vout=3.1V Vout=3.1V 65 400 60 55 350 50 45 300 uA]40 uA]250 D[35 D[ GN30 GN200 I I 25 150 20 15 100 10 85℃ 85℃ 5 2-54℃0℃ 50 2-54℃0℃ 0 0 3.3 3.8 4.3 4.8 0 50 100 150 200 250 300 VIN[V] IOUT[mA] Figure 87. Figure 88. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 21/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet BU31UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) GROUND PIN CURRENT vs TEMPERATURE SHUTDOWN CURRENT vs INPUT VOLTAGE 70 100 Vout=3.1V Vout=3.1V 90 85℃ 60 25℃ 80 -40℃ 50 70 A]40 nA] 60 D[u DN[ 50 N H G30 S 40 I I 30 20 20 10 10 0 0 -40 -20 0 Tempe2r0ature[℃]40 60 80 3.3 3.5 3.7 3.9 V4IN.1[V] 4.3 4.5 4.7 4.9 Figure 89. Figure 90. CURRENT LIMIT vs INPUT VOLTAGE POWER-SUPPLY RIPPLE REJECTION vs FREQUENCY 900 100 Vout=3.1V 800 90 10mA 80 700 150mA 70 600 M[mA]500 RR[dB] 5600 ILI400 PS 40 300 30 200 20 85℃ 100 25℃ 10 -40℃ 0 0 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 10 100 1000 10000 100000 VIN[V] Frequency[Hz] Figure 91. Figure 92. LOAD TRANSIENT RESPONSE LOAD TRANSIENT RESPONSE Trise=Tfall=1us Trise=Tfall=1us 200mA 0mA/div mA/div 10mA 10 IOUT 0mA 20 IOUT 0mA V/div VOUT V/div VOUT m m 100 100 Vout=3.1V Vout=3.1V 10µs/div 10µs/div Figure 93. Figure 94. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 22/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet BU31UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) LOAD TRANSIENT RESPONSE LOAD TRANSIENT RESPONSE Trise=Tfall=1us Trise=Tfall=1us 50mA/div IOUT 50mA 0mA 200mA/div IOUT 300mA 0mA mV/div VOUT mV/div VOUT 100 100 Vout=3.1V Vout=3.1V 10µs/div 10µs/div Figure 95. Figure 96. LINE TRANSIENT RESPONSE LINE TRANSIENT RESPONSE Slew Rate = 0.5V/µs Slew Rate = 0.5V/µs V/div 4.3V V/div 4.3V 1 VIN 1 VIN 3.7V 3.7V mV/div VOUT mV/div VOUT 100 Vout=3.1V 100 Vout=3.1V Iout=300mA Iout=1mA 1ms/div 1ms/div Figure 97. Figure 98. LINE TRANSIENT RESPONSE VIN RAMP UP, RAMP DOWN RESPONSE Slew Rate = 0.5V/µs Vout=3.1V Iout=1mA 5.0V div VIN / V 1 VIN 3.5V div / V 1 div / VOUT V m 00 VOUT 1 Vout=3.1V Iout=300mA 1ms/div 200ms/div Figure 99. Figure 100. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 23/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet BU31UA3WNVX ● Reference data (Ta=25ºC unless otherwise specified.) START UP TIME DISCHARGE TIME 1.5V 1.5V V/div V/div 1 1 STBY 0V STBY 0V Vout=3.1V V/div VOUT V/div VOUT ICoouut=t=01m.0AuF 1 Vout=3.1V 1 Iout=0mA Cout=1.0uF 20µs/div 40µs/div Figure 101. Figure 102. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 24/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet ● About power dissipation (Pd) As for power dissipation, an approximate estimate of the heat reduction characteristics and internal power consumption of IC are shown, so please use these for reference. Since power dissipation changes substantially depending on the implementation conditions (board size, board thickness, metal wiring rate, number of layers and through holes, etc.), it is recommended to measure Pd on a set board. Exceeding the power dissipation of IC may lead to deterioration of the original IC performance, such as causing operation of the thermal shutdown circuit or reduction in current capability. Therefore, be sure to prepare sufficient margin within power dissipation for usage. Calculation of the maximum internal power consumption of IC (PMAX) PMAX=(VIN-VOUT)×IOUT(MAX.) (VIN: Input voltage VOUT: Output voltage IOUT(MAX): Maximum output current)  Measurement conditions Standard ROHM Board Evaluation Board 1 Layout of Board for Measurement Top Layer (Top View) Top Layer (Top View) IC Implementation Position Bottom Layer (Top View) Bottom Layer (Top View) Measurement State With board implemented (Wind speed 0 m/s) With board implemented (Wind speed 0 m/s) Board Material Glass epoxy resin (Double-side board) Glass epoxy resin (Double-side board) Board Size 70 mm x 70 mm x 1.6 mm 40 mm x 40 mm x 1.6 mm Top layer Metal (GND) wiring rate: Approx. 0% Metal (GND) wiring rate: Approx. 50% Wiring Bottom Rate Metal (GND) wiring rate: Approx. 50% Metal (GND) wiring rate: Approx. 50% layer Through Hole Diameter 0.5mm x 6 holes Diameter 0.5mm x 25 holes Power Dissipation 0.56W 0.39W Thermal Resistance θja=178.6°C/W θja=256.4°C/W 0.6 0.56W 0.5 0.4 0.39W W] 0.3 Pd [ 0.2 * Please design the margin so that PMAX becomes is than Pd (PMAXPd) within the usage temperature range 0.1 0 0 25 50 75 85 100 125 Ta [℃] Figure 103. SSON004X1010 Power dissipation heat reduction characteristics (Reference) www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 25/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet ●Operation Notes 1.) Absolute maximum ratings Use of the IC in excess of absolute maximum ratings (such as the input voltage or operating temperature range) may result in damage to the IC. Assumptions should not be made regarding the state of the IC (e.g., short mode or open mode) when such damage is suffered. If operational values are expected to exceed the maximum ratings for the device, consider adding protective circuitry (such as fuses) to eliminate the risk of damaging the IC. 2.) GND potential The potential of the GND pin must be the minimum potential in the system in all operating conditions. Never connect a potential lower than GND to any pin, even if only transiently. 3.) Thermal design Use a thermal design that allows for a sufficient margin for that package power dissipation rating (Pd) under actual operating conditions. 4.) Inter-pin shorts and mounting errors Use caution when orienting and positioning the IC for mounting on printed circuit boards. Improper mounting or shorts between pins may result in damage to the IC. 5.) Common impedance Wiring traces should be as short and wide as possible to minimize common impedance. Bypass capacitors should be use to keep ripple to a minimum. 6.) Voltage of STBY pin To enable standby mode for all channels, set the STBY pin to 0.3 V or less, and for normal operation, to 1.2 V or more. Setting STBY to a voltage between 0.3 and 1.2 V may cause malfunction and should be avoided. Keep transition time between high and low (or vice versa) to a minimum. Additionally, if STBY is shorted to VIN, the IC will switch to standby mode and disable the output discharge circuit, causing a temporary voltage to remain on the output pin. If the IC is switched on again while this voltage is present, overshoot may occur on the output. Therefore, in applications where these pins are shorted, the output should always be completely discharged before turning the IC on. 7.) Over-current protection circuit (OCP) This IC features an integrated over-current and short-protection circuitry on the output to prevent destruction of the IC when the output is shorted. The OCP circuitry is designed only to protect the IC from irregular conditions (such as motor output shorts) and is not designed to be used as an active security device for the application. Therefore, applications should not be designed under the assumption that this circuitry will engage. 8.) Thermal shutdown circuit (TSD) This IC also features a thermal shutdown circuit that is designed to turn the output off when the junction temperature of the IC exceeds about 150℃. This feature is intended to protect the IC only in the event of thermal overload and is not designed to guarantee operation or act as an active security device for the application. Therefore, applications should not be designed under the assumption that this circuitry will engage. 9.) Input/output capacitor Capacitors must be connected between the input/output pins and GND for stable operation, and should be physically mounted as close to the IC pins as possible. The input capacitor helps to counteract increases in power supply impedance, and increases stability in applications with long or winding power supply traces. The output capacitance value is directly related to the overall stability and transient response of the regulator, aUnnds tsabhloeu lrde gbieo ns et to the largest possible value for the application to increase these characteristics. During design, keep in mind that in general, ceramic capacitors have a wide range of tolerances, temperature coefficients and DC bias characteristics, and that their capacitance values tend to decrease over time. Confirm these details before choosing appropriate capacitors for your application.(Please refer the technical note, regarding ceramic capacitor of recommendation) 10.) About the equivalent series resistance (ESR) of a ceramic capacitor Cout=1.0uF Cin=1.0uF Temp=25℃ Capacitors generally have ESR (equivalent series resistance) and it operates stably in the ESR-IOUT area shown on the right. 100 Since ceramic capacitors, tantalum capacitors, electrolytic Unstable capacitors, etc. generally have different ESR, please check 10 the ESR of the capacitor to be used and use it within the stability area range shown in the right graph for evaluation Ω] of the actual application. SR[ 1 E 0.1 Stable 0.01 0 100 200 300 400 IOUT[mA] Figure 104. Stable region (example) www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 26/27 30.Oct.2015 Rev.008

BUxxUA3WNVXシリーズ Datasheet ●Revision History Date Revision Changes 31.Jan.2013 001 New Release. 20.Feb.2013 002 Package size is changed. Adding a revision history 21.Feb.2013 003 Adding a lineup. The condition of drop voltage is changed. 19.Apr.2013 004 Adding lineup. 28.Jun.2013 005 Adding reference data. Adding Pin Descriptions. 06.Sep.2013 006 Adding BOTTOM VIEW. 05.Feb.2014 007 Adding reference data 10.Oct.2015 008 Lineup is changed. www.rohm.com TSZ02201-0GBG0A300010-1-2 © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 27/27 30.Oct.2015 Rev.008

DDaattaasshheeeett Notice Precaution on using ROHM Products 1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASSⅢ CLASSⅡb CLASSⅢ CLASSⅢ CLASSⅣ CLASSⅢ 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice-PGA-E Rev.002 © 2015 ROHM Co., Ltd. All rights reserved.

DDaattaasshheeeett Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label QR code printed on ROHM Products label is for ROHM’s internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software). 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice-PGA-E Rev.002 © 2015 ROHM Co., Ltd. All rights reserved.

DDaattaasshheeeett General Precaution 1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM’s Products against warning, caution or note contained in this document. 2. All information contained in this document is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sale s representative. 3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information. Notice – WE Rev.001 © 2015 ROHM Co., Ltd. All rights reserved.

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: R OHM Semiconductor: BU26UA3WNVX-TL BU1JUA3WNVX-TL BU21UA3WNVX-TL BU13UA3WNVX-TL BU1AUA3WNVX-TL BU19UA3WNVX-TL BU32UA3WNVX-TL BU22UA3WNVX-TL BU2JUA3WNVX-TL BU29UA3WNVX-TL BU28UA3WNVX-TL BU20UA3WNVX-TL BU2KUA3WNVX-TL BU15UA3WNVX-TL BU33UA3WNVX-TL BU2HUA3WNVX-TL BU2AUA3WNVX-TL BU1BUA3WNVX-TL BU25UA3WNVX-TL BU31UA3WNVX-TL BU1CUA3WNVX-TL BU12UA3WNVX-TL BU30UA3WNVX-TL BU37UA3WNVX-TL BU10UA3WNVX-TL BU18UA3WNVX-TL BU11UA3WNVX-TL BU34UA3WNVX-TL BU23UA3WNVX-TL BU27UA3WNVX-TL