图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: ATTINY861V-10MU
  • 制造商: Atmel
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

ATTINY861V-10MU产品简介:

ICGOO电子元器件商城为您提供ATTINY861V-10MU由Atmel设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 ATTINY861V-10MU价格参考。AtmelATTINY861V-10MU封装/规格:嵌入式 - 微控制器, AVR 微控制器 IC AVR® ATtiny 8-位 10MHz 8KB(4K x 16) 闪存 32-VQFN(5x5)。您可以下载ATTINY861V-10MU参考资料、Datasheet数据手册功能说明书,资料中有ATTINY861V-10MU 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
A/D位大小

10 bit

产品目录

集成电路 (IC)半导体

描述

IC MCU 8BIT 8KB FLASH 32QFN8位微控制器 -MCU AVR 8K FLASH 512B EE 512B SRAM ADC

EEPROM容量

512 x 8

产品分类

嵌入式 - 微控制器

I/O数

16

品牌

Atmel

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

嵌入式处理器和控制器,微控制器 - MCU,8位微控制器 -MCU,Atmel ATTINY861V-10MUAVR® ATtiny

数据手册

点击此处下载产品Datasheet点击此处下载产品Datasheet

产品型号

ATTINY861V-10MU

PCN其它

点击此处下载产品Datasheet点击此处下载产品Datasheet点击此处下载产品Datasheet

RAM容量

512 x 8

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=24997http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=25784http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26162http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26159http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26180

产品目录页面

点击此处下载产品Datasheet

产品种类

Microcontrollers - RISC

供应商器件封装

32-QFN(5x5)

其它名称

ATTINY861V10MU

包装

托盘

可用A/D通道

42

可编程输入/输出端数量

16

商标

Atmel

商标名

ATTINY

处理器系列

tinyAVR

外设

欠压检测/复位,POR,PWM,WDT

安装风格

SMD/SMT

定时器数量

3

封装/外壳

32-VFQFN 裸露焊盘

封装/箱体

MLF-32

工作温度

-40°C ~ 85°C

工作电源电压

1.8 V to 5.5 V

工厂包装数量

490

振荡器类型

内部

接口类型

USI

数据RAM大小

512 B

数据Ram类型

SRAM

数据ROM大小

512 B

数据Rom类型

EEPROM

数据总线宽度

8 bit

数据转换器

A/D 11x10b

最大工作温度

+ 85 C

最大时钟频率

10 MHz

最小工作温度

- 40 C

标准包装

490

核心

AVR

核心处理器

AVR

核心尺寸

8-位

片上ADC

Yes

片上DAC

Without DAC

电压-电源(Vcc/Vdd)

1.8 V ~ 5.5 V

电源电压-最大

5.5 V

电源电压-最小

1.8 V

程序存储器大小

8 kB

程序存储器类型

Flash

程序存储容量

8KB(4K x 16)

系列

ATTINY 861

输入/输出端数量

16 I/O

连接性

USI

速度

10MHz

配用

/product-detail/zh/ATSTK600/ATSTK600-ND/1812220/product-detail/zh/ATAVRBC100/ATAVRBC100-ND/1802911

ATTINY861V-10MU 相关产品

ATSAMD20G15A-AU

品牌:Microchip Technology

价格:

PIC17LC752-08I/L

品牌:Microchip Technology

价格:

TM4C123GE6PZI7

品牌:Texas Instruments

价格:

AT89C51CC02UA-RATUM

品牌:Microchip Technology

价格:

R5F51115ADFM#30

品牌:Renesas Electronics America

价格:

PIC16LF877AT-I/PT

品牌:Microchip Technology

价格:

MSP430F2001IPW

品牌:Texas Instruments

价格:

PIC16LF873-04I/SO

品牌:Microchip Technology

价格:

PDF Datasheet 数据手册内容提取

Features • High Performance, Low Power AVR® 8-Bit Microcontroller • Advanced RISC Architecture – 123 Powerful Instructions – Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation • Non-volatile Program and Data Memories – 2/4/8K Byte of In-System Programmable Program Memory Flash • Endurance: 10,000 Write/Erase Cycles 8-bit – 128/256/512 Bytes In-System Programmable EEPROM • Endurance: 100,000 Write/Erase Cycles Microcontroller – 128/256/512 Bytes Internal SRAM – Data retention: 20 years at 85°C / 100 years at 25C with 2/4/8K – Programming Lock for Self-Programming Flash Program & EEPROM Data Security • Peripheral Features Bytes In-System – 8/16-bit Timer/Counter with Prescaler Programmable – 8/10-bit High Speed Timer/Counter with Separate Prescaler • 3 High Frequency PWM Outputs with Separate Output Compare Registers Flash • Programmable Dead Time Generator – 10-bit ADC • 11 Single-Ended Channels • 16 Differential ADC Channel Pairs ATtiny261/V* • 15 Differential ADC Channel Pairs with Programmable Gain (1x, 8x, 20x, 32x) – On-chip Analog Comparator ATtiny461/V – Programmable Watchdog Timer with Separate On-chip Oscillator ATtiny861/V – Universal Serial Interface with Start Condition Detector • Special Microcontroller Features – debugWIRE On-chip Debug System – In-System Programmable via SPI Port Summary – External and Internal Interrupt Sources – Low Power Idle, ADC Noise Reduction, Standby and Power-Down Modes – Enhanced Power-on Reset Circuit – Programmable Brown-out Detection Circuit *Mature – Internal Calibrated Oscillator – On-chip Temperature Sensor • I/O and Packages – 16 Programmable I/O Lines – Available in 20-pin PDIP, 20-pin SOIC and 32-pad MLF • Operating Voltage: – 1.8 – 5.5V for ATtiny261V/461V/861V – 2.7 – 5.5V for ATtiny261/461/861 • Speed Grade: – ATtiny261V/461V/861V: 0 – 4 MHz @ 1.8 – 5.5V, 0 – 10 MHz @ 2.7 – 5.5V – ATtiny261/461/861: 0 – 10 MHz @ 2.7 – 5.5V, 0 – 20 MHz @ 4.5 – 5.5V • Industrial Temperature Range • Low Power Consumption – Active Mode (1 MHz System Clock): 300 µA @ 1.8V – Power-Down Mode: 0.1 µA at 1.8V 2588FS–AVR–06/2013

ATtiny261/461/861 1. Pin Configurations Figure 1-1. Pinout ATtiny261/461/861 and ATtiny261V/461V/861V PDIP/SOIC (MOSI/DI/SDA/OC1A/PCINT8) PB0 1 20 PA0 (ADC0/DI/SDA/PCINT0) (MISO/DO/OC1A/PCINT9) PB1 2 19 PA1 (ADC1/DO/PCINT1) (SCK/USCK/SCL/OC1B/PCINT10) PB2 3 18 PA2 (ADC2/INT1/USCK/SCL/PCINT2) (OC1B/PCINT11) PB3 4 17 PA3 (AREF/PCINT3) VCC 5 16 AGND GND 6 15 AVCC (ADC7/OC1D/CLKI/XTAL1/PCINT12) PB4 7 14 PA4 (ADC3/ICP0/PCINT4) (ADC8/OC1D/CLKO/XTAL2/PCINT13) PB5 8 13 PA5 (ADC4/AIN2/PCINT5) (ADC9/INT0/T0/PCINT14) PB6 9 12 PA6 (ADC5/AIN0/PCINT6) (ADC10/RESET/PCINT15) PB7 10 11 PA7 (ADC6/AIN1/PCINT7) 0) 1 NT 8) SCL/OC1B/PCI C1A/PCINT9) A/OC1A/PCINT A/PCINT0) CINT1) SCK/ DO/O DI/SD DI/SD DO/P SCK/U MISO/ MOSI/ ADC0/ ADC1/ 2 ( 1 ( 0 ( 0 ( 1 ( B B B C C C A A P P P N N N P P 2 1 0 9 8 7 6 5 3 3 3 2 2 2 2 2 NC 1 24 NC (OC1B/PCINT11) PB3 2 23 PA2 (ADC2/INT1/USCK/SCL/PCINT2) NC 3 22 PA3 (AREF/PCINT3) VCC 4 21 AGND QFN/MLF GND 5 20 NC NC 6 19 NC (ADC7/OC1D/CLKI/XTAL1/PCINT12) PB4 7 18 AVCC (ADC8/OC1D/CLKO/XTAL2/PCINT13) PB5 8 17 PA4 (ADC3/ICP0/PCINT4) 0 1 2 3 4 5 6 9 1 1 1 1 1 1 1 C 6 7 C 7 6 5 C N B B N A A A N P P P P P 4) 5) 7) 6) 5) 1 1 T T T T T N N N CIN CIN PCI PCI PCI 0/P T/P N1/ N0/ N2/ T0/T ESE 6/AI 5/AI 4/AI N R C C C DC9/I DC10/ (AD (AD (AD A A ( ( Note: To ensure mechanical stability the center pad underneath the QFN/MLF package should be soldered to ground on the board. 2 2588FS–AVR–06/2013

ATtiny261/461/861 1.1 Pin Descriptions 1.1.1 VCC Supply voltage. 1.1.2 GND Ground. 1.1.3 AVCC Analog supply voltage. This is the supply voltage pin for the Analog-to-digital Converter (ADC), the analog comparator, the Brown-Out Detector (BOD), the internal voltage reference and Port A. It should be externally connected to VCC, even if some peripherals such as the ADC are not used. If the ADC is used AVCC should be connected to VCC through a low-pass filter. 1.1.4 AGND Analog ground. 1.1.5 Port A (PA7:PA0) An 8-bit, bi-directional I/O port with internal pull-up resistors, individually selectable for each bit. Output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, port pins that are externally pulled low will source current if pull-up resistors have been activated. Port pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port A also serves the functions of various special features of the device, as listed on page 63. 1.1.6 Port B (PB7:PB0) An 8-bit, bi-directional I/O port with internal pull-up resistors, individually selectable for each bit. Output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, port pins that are externally pulled low will source current if pull-up resistors have been activated. Port pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port B also serves the functions of various special features of the device, as listed on page 66. 1.1.7 RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running and provided the reset pin has not been disabled. The min- imum pulse length is given in Table 19-4 on page 190. Shorter pulses are not guaranteed to generate a reset. The reset pin can also be used as a (weak) I/O pin. 3 2588FS–AVR–06/2013

ATtiny261/461/861 2. Overview ATtiny261/461/861 are low-power CMOS 8-bit microcontrollers based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny261/461/861 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. 2.1 Block Diagram Figure 2-1. Block Diagram D C N C G V Watchdog Power debugWIRE Timer Supervision POR / BOD & Watchdog PROGRAM Oscillator RESET LOGIC Oscillator Flash SRAM Circuits / Clock Generation CPU EEPROM AVCC AGND AREF Timer/Counter0 Timer/Counter1 A/D Conv. S U B A AT D Internal USI Analog Comp. Bandgap 3 11 PORT B (8) PORT A (8) RESET XTAL[1..2] PB[0..7] PA[0..7] The AVR core combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than con- ventional CISC microcontrollers. 4 2588FS–AVR–06/2013

ATtiny261/461/861 The ATtiny261/461/861 provides the following features: 2/4/8K byte of In-System Programmable Flash, 128/256/512 bytes EEPROM, 128/256/512 bytes SRAM, 16 general purpose I/O lines, 32 general purpose working registers, an 8-bit Timer/Counter with compare modes, an 8-bit high speed Timer/Counter, a Universal Serial Interface, Internal and External Interrupts, an 11-chan- nel, 10-bit ADC, a programmable Watchdog Timer with internal oscillator, and four software selectable power saving modes. Idle mode stops the CPU while allowing the SRAM, Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning. Power- down mode saves the register contents, disabling all chip functions until the next Interrupt or Hardware Reset. ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator oscillator is running while the rest of the device is sleeping, allowing very fast start-up combined with low power consumption. The device is manufactured using Atmel’s high density non-volatile memory technology. The On-chip ISP Flash allows the Program memory to be re-programmed In-System through an SPI serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code running on the AVR core. The ATtiny261/461/861 AVR is supported by a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, and Evaluation kits. 5 2588FS–AVR–06/2013

ATtiny261/461/861 3. About 3.1 Resources A comprehensive set of drivers, application notes, data sheets and descriptions on development tools are available for download at http://www.atmel.com/avr. 3.2 Code Examples This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen- tation for more details. For I/O Registers located in the extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced with instructions that allow access to extended I/O. Typically, this means “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”. Note that not all AVR devices include an extended I/O map. 3.3 Data Retention Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C. 3.4 Disclaimer Typical values contained in this data sheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. 6 2588FS–AVR–06/2013

ATtiny261/461/861 4. Register Summary Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page 0x3F (0x5F) SREG I T H S V N Z C page 8 0x3E (0x5E) SPH – – – – – SP10 SP9 SP8 page 11 0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 page 11 0x3C (0x5C) Reserved – 0x3B (0x5B) GIMSK INT1 INT0 PCIE1 PCIE0 – – – – page 52 0x3A (0x5A) GIFR INTF1 INTF0 PCIF – – – – – page 53 0x39 (0x59) TIMSK OCIE1D OCIE1A OCIE1B OCIE0A OCIE0B TOIE1 TOIE0 TICIE0 page 86, page 123 0x38 (0x58) TIFR OCF1D OCF1A OCF1B OCF0A OCF0B TOV1 TOV0 ICF0 page 87, page 123 0x37 (0x57) SPMCSR – – – CTPB RFLB PGWRT PGERS SPMEN page 169 0x36 (0x56) PRR PRTIM1 PRTIM0 PRUSI PRADC page 37 0x35 (0x55) MCUCR – PUD SE SM1 SM0 – ISC01 ISC00 page 39, page 69, page 52 0x34 (0x54) MCUSR – – – – WDRF BORF EXTRF PORF page 47, 0x33 (0x53) TCCR0B – – – TSM PSR0 CS02 CS01 CS00 page 85 0x32 (0x52) TCNT0L Timer/Counter0 Counter Register Low Byte page 85 0x31 (0x51) OSCCAL Oscillator Calibration Register page 32 0x30 (0x50) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B PWM1A PWM1B page 112 0x2F (0x4F) TCCR1B PWM1X PSR1 DTPS11 DTPS10 CS13 CS12 CS11 CS10 page 169 0x2E (0x4E) TCNT1 Timer/Counter1 Counter Register page 121 0x2D (0x4D) OCR1A Timer/Counter1 Output Compare Register A page 121 0x2C (0x4C) OCR1B Timer/Counter1 Output Compare Register B page 122 0x2B (0x4B) OCR1C Timer/Counter1 Output Compare Register C page 122 0x2A (0x4A) OCR1D Timer/Counter1 Output Compare Register D page 122 0x29 (0x49) PLLCSR LSM PCKE PLLE PLOCK page 120 0x28 (0x48) CLKPR CLKPCE CLKPS3 CLKPS2 CLKPS1 CLKPS0 page 32 0x27 (0x47) TCCR1C COM1A1S COM1A0S COM1B1S COM1B0S COM1D1 COM1D0 FOC1D PWM1D page 117 0x26 (0x46) TCCR1D FPIE1 FPEN1 FPNC1 FPES1 FPAC1 FPF1 WGM11 WGM10 page 118 0x25 (0x45) TC1H TC19 TC18 page 121 0x24 (0x44) DT1 DT1H3 DT1H2 DT1H1 DT1H0 DT1L3 DT1L2 DT1L1 DT1L0 page 124 0x23 (0x43) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 page 54 0x22 (0x42) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 page 54 0x21 (0x41) WDTCR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 page 47 0x20 (0x40) DWDR DWDR[7:0] page 37 0x1F (0x3F) EEARH EEAR8 page 20 0x1E (0x3E) EEARL EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 page 21 0x1D (0x3D) EEDR EEPROM Data Register page 21 0x1C (0x3C) EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE page 21 0x1B (0x3B) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 page 69 0x1A (0x3A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 page 69 0x19 (0x39) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 page 70 0x18 (0x38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 page 70 0x17 (0x37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 page 70 0x16 (0x36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 page 70 0x15 (0x35) TCCR0A TCW0 ICEN0 ICNC0 ICES0 ACIC0 CTC0 page 84 0x14 (0x34) TCNT0H Timer/Counter0 Counter Register High Byte page 86 0x13 (0x33) OCR0A Timer/Counter0 Output Compare Register A page 86 0x12 (0x32) OCR0B Timer/Counter0 Output Compare Register B page 86 0x11 (0x31) USIPP USIPOS page 136 0x10 (0x30) USIBR USI Buffer Register page 133 0x0F (0x2F) USIDR USI Data Register page 132 0x0E (0x2E) USISR USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 page 133 0x0D (0x2D) USICR USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC page 134 0x0C (0x2C) GPIOR2 General Purpose I/O Register 2 page 22 0x0B (0x2B) GPIOR1 General Purpose I/O Register 1 page 23 0x0A (0x2A) GPIOR0 General Purpose I/O Register 0 page 23 0x09 (0x29) ACSRB HSEL HLEV ACM2 ACM1 ACM0 page 140 0x08 (0x28) ACSRA ACD ACBG ACO ACI ACIE ACME ACIS1 ACIS0 page 139 0x07 (0x27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 page 155 0x06 (0x26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 page 159 0x05 (0x25) ADCH ADC Data Register High Byte page 160 0x04 (0x24) ADCL ADC Data Register Low Byte page 160 0x03 (0x23) ADCSRB BIN GSEL REFS2 MUX5 ADTS2 ADTS1 ADTS0 page 161 0x02 (0x22) DIDR1 ADC10D ADC9D ADC8D ADC7D page 162 0x01 (0x21) DIDR0 ADC6D ADC5D ADC4D ADC3D AREFD ADC2D ADC1D ADC0D page 162 0x00 (0x20) TCCR1E – - OC1OE5 OC1OE4 OC1OE3 OC1OE2 OC1OE1 OC1OE0 page 119 7 2588FS–AVR–06/2013

ATtiny261/461/861 Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. 2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only. 8 2588FS–AVR–06/2013

ATtiny261/461/861 5. Instruction Set Summary Mnemonics Operands Description Operation Flags #Clocks ARITHMETIC AND LOGIC INSTRUCTIONS ADD Rd, Rr Add two Registers Rd  Rd + Rr Z,C,N,V,H 1 ADC Rd, Rr Add with Carry two Registers Rd  Rd + Rr + C Z,C,N,V,H 1 ADIW Rdl,K Add Immediate to Word Rdh:Rdl  Rdh:Rdl + K Z,C,N,V,S 2 SUB Rd, Rr Subtract two Registers Rd  Rd - Rr Z,C,N,V,H 1 SUBI Rd, K Subtract Constant from Register Rd  Rd - K Z,C,N,V,H 1 SBC Rd, Rr Subtract with Carry two Registers Rd  Rd - Rr - C Z,C,N,V,H 1 SBCI Rd, K Subtract with Carry Constant from Reg. Rd  Rd - K - C Z,C,N,V,H 1 SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl  Rdh:Rdl - K Z,C,N,V,S 2 AND Rd, Rr Logical AND Registers Rd Rd  Rr Z,N,V 1 ANDI Rd, K Logical AND Register and Constant Rd  Rd K Z,N,V 1 OR Rd, Rr Logical OR Registers Rd  Rd v Rr Z,N,V 1 ORI Rd, K Logical OR Register and Constant Rd Rd v K Z,N,V 1 EOR Rd, Rr Exclusive OR Registers Rd  Rd  Rr Z,N,V 1 COM Rd One’s Complement Rd  0xFF  Rd Z,C,N,V 1 NEG Rd Two’s Complement Rd  0x00  Rd Z,C,N,V,H 1 SBR Rd,K Set Bit(s) in Register Rd  Rd v K Z,N,V 1 CBR Rd,K Clear Bit(s) in Register Rd  Rd  (0xFF - K) Z,N,V 1 INC Rd Increment Rd  Rd + 1 Z,N,V 1 DEC Rd Decrement Rd  Rd  1 Z,N,V 1 TST Rd Test for Zero or Minus Rd  Rd  Rd Z,N,V 1 CLR Rd Clear Register Rd  Rd  Rd Z,N,V 1 SER Rd Set Register Rd  0xFF None 1 BRANCH INSTRUCTIONS RJMP k Relative Jump PC PC + k + 1 None 2 IJMP Indirect Jump to (Z) PC  Z None 2 RCALL k Relative Subroutine Call PC  PC + k + 1 None 3 ICALL Indirect Call to (Z) PC  Z None 3 RET Subroutine Return PC  STACK None 4 RETI Interrupt Return PC  STACK I 4 CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC PC + 2 or 3 None 1/2/3 CP Rd,Rr Compare Rd  Rr Z, N,V,C,H 1 CPC Rd,Rr Compare with Carry Rd  Rr  C Z, N,V,C,H 1 CPI Rd,K Compare Register with Immediate Rd  K Z, N,V,C,H 1 SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC  PC + 2 or 3 None 1/2/3 SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC  PC + 2 or 3 None 1/2/3 SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC  PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC  PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PCPC+k + 1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PCPC+k + 1 None 1/2 BREQ k Branch if Equal if (Z = 1) then PC  PC + k + 1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC  PC + k + 1 None 1/2 BRCS k Branch if Carry Set if (C = 1) then PC  PC + k + 1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC  PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC  PC + k + 1 None 1/2 BRLO k Branch if Lower if (C = 1) then PC  PC + k + 1 None 1/2 BRMI k Branch if Minus if (N = 1) then PC  PC + k + 1 None 1/2 BRPL k Branch if Plus if (N = 0) then PC  PC + k + 1 None 1/2 BRGE k Branch if Greater or Equal, Signed if (N  V= 0) then PC  PC + k + 1 None 1/2 BRLT k Branch if Less Than Zero, Signed if (N  V= 1) then PC  PC + k + 1 None 1/2 BRHS k Branch if Half Carry Flag Set if (H = 1) then PC  PC + k + 1 None 1/2 BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC  PC + k + 1 None 1/2 BRTS k Branch if T Flag Set if (T = 1) then PC  PC + k + 1 None 1/2 BRTC k Branch if T Flag Cleared if (T = 0) then PC  PC + k + 1 None 1/2 BRVS k Branch if Overflow Flag is Set if (V = 1) then PC  PC + k + 1 None 1/2 BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC  PC + k + 1 None 1/2 BRIE k Branch if Interrupt Enabled if ( I = 1) then PC  PC + k + 1 None 1/2 BRID k Branch if Interrupt Disabled if ( I = 0) then PC  PC + k + 1 None 1/2 BIT AND BIT-TEST INSTRUCTIONS SBI P,b Set Bit in I/O Register I/O(P,b)  1 None 2 CBI P,b Clear Bit in I/O Register I/O(P,b)  0 None 2 LSL Rd Logical Shift Left Rd(n+1)  Rd(n), Rd(0)  0 Z,C,N,V 1 LSR Rd Logical Shift Right Rd(n)  Rd(n+1), Rd(7)  0 Z,C,N,V 1 ROL Rd Rotate Left Through Carry Rd(0)C,Rd(n+1) Rd(n),CRd(7) Z,C,N,V 1 ROR Rd Rotate Right Through Carry Rd(7)C,Rd(n) Rd(n+1),CRd(0) Z,C,N,V 1 9 2588FS–AVR–06/2013

ATtiny261/461/861 Mnemonics Operands Description Operation Flags #Clocks ASR Rd Arithmetic Shift Right Rd(n)  Rd(n+1), n=0..6 Z,C,N,V 1 SWAP Rd Swap Nibbles Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0) None 1 BSET s Flag Set SREG(s)  1 SREG(s) 1 BCLR s Flag Clear SREG(s)  0 SREG(s) 1 BST Rr, b Bit Store from Register to T T  Rr(b) T 1 BLD Rd, b Bit load from T to Register Rd(b)  T None 1 SEC Set Carry C  1 C 1 CLC Clear Carry C  0 C 1 SEN Set Negative Flag N  1 N 1 CLN Clear Negative Flag N  0 N 1 SEZ Set Zero Flag Z  1 Z 1 CLZ Clear Zero Flag Z  0 Z 1 SEI Global Interrupt Enable I  1 I 1 CLI Global Interrupt Disable I 0 I 1 SES Set Signed Test Flag S  1 S 1 CLS Clear Signed Test Flag S  0 S 1 SEV Set Twos Complement Overflow. V  1 V 1 CLV Clear Twos Complement Overflow V  0 V 1 SET Set T in SREG T  1 T 1 CLT Clear T in SREG T  0 T 1 SEH Set Half Carry Flag in SREG H  1 H 1 CLH Clear Half Carry Flag in SREG H  0 H 1 DATA TRANSFER INSTRUCTIONS MOV Rd, Rr Move Between Registers Rd  Rr None 1 MOVW Rd, Rr Copy Register Word Rd+1:Rd  Rr+1:Rr None 1 LDI Rd, K Load Immediate Rd  K None 1 LD Rd, X Load Indirect Rd  (X) None 2 LD Rd, X+ Load Indirect and Post-Inc. Rd  (X), X  X + 1 None 2 LD Rd, - X Load Indirect and Pre-Dec. X  X - 1, Rd  (X) None 2 LD Rd, Y Load Indirect Rd  (Y) None 2 LD Rd, Y+ Load Indirect and Post-Inc. Rd  (Y), Y  Y + 1 None 2 LD Rd, - Y Load Indirect and Pre-Dec. Y  Y - 1, Rd  (Y) None 2 LDD Rd,Y+q Load Indirect with Displacement Rd  (Y + q) None 2 LD Rd, Z Load Indirect Rd  (Z) None 2 LD Rd, Z+ Load Indirect and Post-Inc. Rd  (Z), Z  Z+1 None 2 LD Rd, -Z Load Indirect and Pre-Dec. Z  Z - 1, Rd  (Z) None 2 LDD Rd, Z+q Load Indirect with Displacement Rd  (Z + q) None 2 LDS Rd, k Load Direct from SRAM Rd  (k) None 2 ST X, Rr Store Indirect (X) Rr None 2 ST X+, Rr Store Indirect and Post-Inc. (X) Rr, X  X + 1 None 2 ST - X, Rr Store Indirect and Pre-Dec. X  X - 1, (X)  Rr None 2 ST Y, Rr Store Indirect (Y)  Rr None 2 ST Y+, Rr Store Indirect and Post-Inc. (Y)  Rr, Y  Y + 1 None 2 ST - Y, Rr Store Indirect and Pre-Dec. Y  Y - 1, (Y)  Rr None 2 STD Y+q,Rr Store Indirect with Displacement (Y + q)  Rr None 2 ST Z, Rr Store Indirect (Z)  Rr None 2 ST Z+, Rr Store Indirect and Post-Inc. (Z)  Rr, Z  Z + 1 None 2 ST -Z, Rr Store Indirect and Pre-Dec. Z  Z - 1, (Z)  Rr None 2 STD Z+q,Rr Store Indirect with Displacement (Z + q)  Rr None 2 STS k, Rr Store Direct to SRAM (k)  Rr None 2 LPM Load Program Memory R0  (Z) None 3 LPM Rd, Z Load Program Memory Rd  (Z) None 3 LPM Rd, Z+ Load Program Memory and Post-Inc Rd  (Z), Z  Z+1 None 3 SPM Store Program Memory (z)  R1:R0 None IN Rd, P In Port Rd  P None 1 OUT P, Rr Out Port P  Rr None 1 PUSH Rr Push Register on Stack STACK  Rr None 2 POP Rd Pop Register from Stack Rd  STACK None 2 MCU CONTROL INSTRUCTIONS NOP No Operation None 1 SLEEP Sleep (see specific descr. for Sleep function) None 1 WDR Watchdog Reset (see specific descr. for WDR/Timer) None 1 BREAK Break For On-chip Debug Only None N/A 10 2588FS–AVR–06/2013

ATtiny261/461/861 6. Ordering Information 6.1 ATtiny261 - Mature Speed (MHz)(3) Power Supply (V) Ordering Code(4)(5) Package(2) Operational Range ATtiny261V-10MU 32M1-A ATtiny261V-10MUR 32M1-A Industrial 10 1.8 - 5.5 ATtiny261V-10PU 20P3 (-40C to +85C)(1) ATtiny261V-10SU 20S2 ATtiny261V-10SUR 20S2 ATtiny261-20MU 32M1-A ATtiny261-20MUR 32M1-A Industrial 20 2.7 - 5.5 ATtiny261-20PU 20P3 (-40C to +85C)(1) ATtiny261-20SU 20S2 ATtiny261-20SUR 20S2 Notes: 1. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering informa- tion and minimum quantities. 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard- ous Substances (RoHS). 3. For Speed vs. V , see Figure 19.3 on page 188. CC 4. Code indicators: – U: matte tin – R: tape & reel 5. Mature devices, replaced by ATtiny261A. 11 2588FS–AVR–06/2013

ATtiny261/461/861 Package Type 32M1-A 32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm, Micro Lead Frame Package (MLF) 20P3 20-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) 20S2 20-lead, 0.300" Wide, Plastic Gull Wing Smal Outline Package (SOIC) 12 2588FS–AVR–06/2013

ATtiny261/461/861 6.2 ATtiny461 Speed (MHz)(3) Power Supply (V) Ordering Code(4) Package(2) Operational Range ATtiny461V-10MU 32M1-A ATtiny461V-10MUR 32M1-A Industrial 10 1.8 - 5.5 ATtiny461V-10PU 20P3 (-40C to +85C)(1) ATtiny461V-10SU 20S2 ATtiny461V-10SUR 20S2 ATtiny461-20MU 32M1-A ATtiny461-20MUR 32M1-A Industrial 20 2.7 - 5.5 ATtiny461-20PU 20P3 (-40C to +85C)(1) ATtiny461-20SU 20S2 ATtiny461-20SUR 20S2 Notes: 1. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering informa- tion and minimum quantities. 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard- ous Substances (RoHS). 3. For Speed vs. V , see Figure 19.3 on page 188. CC 4. Code indicators: – U: matte tin – R: tape & reel Package Type 32M1-A 32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm, Micro Lead Frame Package (MLF) 20P3 20-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) 20S2 20-lead, 0.300" Wide, Plastic Gull Wing Smal Outline Package (SOIC) 13 2588FS–AVR–06/2013

ATtiny261/461/861 6.3 ATtiny861 Speed (MHz)(3) Power Supply (V) Ordering Code(4) Package(2) Operational Range ATtiny861V-10MU 32M1-A ATtiny861V-10MUR 32M1-A Industrial 10 1.8 - 5.5 ATtiny861V-10PU 20P3 (-40C to +85C)(1) ATtiny861V-10SU 20S2 ATtiny861V-10SUR 20S2 ATtiny861-20MU 32M1-A ATtiny861-20MUR 32M1-A Industrial 20 2.7 - 5.5 ATtiny861-20PU 20P3 (-40C to +85C)(1) ATtiny861-20SU 20S2 ATtiny861-20SUR 20S2 Notes: 1. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering informa- tion and minimum quantities. 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard- ous Substances (RoHS). 3. For Speed vs. V , see Figure 19.3 on page 188. CC 4. Code indicators: – U: matte tin – R: tape & reel Package Type 32M1-A 32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm, Micro Lead Frame Package (MLF) 20P3 20-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) 20S2 20-lead, 0.300" Wide, Plastic Gull Wing Smal Outline Package (SOIC) 14 2588FS–AVR–06/2013

ATtiny261/461/861 7. Packaging Information 7.1 32M1-A D D1 1 0 2 3 Pin 1 ID E1 E SIDE VIEW TOP VIEW A3 A2 A1 A K 0.08C COMMON DIMENSIONS P (Unit of Measure = mm) D2 SYMBOL MIN NOM MAX NOTE A 0.80 0.90 1.00 1 A1 – 0.02 0.05 P Pin #1 Notch 2 A2 – 0.65 1.00 (0.20 R) 3 A3 0.20 REF E2 b 0.18 0.23 0.30 K D 5.00 BSC D1 4.75 BSC D2 2.95 3.10 3.25 E 5.00 BSC b e L E1 4.75BSC BOTTOM VIEW E2 2.95 3.10 3.25 e 0.50 BSC L 0.30 0.40 0.50 P – – 0.60 0 – – 12o Note: JEDEC Standard MO-220, Fig. 2 (Anvil Singulation), VHHD-2. K 0.20 – – 8/19/04 TITLE DRAWING NO. REV. 2325 Orchard Parkway 32M1-A, 32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm, San Jose, CA 95131 32M1-A D R 3.10 mm Exposed Pad, Micro Lead Frame Package (MLF) 15 2588FS–AVR–06/2013

ATtiny261/461/861 7.2 20P3 16 2588FS–AVR–06/2013

ATtiny261/461/861 7.3 20S2 17 2588FS–AVR–06/2013

ATtiny261/461/861 8. Errata 8.1 Errata ATtiny261 The revision letter in this section refers to the revision of the ATtiny261 device. 8.1.1 Rev A No known errata. 8.2 Errata ATtiny461 The revision letter in this section refers to the revision of the ATtiny461 device. 8.2.1 Rev B Yield improvement. No known errata. 8.2.2 Rev A No known errata. 8.3 Errata ATtiny861 The revision letter in this section refers to the revision of the ATtiny861 device. 8.3.1 Rev B No known errata. 8.3.2 Rev A Not sampled. 18 2588FS–AVR–06/2013

ATtiny261/461/861 9. Datasheet Revision History Please note that the referring page numbers in this section refer to the complete document. 9.1 Rev. 2588F – 06/13 1. ATtiny261 changed status to “Mature”. 9.2 Rev. 2588E – 08/10 1. Added tape and reel in “Ordering Information” on page 11. 2. Clarified Section 6.4 “Clock Output Buffer” on page 32. 3. Removed text "Not recommended for new designs" from cover page. 9.3 Rev. 2588D – 06/10 1. Removed “Preliminary” from cover page. 2. Added clarification before Table6-10, “Capacitance for Low-Frequency Crystal Oscilla- tor,” on page29. 3. Updated Figure 15-1 “Analog to Digital Converter Block Schematic” on page 143, changed INTERNAL 1.18V REFERENCE to 1.1V. 4. Updated Table18-8, “No. of Words in a Page and No. of Pages in the EEPROM,” on page173, No. of Pages from 64 to 32 for ATtiny261. 5. Adjusted notes in Table19-1, “DC Characteristics. T = -40C to +85C, V = 1.8V to A CC 5.5V (unless otherwise noted).,” on page187. 9.4 Rev. 2588C – 10/09 1. Updated document template. Re-arranged some sections. 2. Changed device status to "Not Recommended for New Designs". 3. Added Sections: – “Data Retention” on page 6 – “Clock Sources” on page 25 – “Low Level Interrupt” on page 51 – “Prescaling and Conversion Timing” on page 145 – “Clock speed considerations” on page 131 4. Updated Sections: – “Code Examples” on page 6 – “High-Frequency PLL Clock” on page 26 – “Normal Mode” on page 99 – “Features” on page 142 – “Temperature Measurement” on page 154 – “Limitations of debugWIRE” on page 164 – Step 1. on page 174 – “Programming the Flash” on page 180 – “System and Reset Characteristics” on page 190 5. Added Figures: – “Flash Programming Waveforms” on page 182 19 2588FS–AVR–06/2013

ATtiny261/461/861 – “Reset Pin Output Voltage vs. Sink Current (V = 3V)” on page 209 CC – “Reset Pin Output Voltage vs. Sink Current (V = 3V)” on page 209 CC – “Reset Pin Output Voltage vs. Sink Current (V = 3V)” on page 209 CC – “Reset Pin Output Voltage vs. Sink Current (V = 3V)” on page 209 CC – “Bandgap Voltage vs. Supply Voltage (VCC).” on page 216 6. Updated Figures: – “Block Diagram” on page 4 – “Clock Distribution” on page 24 7. Added Table: – “Capacitance for Low-Frequency Crystal Oscillator” on page 29 8. Updated Tables: – “Start-up Times for the Internal Calibrated RC Oscillator Clock Selection” on page 28 – “Start-up Times for the 128 kHz Internal Oscillator” on page 29 – “Active Clock Domains and Wake-up Sources in Different Sleep Modes” on page 36 – “Serial Programming Characteristics, T = -40C to +85C, V = 1.8 - 5.5V (Unless A CC Otherwise Noted)” on page 193 9. Updated Register Descriptions: – “TCCR1A – Timer/Counter1 Control Register A” on page 112 – “TCCR1C – Timer/Counter1 Control Register C” on page 117 – “ADMUX – ADC Multiplexer Selection Register” on page 155 10. Updated assembly program example in section “Write” on page 17. 11. Updated “DC Characteristics. T = -40C to +85C, V = 1.8V to 5.5V (unless other- A CC wise noted).” on page 187. 9.5 Rev. 2588B – 11/06 1. Updated “Ordering Information” on page 11. 2. Updated “Packaging Information” on page 15. 9.6 Rev. 2588A – 10/06 1. Initial Revision. 20 2588FS–AVR–06/2013

Atmel Corporation Atmel Asia Limited Atmel Munich GmbH Atmel Japan G.K. 1600 Technology Drive Unit 01-5 & 16, 19F Business Campus 16F Shin-Osaki Kangyo Bldg San Jose, CA 95110 BEA Tower, Millennium City 5 Parkring 4 1-6-4 Osaki, Shinagawa-ku USA 418 Kwun Tong Roa D-85748 Garching b. Munich Tokyo 141-0032 Tel: (+1) (408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN Fax: (+1) (408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81) (3) 6417-0300 www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81) (3) 6417-0370 Fax: (+852) 2722-1369 © 2013 Atmel Corporation. All rights reserved. / Rev.: 2588FS–AVR–06/2013 Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. 2588FS–AVR–06/2013

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: M icrochip: ATTINY461V-10PU ATTINY861V-10PU ATTINY461-20PU ATTINY861-20SU ATTINY461V-10SU ATTINY261- 20PU ATTINY861-20PU ATTINY261-20MU ATTINY261-20SU ATTINY261V-10MU ATTINY261V-10PU ATTINY261V-10SU ATTINY461-20MU ATTINY461-20SU ATTINY461V-10MU ATTINY861-20MU ATTINY861V- 10MU ATTINY861V-10SU ATTINY261-20MUR ATTINY261-20SUR ATTINY261V-10MUR ATTINY261V-10SUR ATTINY461-20SUR ATTINY461-20MUR ATTINY461V-10MUR ATTINY461V-10SUR ATTINY861V-10SUR ATTINY861-20MUR ATTINY861-20SUR ATTINY861V-10MUR